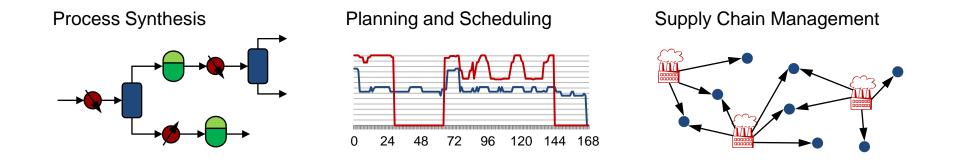


Data-based Construction of Convex Region Surrogate (CRS) Models

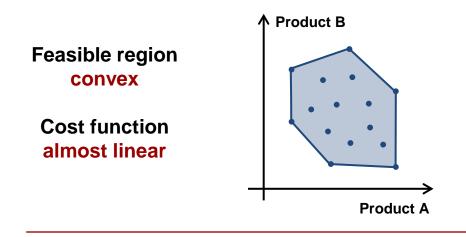
Qi Zhang, Ignacio E. Grossmann


Center for Advanced Process Decision-making (CAPD), Department of Chemical Engineering, Carnegie Mellon University

Arul Sundaramoorthy, Jose M. Pinto

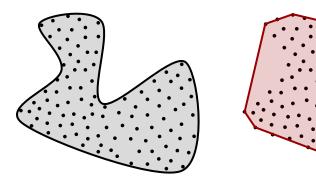
Praxair Inc., Business and Supply Chain Optimization R&D

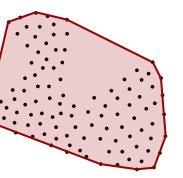
Enterprise-wide Optimization Meeting Pittsburgh, March 2014

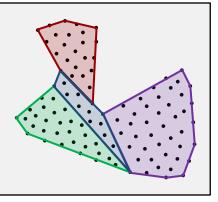

Integrated multiscale optimization requires computationally efficient and accurate process models.

Detailed process models usually too complex to be integrated in such optimization frameworks

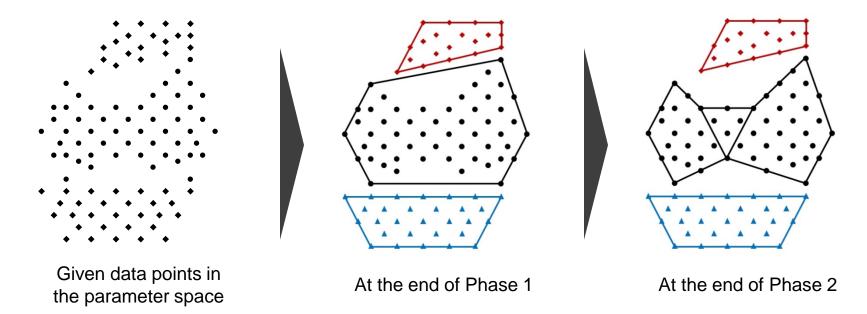
- Need to construct computationally tractable but accurate surrogate models,
 i.e. approximate feasible region and cost correlation
- Require data-driven approaches suitable for the following two cases:
 - 1. Existing model too difficult to be reduced but can be used to generate data
 - 2. No model but real process data available


Using information from given data, we approximate the process model with a union of convex regions.



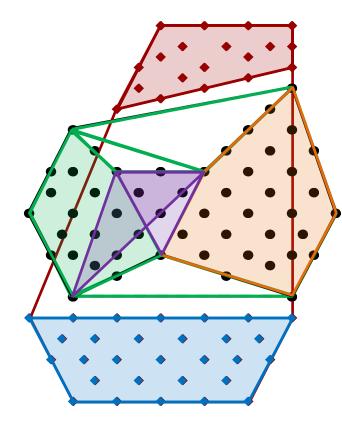

- Convex hull around all data points as feasible region¹
- Cost correlation from linear regression
- Model remains linear and convex
- Reduce dimension by only considering relevant variables
- 1. Karwan and Keblis (2001). Computers and Operations Research.

Cost function nonlinear



- Union of polytopes is more accurate
- Can be formulated as MILP

How do we find these convex regions?


We propose a two-phase algorithm.

- Phase 1: Subset assignment subject to linear parameter-cost correlation constraints
- **Phase 2:** Construction of convex regions approximating the feasible region

Algorithm involves solving various optimization problems in an iterative framework.

Demonstration of the CRS Algorithm

Phase 1

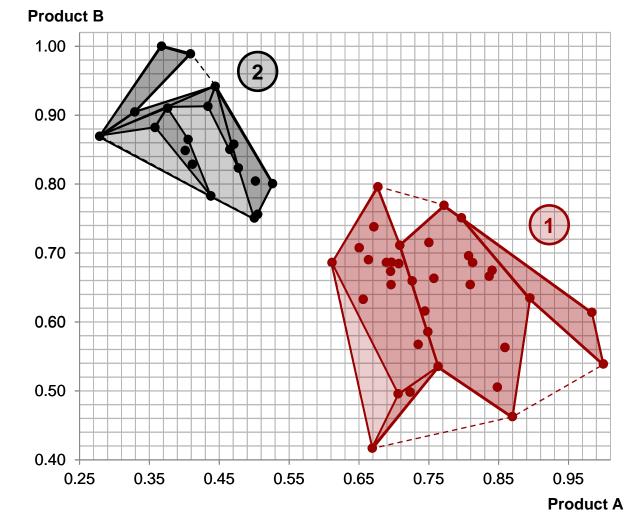
- »» m = 1, infeasible \rightarrow set m = 2, solve again
- »» feasible \rightarrow construct convex hulls
- »» overlap detected \rightarrow add cuts, solve again
- »» infeasible → set m = 3, solve again
- »» feasible \rightarrow construct convex hulls
- »» no overlap \rightarrow Phase 1 solution found!

Phase 2

- »» t = 1, examine facets, find new vertices and facets
- »» new facets created \rightarrow set t = 2, examine facets
- »» new facets created \rightarrow set t = 3, examine facets
- »» no new facets created → set R = 1, solve convex region assignment problem
- »» infeasible → set R = 2, solve again
- »» infeasible \rightarrow set R = 3, solve again
- »» feasible, overlap detected \rightarrow add cuts, solve again
- **»**» feasible, no overlap \rightarrow **Solution found!**

Case Study: CRS Model of an Industrial Process.

Real process data drawn from a Praxair plant


Phase 1

Coefficients for linear correlations

Set	b	c _A	c _B
1	0.900	0.062	0.000
2	0.703	0.127	0.236

Phase 2

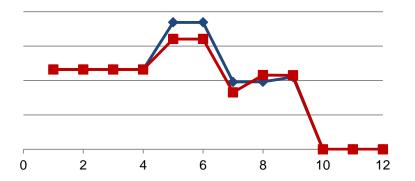
- 51convexregionss constructed
- Specified tolerance $\epsilon = 0.0 \oplus$

Novelty: This problem as such has not been reported before.

Many works on data-based modeling, but:

 most methods rely on nonlinear constructs to approximate nonlinearities and nonconvexities

• Karwan and Keblis (2001). Computers and Operations Research.


• not accurate if feasible region nonconvex and cost function nonlinear

• Sung and Maravelias (2009). AIChE Journal.

- not data-driven
- makes use of the explicit model formulation

Potential Impact for Industrial Applications

Successfully applied to a production scheduling problem

- With CRS model (CRS generated in 14 min, solved in 1.5 sec)
- With detailed nonlinear model (solved in 5 hr)

- Use in more industrial applications subject to future work
- Need to overcome computational limitations due to
 - higher dimensions
 - larger set of data points