

Risk-based Integrated Production Scheduling and Electricity Procurement

Qi Zhang^a, Jochen L. Cremer^b, Ignacio E. Grossmann^a, Arul Sundaramoorthy^c, Jose M. Pinto^c

- ^a Center for Advanced Process Decision-making (CAPD), Department of Chemical Engineering, Carnegie Mellon University
- ^b Faculty of Mechanical Engineering, RWTH Aachen University
- ^c Praxair, Inc., Business and Supply Chain Optimization R&D

Enterprise-wide Optimization Meeting Pittsburgh, March 2015

To mitigate the impact of electricity price uncertainty, the two common strategies have to be considered simultaneously.

General Problem Setup

In the particular industrial case study, we consider an air separation plant.

We apply two-stage stochastic programming and incorporate conditional value-at-risk to model the uncertainty/risk.

- Conditional value-at-risk¹ (CVaR) used as risk measure
- α-CVaR is defined as the expected value of the cost greater than the α-quantile of the cost distribution
- Risk-neutral optimization = minimizing total expected cost
- Risk-averse optimization = minimizing weighted sum of total expected cost and CVaR

Source: Saryakalin et al. (2008)

1. Rockafellar, Uryasev (2000). Journal of risk.

In risk-neutral optimization with only price uncertainty, deterministic and stochastic models lead to the same results.

Value of Stochastic Solution (VSS):

VSS = objective value with 1st-stage decisions from deterministic problem – objective value with 1st-stage decisions from stochastic problem

With demand uncertainty, VSS exists, but considering price uncertainty still does not improve the solution.

<i>S</i> ^{<i>D</i>}	Var ^D	$ S^{P} $	$\left \widetilde{S}^{P}\right $	Var ^P	TC ^{det}	TC ^{sto}	<i>VSS</i> [%]
5	low	1,000	1	medium	1.342	1.347	0.4
5	low	1,000	50	medium	1.342	1.334	0.6
5	medium	1,000	1	medium	1.404	1.379	1.8
5	medium	1,000	50	medium	1.404	1.378	1.8
5	high	1,000	1	medium	1.596	1.528	4.3
5	high	1,000	50	medium	1.596	1.527	4.3

 $V\widetilde{S}S$ for $|\widetilde{S}^{P}| = 1$ and $|\widetilde{S}^{P}| = 50$ are practically the same

In expected cost minimization, explicitly accounting for electricity price uncertainty does not add any additional value.

- By considering price uncertainty, VSS does not improve
- Explanation: prices only appear in the objective function, not in the constraints
 → equivalent objective function if power consumption Q_{tdp} is the same for all price
 scenarios p associated with the same demand scenario d

$$\sum_{t} \sum_{d} \varphi_{d} \sum_{p} \psi_{p} \alpha_{tp} Q_{tdp} \approx \sum_{t} \sum_{d} \varphi_{d} \left(\sum_{p} \psi_{p} \alpha_{tp} \right) \bar{Q}_{td} = \sum_{t} \sum_{d} \varphi_{d} \mathbb{E}(\alpha_{t}) \bar{Q}_{td}$$

- For fixed demand and fixed first-stage decisions, $\sum_t Q_{tdp} \approx \text{const.} \forall p$
- Price trend remains the same despite uncertainty

Does this mean that accounting for price uncertainty is unnecessary? - Not if we also consider risk!

In risk-averse optimization, accounting for price uncertainty leads to improved solutions.

Minimizing equally weighted sum of total expected cost and CVaR with $\alpha = 0.8$

$ S^D $	$ S^P $	$ \widetilde{S}^{P} $	Var ^P	TC ^{det}	CV ^{det}	TC ^{sto}	<i>CV^{sto}</i>	<i>VSS</i> [%]
1	1,000	50	low	1.315	1.347	1.316	1.336	0.4
1	1,000	50	medium	1.314	1.389	1.318	1.358	1.0
1	1,000	50	high	1.311	1.482	1.314	1.399	2.9

Similar results when considering both price and demand uncertainty

Results from risk-neutral and risk-averse optimization can differ significantly.

Deterministic: mainly affected by price

Risk-neutral: purchase from spot market to retain flexibility

Risk-averse: purchase from contracts to hedge against risk

Novelty and Readiness for Industrial Applications

• Novelty of the work:

- simultaneous optimization of production scheduling and electricity procurement (although not entirely new anymore)
- accounting for both types of uncertainty (price and demand)
- detailed analysis of the value of stochastic optimization, in particular the value of risk-averse optimization

Readiness for industrial implementation:

- framework ready to be deployed after incorporating the appropriate contract model
- as demonstrated, industrial-size problems can be solved; however, computational time is still significant for large number of scenarios