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Vehicle Routing

= Given a set of customer requests, determine & o 0—0
minimum cost vehicle routes such that all Q ,o/ o’/
requests are satisfied o— e S é

— Single vehicle: Traveling Salesman Problem (TSP) o ;
— Multiple (capacity-constrained) vehicles: o‘/ ?
Vehicle Routing Problem (VRP) \‘o—--'o

= \ehicle routing problems are central to transportation logistics and
distribution planning

= Applications also arise in:
— Production Planning and Scheduling
— Network Design
— Semiconductor Manufacturing
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Tactical Planning in Vehicle Routing

= Given a set of customer requests

— Assigna visit day to each customer over a short-term horizon
(e.g., one week)

— Design routes for each day in order to minimize sum of routing costs

=  Scheduling and routing decisions are made simultaneously in a
multi-period setting while respecting constraints on all days:

— Customer availability (e.g., visit day windows)

— Fleet capacity and other routing-specific constraints (e.g., time
windows)

= Planis executed in a rolling horizon fashion
— Routes of the first day are executed

— New requests are recorded and problem is re-solved using the
updated portfolio of customer requests 3
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Motivation

= A time horizon of one day reduces the problem to a standard VRP
— Can be infeasible because it could require too many vehicles
— Can be too expensive in terms of routing costs and overtime pay

= Actual setting may preclude single-day planning horizon
... because of the need to set customer appointments
... because of internal human resource constraints

= Applications arise in many fields:

— Food and beverage distribution/chemical distribution
[vehicle capacities are limiting]

— Scheduling crews for planned maintenance of service equipment
[hours-of-work constraints are limiting]
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MILP Formulation

= Given
— Planning horizon p € {1, ..., h}
— Fleet K of m vehicles with capacity Q each, available every day

— Customer set V- with demands g; and “day windows” |e;, [;]
(each customer must receive service within its day window)

— Routing costs ¢;; between every pair of nodes (i,j) €A

= Determine
— Visit day for each customer yl.p € {0,1}

— Routes for each day xlpj € {0,1}

— Assignment of customers to fleet Zg( € [0,1]
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MILP Formulation
IIllImll;I;IZG Z Z CZJ 23

PEP (i,7)€A
subject to Z Ll:fj = Z :17;- =y VieVa, Vp
JeV: jev:
J#i J#i
Fleet availability — Z xgj <m Vp
jEVp
.As.slgn a VIS.It day Z =1 Vie Ve
within day window =
Eliminate subtours —> > al> VveeS VSC Ve, Vp
icV\S jeS
> =y VieV, Vp
Assign vehicles to J =%
visited customers 1 — a3, — af; > max{zj, — jk z —z2n} Vi,jgeVeri<j, Vk Vp
Break symmetry — ka+22?<3*13&*$83’ VijeVo:1<j, VEk Vp
Respect vehicle Z Gah < Vk Vp
capacity iV
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Call-In Customers

= Customers who are not scheduled to be visited now but might
potentially “call-in”, requesting service in a future time period

= The above framework does not explicitly account for the
uncertainty of future orders within the planning horizon

— Myopically optimizes based on current information
— Can generate routing plans that are infeasible and/or too expensive

= Challenges
... Characterize discrete (yes/no) nature of uncertainty
... Build tractable models that insure against such uncertainty

... No existing methods in Robust Optimization can systematically and
tractably treat general discrete uncertainty
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Characterizing Discrete Uncertainty

All call-in orders are assumed to come from a (possibly huge)
database of “potential orders” V,

" Each call-in customer ¢, places an order o, associated with
— Call-in date d,
— Demandq,
— Service Day Window [e,, [, ]

= Can account for multiple orders placed by the same customer
— Duplicate 04, 05, ... with same demand but different day windows

= All call-in orders satisfy e, = 2, since all customers of day 1
(“today”) are known at time of optimization

c_:?{?[g
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Characterizing Discrete Uncertainty

= “Uncertainty set”
=={¢e{0,1}/"0l: A¢ <b}
— Finite collection of relevant “realizations” of customer orders

— Each element is a 0 — 1 vector indicating which orders can be realized
together throughout the planning horizon

= The above representation can capture practically-meaningful scenarios
... budget of orders throughout the week = = {g e {0,131l ¢, <T

... geographical budgets 2= {& {01}l N g < Vi= {L---,L}}
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... budget of orders from same customer
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Robust Counterpart

= Routing plan must remain feasible for any realization of orders

... must have enough fleet capacity to accommodate call-in demand in
future time periods

. ka € {0,1} indicates V\{hich vehicle we “virtually” assign to order o

Y Y =1 VYoelp

p=eq, ke

= Robust capacity constraint:

ZQ095k0+ZQisz§Q Vk,Vp,VﬁeE

ocVpo 1eVeo

— Resulting model is a semi-infinite MILP

— Can be reformulated into an MILP only for certain uncertainty sets:
disjoint budgets

10
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Algorithmic Framework

= Solve the robust problem with the deterministic capacity constraint,

!

i.e., withZ = " « {0}, using a branch-and-bound solver

= At each node, apply the following cutting plane algorithm:
1. Obtain the current primal solution (x*,y™*, z*, 6*)

2. For each k and p, solve the following MILP and obtain the solution é

=pax 2 b

o€V

3. (a) IfZ>Q— D ieve giz;y, then E <+ Z'U {é} and add the robust

capacity constraint corresponding to é to the master problem and
re-solve the node. Go to 1.

(b) Else, the current node is feasible with respect to all robust ca-
pacity constraints. Stop.

11
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Computational Results

= Database of 10 benchmark instances from VRP literature
— 20-50 fixed/deterministic customers, 2 — 4 vehicles
— Extended into 5-period problems

" For each instance, we constructed a large database V, of orders
— Day windows randomly assigned with maximum window of 3 days

— Demands vary between [q,ﬁ] with respect to deterministic customers

= Uncertainty is described by a budget of orders throughout the week

== {g e {0,131l Y "¢, < P}

ocVpo

— [ varies between 0% and 25% of the no. of fixed customers

12
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Computational Results
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Conclusions and Future Work

= |gnoring uncertainty in future customer requests can lead to infeasible or
highly expensive routing plans in multi-period tactical VRPs

= We developed a robust optimization framework to account for the
uncertainty of future call-in customers

— This is the first approach to systematically address discrete uncertainty
in robust optimization

= A robust plan can be obtained with a small increase in routing costs

= Future work:
— Improve the conservatism of the proposed framework
— Procedurally reduce the number of “relevant” realizations =’

— Better formulations/decomposition techniques to solve larger instances
14



