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Integrated multiscale optimization requires
computationally efficient and accurate process models.
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Detailed process models usually too complex to be

integrated in such optimization frameworks

= Need to construct computationally tractable but accurate surrogate models,
I.e. approximate feasible region and cost correlation
= Require data-driven approaches suitable for the following two cases:
1. Existing model too difficult to be reduced but can be used to generate data

2. No model but real process data available
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Using information from given data, we approximate the
process model with a union of convex regions.

N\ Product B .
= Convex hull around all data points as
Feasible region feasible region?
convex = Cost correlation from linear regression

. =  Model remains linear and convex
Cost function

almost linear * Reduce dimension by only considering
relevant variables
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1. Karwan and Keblis (2001). Computers and Operations Research.

Feasible region
nonconvex

Cost function
nonlinear

= Union of polytopes is more accurate How do we find these
= Can be formulated as MILP convex regions?
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We propose a two-phase algorithm.

= Phase 1. Subset assignment subject to linear parameter-cost
correlation constraints

= Phase 2: Construction of convex regions approximating the feasible region
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Given data points in At the end of Phase 1 At the end of Phase 2
the parameter space

Algorithm involves solving various optimization problems in an iterative framework.
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Demonstration of the CRS Algorithm
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Phase 1
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m = 1, infeasible — set m = 2, solve again
feasible — construct convex hulls

overlap detected — add cuts, solve again
infeasible — set m = 3, solve again
feasible — construct convex hulls

no overlap — Phase 1 solution found!

Phase 2
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t = 1, examine facets, find new vertices and facets
new facets created — set t = 2, examine facets
new facets created — sett = 3, examine facets
no new facets created — set R = 1, solve convex
region assignment problem

infeasible — set R = 2, solve again

infeasible — set R = 3, solve again

feasible, overlap detected — add cuts, solve again
feasible, no overlap — Solution found!



Case Study: CRS Model of an Industrial Process.
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Novelty: This problem as such has not been reported before.

= Many works on data-based modeling, but:

* most methods rely on nonlinear constructs to approximate
nonlinearities and nonconvexities

= Karwan and Keblis (2001). Computers and Operations Research.

* not accurate if feasible region nonconvex and cost function nonlinear

= Sung and Maravelias (2009). AIChE Journal.
e not data-driven

* makes use of the explicit model formulation
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Potential Impact for Industrial Applications

= Successfully applied to a production scheduling problem

/;:}\ =  With CRS model
._.+/ (CRS generated in 14 min, solved in 1.5 sec)
= With detailed nonlinear model

\ (solved in 5 hr)

= Usein more industrial applications subject to future work

= Need to overcome computational limitations due to
* higher dimensions

« larger set of data points
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