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Visit London virtually this June . . . for the MINLParty!

MINLP workshop

28 - 29 June 2021 at Imperial,
Organized by M Anjos, P Belotti, J
Kronqvist & me,
Mix of invited/contributed talks & videos,
https://optimisation.doc.ic.ac.uk/
minlp-workshop-2020-june-11-12/
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Heuristics & Approximation algorithms

Approximation algorithms – Heuristics with mathematical rigor

Want to find the minimum cost COPT. Prove a performance guarantee:
Identify a good lower bound CLB;
Design a heuristic computing good suboptimal solutions CALG;
Prove analytically that CALG ≤ ρ · COPT for every instance.

CLB COPT CALG ρ · CLB ρ · COPT

Heuristic solutions

Quickly address industrially-sized instances;
Generate solutions with efficient running times;
Enhance exact methods with good feasible solutions.
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Practical applicability of approximation algorithms?

CLB COPT CALG ρ · CLB ρ · COPT

Useful for process systems engineering?

Important optimization problems in PSE applications
Heat recovery networks
State-task network
Pooling problem

Recovery & reoptimization
Royal Mail van allocation

Explainable scheduling

Letsios, Kouyialis & Misener Comput Chem Eng, 113:57-85, 2018.
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Heat recovery networks
Simultaneous method

Solve a mixed-integer nonlinear optimization problem, e.g. Ciric & Floudas
[1989], Yee & Grossmann [1990], Papalexandri & Pistikopoulos [1994].

Sequential method

Minimum utility cost Linear program (LP)
Minimum number of matches Mixed-integer linear program (MILP)

Papoulias & Grossmann [1983], Cerda & Westerberg [1983],
Anantharaman et al. [2010]

Minimum investment cost Nonlinear program (NLP)
Floudas et al. [1986]
Goal Generate many good candidate MILP solutions

Review Article

Furman & Sahinidis [Ind Eng Chem Res, 2002]
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MILP Transportation Model [Cerda & Westerberg, 1983]

Temperature interval t

Temperature interval t+ 1

σ1,t

σi,t

σi,t+1

σm,t+1

δ1,t

δ1,t+1

δj,t+1

δm,t+1

min
∑
i∈H

∑
j∈C

yi,j∑
j∈C

∑
t∈T

qi,s,j,t = σi,t i ∈ H, s ∈ T

∑
i∈H

∑
s∈T

qi,s,j,t = δj,t j ∈ C, t ∈ T∑
s,t∈T

qi,s,j,t ≤ Ui,jyi,j i ∈ H, j ∈ C

qi,s,j,t ≥ 0 ∀ i, s, j, t
qi,s,j,t = 0 s, t ∈ T, s > t

yi,j ∈ {0, 1} i ∈ H, j ∈ C

Alternative MILP Transshipment Model [Papoulias & Grossmann, 1983]

Better experimental results, e.g. for CPLEX • Solves 1 additional problem
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Can’t we just use state-of-the-art MILP solvers?
Test set of 48 minimum number of matches problems

Furman & Sahinidis [2004] Up to 38 streams, 357 binaries
In 2004, 22 of 26 problems solve [7 hr timeout, CPLEX 7.0]
In 2017, 23 of 26 problems solve [30 min timeout, CPLEX 12.6.3]

Chen et al. [2015] Up to 43 streams, 462 binaries
In 2017, 5 of 10 problems solve, 4 of 10 if using transportation model

Grossmann [2017] Up to 43 streams, 462 binaries
In 2017, 0 of 12 problems solve

FS04 LKM17
Test Id Obj CPU s Obj CPU s Rel Gap
20sp1 19 * 19 * 15%
22sp1 25 * 25 * 8%
23sp1 23 * 23 * 26%

37sp-yfyv 36 * 36 7.32
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What’s the difficulty here?
Symmetry [Kouyialis & Misener, 2017]

σi,t

δ1,t

δ2,t

If δ1,t = δ2,t
σi,t

δ1,t

δ2,t

Degeneracy

σi,t = 10 δ1,t

δ2,t

σi,t = 10 δ1,t

δ2,t

Strongly NP-hard optimization problem [Furman & Sahinidis, 2001]

We developed an alternative NP-hardness reduction to bin-packing.

Similar problems

Scheduling • Cloud computing • Bin packing
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Three classes of heuristic methods

Relaxation rounding

Motivation Optimize a simpler, relaxed problem. Round the result.
Fractional linear programming rounding†

Lagrangian relaxation rounding†

Covering relaxation rounding
† Extensions to Furman & Sahinidis [2004]

Water filling heuristics

Motivation Solve temperature intervals serially. Keep composition feasible.

Greedy packing heuristics

Motivation Bin packing ⇐⇒ minimum number of matches problem
Similar to Linnhoff & Hindmarsh [1983], Cerda, Westerberg, Mason & Linnhoff [1983]
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Fractional linear programming rounding
Furman & Sahinidis [2004]

1. Original MILP

min
∑
i∈H

∑
j∈C

yi,j

...∑
s,t∈T

qi,s,j,t ≤ Ui,jyi,j i ∈ H, j ∈ C

qi,s,j,t ≥ 0 ∀ i, s, j, t
yi,j ∈ {0, 1} i ∈ H, j ∈ C

4. Generate a feasible solution

If
∑

s,t∈T qi,s,j,t > 0, 1→ yi,j.

Else 0→ yi,j.

3. Solve the relaxed problem

Optimize the linear program.
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Asymptotic behavior of Fractional LP Rounding?

FLPR is Ω(n)-approximate

Consider 1 temperature interval . . .

σ1,t = n

σ2,t = n

σn,t = n

δ1,t = n

δ2,t = n

δn,t = n

Min n edges with capacity n;
Alg n2 edges with capacity 1;
No approximation ratio
asymptotically less than n.

FLPR is O(max(i,j) Uij/Lij) approx

Heuristic yi,j versus optimum y∗i,j?∑
i∈H,j∈C

yi,j =
∑

i∈H,j∈C

Ui,j

Li,j

∑
s,t∈T

qi,s,j,t
Ui,j

≤
(
max
(i,j)

Uij

Lij

) ∑
i∈H,j∈C

yLP
i,j

≤
(
max
(i,j)

Uij

Lij

) ∑
i∈H,j∈C

y∗i,j .

Uij ≡ Max heat transfer i→ j

Lij ≡ Min heat transfer i→ j

Big-M parameter Ui,j critical!

Paper improves big-M values
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Three classes of heuristic methods

Relaxation rounding

Motivation Optimize a simpler, relaxed problem. Round the result.
Fractional linear programming rounding†

Lagrangian relaxation rounding†

Covering relaxation rounding
† Extensions to Furman & Sahinidis [2004]

Water filling heuristics

Motivation Solve temperature intervals serially. Keep composition feasible.

Greedy packing heuristics

Motivation Bin packing ⇐⇒ minimum number of matches problem
Similar to Linnhoff & Hindmarsh [1983], Cerda, Westerberg, Mason & Linnhoff [1983]
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Three classes of heuristics in competition
3 Relaxation rounding, 2 Water filling, 4 Greedy packing

Performance ratio heuristic value/best known sol’n

0 10 20 30 40 50
Test case

1.0

1.2

1.4

1.6

1.8

Pe
rfo

rm
an

ce
 ra

tio

CPLEX
Best Relaxation Rounding
Best Water Filling
Best Greedy Packing

Performance guarantees

LP rounding
Ω(n)

Greedy packing
O(log n+
log(hmax/ε))

Worst case greedy
packing
asymptotic ratio
better than best
case LP rounding
in pathological
example.
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Heat exchanger networks – Larger instances [160 streams]

In all 3 cases, the high quality CPLEX solution took 2 hours to compute.
For 1-2 hours, the heuristic is better (> 10%).

Test Case
Greedy Packing CPLEX

SS Transshipment
Value Time Value Time

large_scale0 233 642.94 175 *
large_scale1 218 652.00 219 *
large_scale2 242 670.32 239 *
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Practical applicability of approximation algorithms?

CLB COPT CALG ρ · CLB ρ · COPT

Useful for process systems engineering?

Important optimization problems in PSE applications
Heat recovery networks
State-task network
Pooling problem

Recovery & reoptimization
Royal Mail van allocation

Explainable scheduling

Baltean-Lugojan & Misener, J Global Optim, 71:655-690, 2018.
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State-task network

Feed A

Heating

Hot A

Reac. 1
40%

Int. AB

60%

Prod. 1

40%

Int. BC

60%

Reac. 2

Feed B

50%
Feed C

50%

Reac. 3

20%

80%

Impure E

Separation

10%

Prod. 2

90%

Kondili, Pantelides and Sargent (1993)

STN complexity & efficient heuristics

Modelling formulations [Maravelias, 2005]
Generalises job-shop scheduling, so NP-hard [Burkard et al., 1998]
Special polynomial cases [Blömer & Günther, 2000]
Efficient feas solutions [Burkard et. al, 1998, Blömer & Günther, 2000]
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Pooling problem

.

.

.

Inputs [1,. . . ,I]

.

.

.

Directs [1,. . . ,H]
.
.
.

Pool p

.

.

.

Outputs [1,. . . ,O]

in1

di1

o1
in2

di2

o2in3

di3

o3inI

diH

oO

p

x
1

xI

z11

zHO

y1

y
O

=

Pool Output

...

Inputs [1,. . . ,I]

...

Directs [1,. . . ,H] ...
+
...

in1

di1

in2

di2

in3

di3

inI

diH

p o1

x
1,1

xI,1

z1,1

zH,1

y1

Pool Output

...

Inputs [1,. . . ,I]

...

Directs [1,. . . ,H]

in1

di1

in2

di2

in3

di3

inI

diH

p oO

x
1,O

xI,O

z1,O

zH,O

yO

Complexity & Heuristics https://github.com/cog-imperial/pooling-network
Reduction from maximum independent set, so NP-hard [Alfaki & Haugland, 2013]

Polynomial cases [Haugland, 14; Boland et al., 17; Baltean-Lugojan & M, 18]

MIP approximation heuristic [Dey & Gupte, 2015]
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Practical applicability of approximation algorithms?

CLB COPT CALG ρ · CLB ρ · COPT

Useful for process systems engineering?

Important optimization problems in PSE applications
Heat recovery networks
State-task network
Pooling problem

Recovery & reoptimization
Royal Mail van allocation

Explainable scheduling

Letsios & Misener, European J Operational Research, 2021.
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How to deal with highly uncertain environments?
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Planning & Recovery
Liebchen, Lübbecke, Möhring, Stiller [2009]

time

Planning
Phase
Stage 1

Uncertainty
Realisation

Disturbances

Recovery
Phase
Stage 2

Sources of uncertainty

Unexpected incidents,
Erroneous input data,
Future events.

Related Work

2-stage robust optimization,
Recoverable robustness,
Adjustable robustness.

Benefit of reoptimization

Reactive response in case of unexpected disturbances.
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Multiprocessor scheduling – Strongly NP-hard

M4

M3

M2

M1

J1

J6 J9
J5J3

J2J7
J4 J8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 time

Input
Set J = {1, 2, . . . , n} of jobs,
Job j has a processing time pj ,
Set M = {1, 2, . . . ,m} of parallel identical machines.

Objective
Construct a non-preemptive schedule with minimum makespan Cmax.
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Multiprocessor scheduling – Mixed-integer optimization

min
x,Cmax

Cmax∑n
j=1 xi,j · pj ≤ Cmax i ∈M∑m
i=1 xi,j = 1 j ∈ J

xi,j ∈ {0, 1} j ∈ J, i ∈M

Input
Set J = {1, 2, . . . , n} of jobs,
Job j has a processing time pj ,
Set M = {1, 2, . . . ,m} of parallel identical machines.

Objective
Construct a non-preemptive schedule with minimum makespan Cmax.
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Multiprocessor scheduling – Perturbation types

M4

M3

M2

M1

J1

J6 J9
J5J3

J2J7
J4 J8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 time

Groups of perturbations

Machine activation,
Job arrival, processing time augmentation & machine failure,
Job removal & processing time reduction,
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Hardness of rescheduling
Job removal & processing time reduction

Job removal example

Instance Iinit has m machines &
n+ 1 jobs. One job has processing
time pn+1 =

∑n
j=1 pj . Perturb

Iinit by removing job Jn+1.

p1 p2 pn

pn+1

M1

M2

Mm

Observations

The recovery problem is strongly NP-hard.
In a limited recovery setting, the initial schedule is a weak Ω(m)
approximation for the new instance.

Reoptimization Travelling Salesman Problem (R-TSP)

R-TSP remains highly inapproximable even if all optimal solutions of the
initial instance are known. Böckenhauer, Hromkovič, Sprock [2011]
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Importance of lexicographic optimization
1

2 3
4 5

6 7M4

M3

M2

M1

2 3
4 5

6 7M4

M3

M2

M1

Re-scheduling with a lexicographic optimal schedule

If the initial schedule Sinit is lexicographic optimal and 1 disturbance occurs,
then Sinit can become a 2-approximate schedule for the new instance.

Lexicographic Optimization Definition

m objective functions F1, F2, . . . , Fm ordered with respect to priority.
Fi : S → R+

0 .
lexminx∈S{F1(x), F2(x), . . . , Fm(x)}computes a solution x∗ where:

F1(x∗) = v∗1 = min{F1(x) : x ∈ S}, and
F2(x∗) = v∗2 = min{F2(x) : x ∈ S, F1(x) = v∗1}, and
F3(x∗) = v∗3 = min{F3(x) : x ∈ S, F1(x) = v∗1 , F2(x) = v∗2}, . . .
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Practical applicability of lexicographic optimization?

Recover feasibility only
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Allow limited recovery actions
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Test conditions

Medium instances only,
Starting with the solution pool of possible heuristic solutions,
Normalise the initial and recovered schedules.
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Royal Mail’s van allocation problem

Challenge

At a delivery office in a morning =⇒ deliver by afternoon
1250 delivery offices
37,000 vans; 90,000 drivers; 27 million locations

Letsios, Bradley, Suraj G, Misener & Page, Journal of Scheduling, 2021.
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Bounded Job Start Scheduling Problem
min

xj,s, T
T (1a)

T ≥ xj,s(s+ pj) j ∈ J , s ∈ D (1b)∑
j∈J

∑
s∈Aj,t

xj,s ≤ m t ∈ D (1c)

∑
s∈Fj

xj,s = 1 j ∈ J (1d)

∑
j∈Js

xj,s ≤ g s ∈ D (1e)

xj,s ∈ {0, 1} j ∈ J , s ∈ Fj (1f)

BJSP is strongly NP-hard in the case g = 1, reduction to 3-Partition and . . .

Generalize fundamental makespan scheduling, i.e. P ||Cmax,

Relax forbidden sets scheduling, job subsets can’t run in parallel [Schäffter, 1997],

Relax scheduling with forbidden job start times [Billaut & Sourd, 2009; Rapine &

Brauner, 2013; Gabay et al. 2016; Mnich & van Bevern, 2018] .
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Comparing solutions
Worst case analysis

P ||Cmax optimum may be a factor Ω(m) from bounded job start optimum

M1

M2

Mm−1

Mm

m
m− 1

2
1

m
m− 1

2
1

m
m− 1

2
1

(a) Bounded job start optimal schedule

M1

M2

Mm−1

Mm

m 1
m− 1 2

2 m− 1
1 m

m 1
m− 1 2

2 m− 1
1 m

(b) P ||Cmax optimal schedule
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Longest job processing time won’t save us . . .

M1

M2

M3

M4

p
p

p

p
p

p

1 1

(a) LPT schedule S

M1

M2

M3

M4

M5

p
p

p
1 1

p
p

p
1 1

p
p

p
1 1

(b) Optimal schedule S∗

Figure: LPT is 2-approximate for minimizing makespan and this ratio is tight.
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How to get an approximation ratio better than 2?
Cases when longest job processing time is useful

Instance 〈m,J 〉 is long if pj ≥ m, ∀ j ∈ J and short if pj < m, ∀ j ∈ J .
LPT is 5/3-approximate for long instances,
LPT is optimal for short instances.

Shortest processing time first [good if pmax smaller than average load]

LSPT is 2-approximate for minimizing makespan. For long instances, LSPT
is (1 + min{1, 1/α})-approximate, where α = ( 1

m

∑
j∈J pj)/pmax.

Mixing long & short jobs with machine augmentation

LSM computes a 1.985-approximate schedule with 1.2-machine augmen-
tation by having some machines work with long jobs and some with short
jobs. The bad case (needing machine augmentation) is with many very
long jobs, i.e. more than d5m/6e jobs with pj > T ∗/2.
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LexOpt Scheduling with Machine Augmentation

min
xj,s, v,w

v + θ

∑
j,s

xj,swj,s+pj

 (2a)

v ≥
∑
j,s

xj,s j ∈ J , s ∈ D (2b)

xj,s(s+ pj) ≤ D j ∈ J , s ∈ D (2c)∑
j∈J

∑
s∈Aj,t

xj,s ≤ m t ∈ D (2d)

∑
s∈Fj

xj,s = 1 j ∈ J (2e)

∑
j∈Js

xj,s ≤ g s ∈ D (2f)

xj,s ∈ {0, 1} j ∈ J , s ∈ Fj (2g)
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Evaluating historical schedules . . .
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Sensitivity analysis Delivery Office 1
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Sensitivity analysis Delivery Office 2
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Sensitivity analysis Delivery Office 3
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Advantage of lexicographic optimization Delivery Office 1
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Advantage of lexicographic optimization Delivery Office 2
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Advantage of lexicographic optimization Delivery Office 3
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Extensions to other applications
Facility Location

n customers
m facility locations
Open k < m facilities.
Minimise maximum distance of a
customer to its closest facility.

Min-Max Graph Partitioning
G: graph with edge weights,
Partition the vertices into equal-sized subsets,
Minimise the maximum total weight of the
edges leaving a single part.

1

10
1

10

10

Commonalities:
Partitioning problems with a cost tied to each partition component,
Min-max problems.
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Practical applicability of approximation algorithms?

CLB COPT CALG ρ · CLB ρ · COPT

Useful for process systems engineering?

Important optimization problems in PSE applications
Heat recovery networks
State-task network
Pooling problem

Recovery & reoptimization
Royal Mail van allocation

Explainable scheduling

Čyras, Letsios, Misener & Toni, AAAI [oral], 2019.
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Makespan scheduling

Example: nurse rostering

M4

M3

M2

M1

J1

J6 J8

J5J3

J2J7

J4 J9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 time

Input
Set J = {J1, J2, . . . , Jn} of jobs
Job Jj has a processing time pj
Set M = {M1,M2, . . . ,Mm} of machines

Objective
Construct a schedule S with minimum makespan (NP-hard)
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Challenge: Explain this to a nurse!

Why am I
to do job j? min

x,Cmax

Cmax∑n
j=1 xi,j · pj ≤ Cmax i ∈M

?
∑m

i=1 xi,j = 1 j ∈ J
xi,j ∈ {0, 1} j ∈ J, i ∈M

Schedule S is efficient iff
Feasible ?
No job can be moved from a busiest machine: Ci − Ci′ 6 pj

No jobs can be exchanged with any busiest machine: for j′ 6= j with
xi′,j′ = 1, if pj > pj′ , then Ci + pj′ 6 Ci′ + pj

for any j ∈ J such that xi,j = 1 and Ci = Cmax.

Computational Optimisation Group Approximation Algorithms Tuesday 30th March, 2021



Explanation desiderata
Cognitive tractability

Explanations pertaining to schedule S are concise (polynomial in size)

Computational tractability

Explaining whether and why schedule S is (not) good can be performed
efficiently (in polynomial time)

Soundness & completeness

Given schedule S, there exists an explanation why S is (not) good iff S is
(not) good

Build an interpretive model for classification

Dash, Günlük & Wei. Boolean decision rules via column generation.
Advances in Neural Information Processing Systems (NeurIPS). 2018.

Computational Optimisation Group Approximation Algorithms Tuesday 30th March, 2021



ArgOpt: Argumentation-Optimization

Argumentation

Explainable abstraction paradigm for reasoning with incomplete and
conflicting information

ArgOpt: Explainable Scheduling Layers

Optimization Solver Solution Argumentation User

Queries

Explanations

Explanations with respect to

Schedules from the optimization solver
Schedules from the user
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Argumentation

Argumentation framework

Directed graph with:
nodes – arguments
edges – attacks

a b

c d

Stable extension of AF

A set S of arguments such that:
no attacks between arguments in S

internally consistent (conflict-free)
attacks all arguments not in S

externally aggressive, global

a b

c d

{a, b} is stable
(so is {a, d})
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Mapping makespan scheduling argumentation frameworks
An argumentation framework models decisions with arguments, and
incompatibilities with attacks:

J1

J2

J3 ...

M1

M2

M3...

Map

a1,1 a1,2 a1,3 . . .

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3
...

. . .

Assignments xi,j become arguments ai,j
ai,j attacks ak,l iff i 6= k and j = l

Different machines compete for the same job

Stable extensions are ‘good’ schedules
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Nurse: Can I do this?

1 1 2

2 3

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

Feasible. . . Stable

But not efficient! Swap jobs.

Not stable

1 1

22

3

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

An attacked argument that does not counter-attack represents an
inefficient allocation!
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Natural language explanations
Natural language explanations extracted from AFs

1 1 2

2 3

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

The attack from a2,3 to a1,2 explains why S ≈ {a1,1, a1,2, a2,3} is not
efficient:

Because S can be improved by swapping jobs 3 and 2 between
nurses 2 and 1.

1 1

22

3
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Practical applicability of approximation algorithms?

CLB COPT CALG ρ · CLB ρ · COPT

Useful for process systems engineering?

Important optimization problems in PSE applications
Heat recovery networks
State-task network
Pooling problem

Recovery & reoptimization
Royal Mail van allocation

Explainable scheduling
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Lexicographic optimal scheduling
MILP reformulation

Machines ordered in non-increasing order of completion times.
Completion time bound strengthening constraints.

lex minx,C {C1, C2, . . . , Cm}
Ci ≥ Ci+1 i ∈M \m
Ci ≥ 1

m−i+1

(∑n
j=1 pj −

∑i−1
i′=1Ci′

)
i ∈M

Ci =
∑n

j=1 xi,j · pj i ∈M∑m
i=1 xi,j = 1 j ∈ J

xi,j ∈ {0, 1} j ∈ J, i ∈M
Input

Set J = {1, 2, . . . , n} of jobs,
Job j has a processing time pj ,
Set M = {1, 2, . . . ,m} of parallel machines with completion time Ci.
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State-of-the-art lexicographic optimization methods
Sequential method

v∗1 = min{F1(~x, ~C) : (~x, ~C) ∈ S}.

For i = 2, . . . ,m,

v∗i = min{Fi(~x, ~C) : x ∈ S, F1(~x, ~C) = v∗1 , . . . Fi-1(~x, ~C) = v∗i-1}

Return the last computed solution.

Simultaneous (highest rank objective) method

Solve v∗1 = min{C1 : (~x, ~C) ∈ S}.

Compute the solution pool P = {(~x, ~C) ∈ S : C1 = v∗1}.

Return the lexicographically smallest solution in P.
Weighting method

Set big-M parameter M = 2.

For i = 2, . . . ,m, set machine weight wi = Mm−i.

Solve min{
∑m

i=1 wi · Ci : (~x, ~C) ∈ S}.
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Novel bounding technique

Can we develop methodology for bounding the best solution?

Let’s develop strong lexicographic optimization lower bounding technique
to solve the lex optimization problem exactly.

Vectorial lower bound of schedule S

A vector ~L = (L1, . . . , Lm), s.t. Li ≤ Ci(S), for all i = 1, 2, . . . ,m
(both vectors ~L and ~C(S) are sorted in non-increasing order).

Vectorial bounds may enforce exact, branch-and-cut methods

Better convergence to efficient solutions,
Improved global optimality proving.
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Lexicographic branch-and-bound method
Branch-and-bound ingredients

Sort the jobs p1 ≥ . . . ≥ pn,

Search a tree with n+ 1 levels. Level ` has assigned jobs J1, . . . , J`,

Depth first search.

Pruning using vectorial lower bounds
level 0

level 1

level j-1

level j

level n

node u

S(u): set of all schedules below node u

Sinc: Best found (incumbent) solution,
At node u, compute a vectorial lower bound
~L(u) of the lex best schedule in S(u),
If ~C(Sinc) ≤lex ~L(u), then prune the subtree.
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Vectorial lower bound computation
In our concrete scheduling problem:

Approximate scheduling problem with job rejections,
Use knapsack-like bounding approaches,
Equivalent to constructing a pseudo-schedule which is feasible except
that some jobs are scheduled fractionally.

L3 Computation

M4

M3

M2

M1

time

Partial
schedule

J`+1 J`+2

J`+6J`+4 J`+5

J`+3

U1

U2
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Vectorial lower bound computation [cont.]
Computation of the k-th component of vectorial lower bound
1: Select job index q = min{j :

∑j
j′=`+1 pj′ ≥

∑k−1
i=1 (Ui − ti)}.

2: Compute remaining load λ =
∑n

j=q+1 pj .
3: Return the maximum among:

mink≤i≤m{ti}+ pq+1, and
maxk≤i≤m{ti}+

max

{
1

m−k+1

(
λ−

∑m
i=k+1(maxk≤i≤m{ti} − ti)

)
, 0

}
.

L3 Computation

M4

M3

M2

M1

time

Partial
schedule

J`+1 J`+2

J`+6J`+4 J`+5

J`+3

U1

U2
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Longest-processing time first heuristic – Add k new jobs

M4

M3

M2

M1

time

Initialoptimal
schedule

1) Round-robin algorithm is O(k)-time
(

1 +
⌈

k
m

⌉)
-approximate.
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1) Round-robin algorithm is O(k)-time
(

1 +
⌈

k
m

⌉)
-approximate.

If k ≤ m, then it is 2-approximate.
If k is large, then the approximation ratio can be arbitrarily bad.

2) List scheduling algorithm is O (k logm)-time 2-approximate (tight).
Sort the jobs p1 ≥ . . . ≥ pn,
Schedule next job to machine with lowest current completion time.
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Numerical results: Moderate test set
Elapsed times on log2 scale Upper bounds on [1, 1.01]
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Random instance set-up & solution termination criteria

Number of machines 3, 4, 5, 6
Number of jobs 20, 30, 40, 50
Processing time parameter 100, 1000
Processing time distributions Uniform, normal, symmetric normal
Relative error 0.0001
Time limit 104 seconds
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Numerical results: Hard test set
Elapsed times on log2 scale Upper bounds on [1, 1.08]
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Random instance set-up & solution termination criteria

Number of machines 10, 12, 14, 16
Number of jobs 100, 200, 300, 400
Processing time parameter 1000, 10000
Processing time distributions Uniform, normal, symmetric normal
Relative error 0.0001
Time limit 104 seconds
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Numerical results: Challenging test set
Elapsed times on log2 scale Upper bounds on [1, 1.4]
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Random instance set-up & solution termination criteria

Number of machines 10, 15, 20, 25
Number of jobs 200, 300, 400, 500
Processing time parameter 1000, 10000
Processing time distributions Uniform, normal, symmetric normal
Relative error 0.0001
Time limit 104 seconds
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