

Multi-Period Vehicle Routing with Call-In Customers

Anirudh Subramanyam, Chrysanthos E. Gounaris Carnegie Mellon University

Frank Mufalli, Jose M. Pinto

Praxair Inc.

EWO Meeting September 30th – October 1st, 2015

Vehicle Routing

- Given a set of customer requests, determine minimum cost vehicle routes such that all requests are satisfied
 - Single vehicle: Traveling Salesman Problem (TSP)
 - Multiple (capacity-constrained) vehicles:
 Vehicle Routing Problem (VRP)

- Vehicle routing problems are central to transportation logistics and distribution planning
- Applications also arise in:
 - Production Planning and Scheduling
 - Network Design
 - Semiconductor Manufacturing

Tactical Planning in Vehicle Routing

- Given a set of customer requests
 - Assign a visit day to each customer over a short-term horizon (e.g., one week)
 - Design routes for each day in order to minimize sum of routing costs
- Scheduling and routing decisions are made simultaneously in a multi-period setting while respecting constraints on all days:
 - Customer availability (e.g., visit day windows)
 - Fleet capacity and other routing-specific constraints (e.g., time windows)
- Plan is executed in a rolling horizon fashion
 - Routes of the first day are executed
 - New requests are recorded and problem is re-solved using the updated portfolio of customer requests

Motivation

- A time horizon of one day reduces the problem to a standard VRP
 - Can be infeasible because it could require too many vehicles
 - Can be too expensive in terms of routing costs and overtime pay
- Actual setting may preclude single-day planning horizon
 - ... because of the need to set customer appointments
 - ... because of internal human resource constraints
- Applications arise in many fields:
 - Food and beverage distribution/chemical distribution
 [vehicle capacities are limiting]
 - Scheduling crews for planned maintenance of service equipment [hours-of-work constraints are limiting]

MILP Formulation

- Given
 - Planning horizon $p \in \{1, \dots, h\}$
 - Fleet \mathcal{K} of m vehicles with capacity Q each, available every day
 - Customer set V_C with demands q_i and "day windows" $[e_i, l_i]$ (each customer must receive service within its day window)
 - Routing costs c_{ij} between every pair of nodes $(i, j) \in A$

Determine

- Visit day for each customer $y_i^p \in \{0,1\}$
- Routes for each day $x_{ij}^p \in \{0,1\}$
- Assignment of customers to fleet $z_{ik}^{p} \in [0,1]$

MILP Formulation

$\underset{x,y,z}{\operatorname{minimize}}$	$\sum_{p \in \mathcal{P}} \sum_{(i,j) \in A} c_{ij} x_{ij}^p$	
subject to	$\sum_{\substack{j \in V:\\ i \neq i}} x_{ij}^p = \sum_{\substack{j \in V:\\ i \neq i}} x_{ji}^p = y_i^p$	$\forall i \in V_C, \ \forall p$
Fleet availability \longrightarrow	$\sum_{j \in V_p} x_{0j}^p \le m$	$\forall p$
Assign a visit day within day window	$\sum_{p=e_i}^{l_i} y_i^p = 1$	$\forall i \in V_C$
Eliminate subtours	$\sum_{i \in V \setminus S} \sum_{j \in S} x_{ij}^p \ge y_v^p$	$\forall v \in S, \forall S \subseteq V_C, \forall p$
Assign vehicles to	$\sum_{k \in \mathcal{K}} z_{ik}^p = y_i^p$	$\forall i \in V_p, \forall p$
visited customers	$1 - x_{ji}^p - x_{ji}^p \ge \max\{z_{ik}^p - z_{jk}^p, z_{jk}^p - z_{ik}^p\}$	$\forall i, j \in V_C : i < j, \ \forall k, \ \forall p$
Break symmetry>	$z_{ik}^p + \sum_{l=1}^n z_{jl}^p \le 3 - x_{0i}^p - x_{0j}^p$	$\forall i, j \in V_C : i < j, \ \forall k, \ \forall p$
Respect vehicle capacity	$\sum_{i \in V_C} q_i z_{ik}^p \le Q$	$\forall \ k, \ \forall \ p$

Call-In Customers

- Customers who are not scheduled to be visited now but might potentially "call-in", requesting service in a future time period
- The above framework does not explicitly account for the uncertainty of future orders within the planning horizon
 - Myopically optimizes based on current information
 - Can generate routing plans that are infeasible and/or too expensive
- Challenges
 - ... Characterize discrete (yes/no) nature of uncertainty
 - ... Build tractable models that insure against such uncertainty
 - ... No existing methods in Robust Optimization can systematically and tractably treat general discrete uncertainty

Characterizing Discrete Uncertainty

- All call-in orders are assumed to come from a (possibly huge) database of "potential orders" V₀
- Each call-in customer c_o places an order o, associated with
 - Call-in date d_o
 - Demand q_o

Carnegie Mellor

- Service Day Window $[e_o, l_o]$
- Can account for multiple orders placed by the same customer
 - Duplicate o_1, o_2, \dots with same demand but different day windows
- All call-in orders satisfy $e_o \ge 2$, since all customers of day 1 ("today") are known at time of optimization

Characterizing Discrete Uncertainty

"Uncertainty set"

CET Carnegie Mellon

$$\Xi = \left\{ \boldsymbol{\xi} \in \{0, 1\}^{|V_O|} : A \boldsymbol{\xi} \le b \right\}$$

- Finite collection of relevant "realizations" of customer orders
- Each element is a 0 1 vector indicating which orders can be realized together throughout the planning horizon
- The above representation can capture practically-meaningful scenarios ... budget of orders throughout the week $\Xi = \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V} \xi_o \leq \Gamma \right\}$

... budget of calls on any day

 $\Xi = \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: d_o = p} \xi_o \le \Gamma_p \quad \forall \ p = \{1,\dots,h\} \right\}$

... geographical budgets

$$\Xi = \left\{ \boldsymbol{\xi} \in \{0, 1\}^{|V_O|} : \sum_{o \in V_O \cap B_l} \xi_o \le b_l \quad \forall \ l = \{1, \dots, L\} \right\}$$

... budget of orders from same customer $\Xi = \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \leq 1 \quad \forall c \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \leq 1 \quad \forall c \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \leq 1 \quad \forall c \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \leq 1 \quad \forall c \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \leq 1 \quad \forall c \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \leq 1 \quad \forall c \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \leq 1 \quad \forall c \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \leq 1 \quad \forall c \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \leq 1 \quad \forall c \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \leq 1 \quad \forall c \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \leq 1 \quad \forall c \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \leq 1 \quad \forall c \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \leq 1 \quad \forall c \in V_O: c_o = c} \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \leq 1 \quad \forall c \in V_O: c_o = c} \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \leq 1 \quad \forall c \in V_O: c_o = c} \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \in V_O: c_o = c} \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \in V_O: c_o = c} \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \xi_o \in V_O: c_o = c} \right\}_{o \in V_O: c_o = c} \left\{ \boldsymbol{\xi} \in \{0,1\}^{|V_O|} : \sum_{o \in V_O: c_o = c} \{0,1\}^{|V_O|} : \sum_{o \in$

Robust Counterpart

- Routing plan must remain feasible for any realization of orders
 - ... must have enough fleet capacity to accommodate call-in demand in future time periods
- $\theta_{ok}^p \in \{0,1\}$ indicates which vehicle we "virtually" assign to order o $\sum_{n=e_o}^{l_o} \sum_{k \in \mathcal{K}} \theta_{ok}^p = 1 \quad \forall o \in V_O$
- Robust capacity constraint:

$$\sum_{o \in V_O} q_o \theta_{ok}^p \xi_o + \sum_{i \in V_C} q_i z_{ik}^p \le Q \qquad \forall k, \ \forall p, \ \forall \boldsymbol{\xi} \in \Xi$$

- Resulting model is a semi-infinite MILP
- Can be reformulated into an MILP only for certain uncertainty sets: disjoint budgets

Algorithmic Framework

- Solve the robust problem with the deterministic capacity constraint,
 i.e., with Ξ = Ξ' ← {0}, using a branch-and-bound solver
- At each node, apply the following cutting plane algorithm:
 - 1. Obtain the current primal solution $(x^*, y^*, z^*, \theta^*)$
 - 2. For each k and p, solve the following MILP and obtain the solution $\hat{\xi}$

$$\hat{Z} = \max_{\boldsymbol{\xi} \in \Xi} \sum_{o \in V_O} q_o \theta_{ok}^{*p} \xi_o$$

- 3. (a) If $\hat{Z} > Q \sum_{i \in V_C} q_i z_{ik}^{*p}$, then $\Xi' \leftarrow \Xi' \cup \left\{ \hat{\xi} \right\}$ and add the robust capacity constraint corresponding to $\hat{\xi}$ to the master problem and re-solve the node. Go to 1.
 - (b) Else, the current node is feasible with respect to all robust capacity constraints. Stop.

Computational Results

- Database of 10 benchmark instances from VRP literature
 - 20 50 fixed/deterministic customers, 2 4 vehicles
 - Extended into 5-period problems
- For each instance, we constructed a large database V_0 of orders
 - Day windows randomly assigned with maximum window of 3 days
 - Demands vary between $\left[\underline{q}, \overline{q}\right]$ with respect to deterministic customers
- Uncertainty is described by a budget of orders throughout the week

$$\Xi = \left\{ \boldsymbol{\xi} \in \{0, 1\}^{|V_O|} : \sum_{o \in V_O} \xi_o \le \Gamma \right\}$$

- Γ varies between 0% and 25% of the no. of fixed customers

Computational Results

C++/CPLEX 12.6 – 10 CPU minutes

Conclusions and Future Work

- Ignoring uncertainty in future customer requests can lead to infeasible or highly expensive routing plans in multi-period tactical VRPs
- We developed a robust optimization framework to account for the uncertainty of future call-in customers
 - This is the first approach to systematically address discrete uncertainty in robust optimization
- A robust plan can be obtained with a small increase in routing costs
- Future work:
 - Improve the conservatism of the proposed framework
 - Procedurally reduce the number of "relevant" realizations Ξ'
 - Better formulations/decomposition techniques to solve larger instances