
Multi-Period Vehicle Routing with 
Call-In Customers

Anirudh Subramanyam, Chrysanthos E. Gounaris
Carnegie Mellon University

Frank Mufalli, Jose M. Pinto
Praxair Inc.

EWO Meeting

September 30th – October 1st, 2015 

1



Vehicle Routing

 Given a set of customer requests, determine
minimum cost vehicle routes such that all
requests are satisfied

– Single vehicle: Traveling Salesman Problem (TSP)

– Multiple (capacity-constrained) vehicles: 
Vehicle Routing Problem (VRP)

 Vehicle routing problems are central to transportation logistics and 
distribution planning

 Applications also arise in:

– Production Planning and Scheduling

– Network Design

– Semiconductor Manufacturing
2



Tactical Planning in Vehicle Routing

 Given a set of customer requests

– Assign a visit day to each customer over a short-term horizon
(e.g., one week)

– Design routes for each day in order to minimize sum of routing costs

 Scheduling and routing decisions are made simultaneously in a 
multi-period setting while respecting constraints on all days:

– Customer availability (e.g., visit day windows)

– Fleet capacity and other routing-specific constraints (e.g., time 
windows)

 Plan is executed in a rolling horizon fashion

– Routes of the first day are executed

– New requests are recorded and problem is re-solved using the 
updated portfolio of customer requests 3



Motivation

 A time horizon of one day reduces the problem to a standard VRP

– Can be infeasible because it could require too many vehicles

– Can be too expensive in terms of routing costs and overtime pay

 Actual setting may preclude single-day planning horizon

…because of the need to set customer appointments

…because of internal human resource constraints

 Applications arise in many fields:

– Food and beverage distribution/chemical distribution
[vehicle capacities are limiting]

– Scheduling crews for planned maintenance of service equipment
[hours-of-work constraints are limiting]

4



MILP Formulation

 Given

– Planning horizon 𝑝 ∈ 1,… , ℎ

– Fleet 𝒦 of 𝑚 vehicles with capacity 𝑄 each, available every day

– Customer set 𝑉𝐶 with demands 𝑞𝑖 and “day windows” 𝑒𝑖 , 𝑙𝑖
(each customer must receive service within its day window)

– Routing costs 𝑐𝑖𝑗 between every pair of nodes 𝑖, 𝑗 ∈ 𝐴

 Determine

– Visit day for each customer              𝑦𝑖
𝑝
∈ 0,1

– Routes for each day                           𝑥𝑖𝑗
𝑝
∈ 0,1

– Assignment of customers to fleet   𝑧𝑖𝑘
𝑝
∈ 0,1

5



MILP Formulation

6

Fleet availability

Assign a visit day
within day window

Eliminate subtours

Assign vehicles to
visited customers

Break symmetry

Respect vehicle 
capacity



Call-In Customers

 Customers who are not scheduled to be visited now but might 
potentially “call-in”, requesting service in a future time period

 The above framework does not explicitly account for the 
uncertainty of future orders within the planning horizon

– Myopically optimizes based on current information

– Can generate routing plans that are infeasible and/or too expensive

 Challenges

…Characterize discrete (yes/no) nature of uncertainty

…Build tractable models that insure against such uncertainty

…No existing methods in Robust Optimization can systematically and 
tractably treat general discrete uncertainty

7



Characterizing Discrete Uncertainty

 All call-in orders are assumed to come from a (possibly huge) 
database of “potential orders” 𝑉𝑂

 Each call-in customer 𝑐𝑜 places an order 𝑜, associated with

– Call-in date 𝑑𝑜
– Demand 𝑞𝑜
– Service Day Window 𝑒𝑜, 𝑙𝑜

 Can account for multiple orders placed by the same customer

– Duplicate 𝑜1 , 𝑜2,… with same demand but different day windows

 All call-in orders satisfy 𝑒𝑜 ≥ 2, since all customers of day 1 
(“today”) are known at time of optimization

8



Characterizing Discrete Uncertainty

 “Uncertainty set”

– Finite collection of relevant “realizations” of customer orders

– Each element is a 0 – 1 vector indicating which orders can be realized
together throughout the planning horizon

 The above representation can capture practically-meaningful scenarios

…budget of orders throughout the week

…budget of calls on any day

…geographical budgets

…budget of orders from same customer
9



Robust Counterpart

 Routing plan must remain feasible for any realization of orders

…must have enough fleet capacity to accommodate call-in demand in 
future time periods

 𝜃𝑜𝑘
𝑝
∈ 0,1 indicates which vehicle we “virtually” assign to order 𝑜

 Robust capacity constraint:

– Resulting model is a semi-infinite MILP

– Can be reformulated into an MILP only for certain uncertainty sets: 
disjoint budgets

10



Algorithmic Framework

 Solve the robust problem with the deterministic capacity constraint, 
i.e., with Ξ = Ξ′ ← 𝟎 , using a branch-and-bound solver

 At each node, apply the following cutting plane algorithm:

11



Computational Results 

 Database of 10 benchmark instances from VRP literature

– 20 – 50 fixed/deterministic customers, 2 – 4 vehicles

– Extended into 5-period problems

 For each instance, we constructed a large database 𝑉𝑂 of orders

– Day windows randomly assigned with maximum window of 3 days

– Demands vary between 𝑞,𝑞 with respect to deterministic customers

 Uncertainty is described by a budget of orders throughout the week

– Γ varies between 0% and 25% of the no. of fixed customers

12



Computational Results 

13

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0

2

4

6

8

10

12

0% 5% 10% 15% 20% 25%

C
o

st
 I

n
cr

e
as

e

# 
Fe

as
ib

le
 I

n
st

an
ce

s

Level of Robustness Γ

C++/CPLEX 12.6 – 10 CPU minutes



Conclusions and Future Work
 Ignoring uncertainty in future customer requests can lead to infeasible or 

highly expensive routing plans in multi-period tactical VRPs

 We developed a robust optimization framework to account for the 
uncertainty of future call-in customers

– This is the first approach to systematically address discrete uncertainty 
in robust optimization

 A robust plan can be obtained with a small increase in routing costs

 Future work:

– Improve the conservatism of the proposed framework

– Procedurally reduce the number of “relevant” realizations Ξ′

– Better formulations/decomposition techniques to solve larger instances
14


