Imperial College London

Approximation Algorithms for Process Systems Engineering

Dimitrios Letsios, Radu Baltean-Lugojan, Jeremy Bradley, Francesco Ceccon, Kristijonas Čyras, Georgia Kouyialis, Natasha Page, Johannes Wiebe, Francesca Toni & Ruth Misener

Funding EPSRC EP/P008739/1, EP/P016871/1, & EP/P029558/1

Tuesday 30th March, 2021

Paper Letsios et al., Computers & Chemical Engineering, 2020.

Computational Optimisation Group

Visit London virtually this June ... for the **MINLParty**!

MINLP workshop

- 28 29 June 2021 at Imperial,
- Organized by M Anjos, P Belotti, J Kronqvist & me,
- Mix of invited/contributed talks & videos,
- https://optimisation.doc.ic.ac.uk/ minlp-workshop-2020-june-11-12/

Team members

Georgia Kouyialis

Dimtris Letsios

Computational Optimisation Group

Radu Baltean- Natasha Page Lugojan

Kristijonas Čyras

Francesca Toni

- Quickly address industrially-sized instances;
- Generate solutions with efficient running times;
- Enhance exact methods with good feasible solutions.

Approximation algorithms - Heuristics with mathematical rigor

Want to find the minimum cost C_{OPT} . Prove a performance guarantee:

- Identify a good lower bound C_{LB};
- Design a heuristic computing good suboptimal solutions C_{ALG};
- Prove analytically that $C_{\mathsf{ALG}} \leq \rho \cdot C_{\mathsf{OPT}}$ for every instance.

$$C_{\mathsf{LB}} \quad C_{\mathsf{OPT}} \quad C_{\mathsf{ALG}} \qquad \rho \cdot C_{\mathsf{LB}} \quad \rho \cdot C_{\mathsf{OPT}}$$

- Quickly address industrially-sized instances;
- Generate solutions with efficient running times;
- Enhance exact methods with good feasible solutions.

Approximation algorithms - Heuristics with mathematical rigor

Want to find the minimum cost C_{OPT} . Prove a performance guarantee:

- Identify a good lower bound C_{LB};
- Design a heuristic computing good suboptimal solutions C_{ALG};
- Prove analytically that $C_{\mathsf{ALG}} \leq \rho \cdot C_{\mathsf{OPT}}$ for every instance.

$$C_{LB} \quad C_{OPT} \quad C_{ALG} \qquad \rho \cdot C_{LB} \quad \rho \cdot C_{OPT}$$

- Quickly address industrially-sized instances;
- Generate solutions with efficient running times;
- Enhance exact methods with good feasible solutions.

Approximation algorithms - Heuristics with mathematical rigor

Want to find the minimum cost C_{OPT} . Prove a performance guarantee:

- Identify a good lower bound C_{LB} ;
- Design a heuristic computing good suboptimal solutions C_{ALG};
- Prove analytically that $C_{\mathsf{ALG}} \leq \rho \cdot C_{\mathsf{OPT}}$ for every instance.

- Quickly address industrially-sized instances;
- Generate solutions with efficient running times;
- Enhance exact methods with good feasible solutions.

Approximation algorithms - Heuristics with mathematical rigor

Want to find the minimum cost C_{OPT} . Prove a performance guarantee:

- Identify a good lower bound C_{LB};
- Design a heuristic computing good suboptimal solutions CALG;
- Prove analytically that $C_{\mathsf{ALG}} \leq \rho \cdot C_{\mathsf{OPT}}$ for every instance.

$$C_{\mathsf{LB}} \quad C_{\mathsf{OPT}} \quad \mathbf{C}_{\mathsf{ALG}} \qquad \rho \cdot C_{\mathsf{LB}} \quad \rho \cdot C_{\mathsf{OPT}}$$

- Quickly address industrially-sized instances;
- Generate solutions with efficient running times;
- Enhance exact methods with good feasible solutions.

Approximation algorithms - Heuristics with mathematical rigor

Want to find the minimum cost C_{OPT} . Prove a performance guarantee:

- Identify a good lower bound C_{LB};
- Design a heuristic computing good suboptimal solutions C_{ALG};
- Prove analytically that $C_{ALG} \leq \rho \cdot C_{OPT}$ for every instance.

$$C_{\mathsf{LB}} \quad C_{\mathsf{OPT}} \quad C_{\mathsf{ALG}} \qquad \rho \cdot \mathbf{C}_{\mathsf{LB}} \quad \rho \cdot \mathbf{C}_{\mathsf{OPT}}$$

- Quickly address industrially-sized instances;
- Generate solutions with efficient running times;
- Enhance exact methods with good feasible solutions.

Practical applicability of approximation algorithms?

Useful for process systems engineering?

- Important optimization problems in PSE applications
 - Heat recovery networks
 - State-task network
 - Pooling problem
- Recovery & reoptimization
 - Royal Mail van allocation
- Explainable scheduling

Letsios, Kouyialis & Misener Comput Chem Eng, 113:57-85, 2018.

Computational Optimisation Group

Practical applicability of approximation algorithms?

Useful for process systems engineering?

- Important optimization problems in PSE applications
 - Heat recovery networks
 - State-task network
 - Pooling problem
- Recovery & reoptimization
 - Royal Mail van allocation
- Explainable scheduling

Letsios, Kouyialis & Misener Comput Chem Eng, 113:57-85, 2018.

Computational Optimisation Group

Simultaneous method

Solve a mixed-integer nonlinear optimization problem, e.g. Ciric & Floudas [1989], Yee & Grossmann [1990], Papalexandri & Pistikopoulos [1994].

Simultaneous method

Solve a mixed-integer nonlinear optimization problem, e.g. Ciric & Floudas [1989], Yee & Grossmann [1990], Papalexandri & Pistikopoulos [1994].

Sequential method

Minimum utility cost

Linear program (LP)

- Minimum number of matches Mixed-integer linear program (MILP)
 - Papoulias & Grossmann [1983], Cerda & Westerberg [1983], Anantharaman et al. [2010]
- Minimum investment cost

Nonlinear program (NLP)

- Floudas et al. [1986]
- Goal Generate many good candidate MILP solutions

Simultaneous method

Solve a mixed-integer nonlinear optimization problem, e.g. Ciric & Floudas [1989], Yee & Grossmann [1990], Papalexandri & Pistikopoulos [1994].

Sequential method

Minimum utility cost

• Minimum number of matches Mixed-integer linear program (MILP)

- Papoulias & Grossmann [1983], Cerda & Westerberg [1983], Anantharaman et al. [2010]
- Minimum investment cost

Nonlinear program (NLP)

Linear program (LP)

- Floudas et al. [1986]
- Goal Generate many good candidate MILP solutions

Simultaneous method

Solve a mixed-integer nonlinear optimization problem, e.g. Ciric & Floudas [1989], Yee & Grossmann [1990], Papalexandri & Pistikopoulos [1994].

Sequential method

- Minimum utility cost
- Minimum number of matches Mixed-integer linear program (MILP)
 - Papoulias & Grossmann [1983], Cerda & Westerberg [1983], Anantharaman et al. [2010]
- Minimum investment cost

Nonlinear program (NLP)

Linear program (LP)

- Floudas et al. [1986]
- Goal Generate many good candidate MILP solutions

Review Article

Furman & Sahinidis [Ind Eng Chem Res, 2002]

Computational Optimisation Group

m

$$\begin{split} &\inf \sum_{i \in H} \sum_{j \in C} y_{i,j} \\ &\sum_{j \in C} \sum_{t \in T} q_{i,s,j,t} = \sigma_{i,t} \quad i \in H, s \in T \\ &\sum_{i \in H} \sum_{s \in T} q_{i,s,j,t} = \delta_{j,t} \quad j \in C, t \in T \\ &\sum_{s,t \in T} q_{i,s,j,t} \leq U_{i,j} y_{i,j} \ i \in H, j \in C \\ &q_{i,s,j,t} \geq 0 \qquad \forall i, s, j, t \\ &q_{i,s,j,t} = 0 \qquad s, t \in T, s > t \\ &y_{i,j} \in \{0, 1\} \qquad i \in H, j \in C \end{split}$$

Alternative MILP Transshipment Model [Papoulias & Grossmann, 1983] Better experimental results, e.g. for CPLEX • Solves 1 additional problem

Computational Optimisation Group

$$\begin{split} \min \sum_{i \in H} \sum_{j \in C} \mathbf{y}_{\mathbf{i}, \mathbf{j}} \\ \sum_{j \in C} \sum_{t \in T} q_{i, s, j, t} = \sigma_{i, t} \quad i \in H, s \in T \\ \sum_{i \in H} \sum_{s \in T} q_{i, s, j, t} = \delta_{j, t} \quad j \in C, t \in T \\ \sum_{s, t \in T} q_{i, s, j, t} \leq U_{i, j} \mathbf{y}_{\mathbf{i}, \mathbf{j}} \quad i \in H, j \in C \\ q_{i, s, j, t} \geq 0 \qquad \forall i, s, j, t \\ q_{i, s, j, t} = 0 \qquad s, t \in T, s > t \\ \mathbf{y}_{\mathbf{i}, \mathbf{j}} \in \{\mathbf{0}, \mathbf{1}\} \qquad \mathbf{i} \in \mathbf{H}, \mathbf{j} \in \mathbf{C} \end{split}$$

Alternative MILP Transshipment Model [Papoulias & Grossmann, 1983] Better experimental results, e.g. for CPLEX • Solves 1 additional problem

Computational Optimisation Group

m

$$\begin{split} &\inf \sum_{i \in H} \sum_{j \in C} y_{i,j} \\ &\sum_{j \in C} \sum_{t \in T} q_{i,s,j,t} = \sigma_{i,t} \quad i \in H, s \in T \\ &\sum_{i \in H} \sum_{s \in T} q_{i,s,j,t} = \delta_{j,t} \quad j \in C, t \in T \\ &\sum_{s,t \in T} q_{i,s,j,t} \leq \mathbf{U}_{\mathbf{i},\mathbf{j}} y_{i,j} \quad i \in H, j \in C \\ &q_{i,s,j,t} \geq 0 \qquad \forall i, s, j, t \\ &q_{i,s,j,t} = 0 \qquad s, t \in T, s > t \\ &y_{i,j} \in \{0, 1\} \qquad i \in H, j \in C \end{split}$$

Alternative MILP Transshipment Model [Papoulias & Grossmann, 1983] Better experimental results, e.g. for CPLEX • Solves 1 additional problem

Computational Optimisation Group

$$\begin{split} \min \sum_{i \in H} \sum_{j \in C} y_{i,j} \\ \sum_{j \in C} \sum_{t \in T} q_{i,s,j,t} = \sigma_{\mathbf{i},\mathbf{t}} \quad i \in H, s \in T \\ \sum_{i \in H} \sum_{s \in T} q_{i,s,j,t} = \delta_{j,t} \quad j \in C, t \in T \\ \sum_{s,t \in T} q_{i,s,j,t} \leq U_{i,j} y_{i,j} \quad i \in H, j \in C \\ q_{i,s,j,t} \geq 0 \qquad \forall i,s,j,t \\ q_{i,s,j,t} = 0 \qquad s,t \in T, s > t \\ y_{i,j} \in \{0,1\} \qquad i \in H, j \in C \end{split}$$

Alternative MILP Transshipment Model [Papoulias & Grossmann, 1983] Better experimental results, e.g. for CPLEX • Solves 1 additional problem

Computational Optimisation Group

$$\begin{split} \min \sum_{i \in H} \sum_{j \in C} y_{i,j} \\ \sum_{j \in C} \sum_{t \in T} q_{i,s,j,t} = \sigma_{\mathbf{i},\mathbf{t}} \quad i \in H, s \in T \\ \sum_{i \in H} \sum_{s \in T} q_{i,s,j,t} = \delta_{\mathbf{j},\mathbf{t}} \quad j \in C, t \in T \\ \sum_{s,t \in T} q_{i,s,j,t} \leq U_{i,j} y_{i,j} \quad i \in H, j \in C \\ q_{i,s,j,t} \geq 0 \qquad \forall i, s, j, t \\ q_{i,s,j,t} = 0 \qquad s, t \in T, s > t \\ y_{i,j} \in \{0, 1\} \qquad i \in H, j \in C \end{split}$$

Alternative MILP Transshipment Model [Papoulias & Grossmann, 1983] Better experimental results, e.g. for CPLEX • Solves 1 additional problem

Computational Optimisation Group

Can't we just use state-of-the-art MILP solvers?

Test set of 48 minimum number of matches problems

• Furman & Sahinidis [2004] Up to 38 streams, 357 binaries

- In 2004, 22 of 26 problems solve [7 hr timeout, CPLEX 7.0]
- In 2017, 23 of 26 problems solve [30 min timeout, CPLEX 12.6.3]
- Chen et al. [2015]

Up to 43 streams, 462 binaries

• In 2017, 5 of 10 problems solve, 4 of 10 if using transportation model

Grossmann [2017]

Up to 43 streams, 462 binaries

• In 2017, 0 of 12 problems solve

Can't we just use state-of-the-art MILP solvers?

Test set of 48 minimum number of matches problems

- Furman & Sahinidis [2004] Up to 38 streams, 357 binaries
 - In 2004, 22 of 26 problems solve [7 hr timeout, CPLEX 7.0]
 - In 2017, 23 of 26 problems solve [30 min timeout, CPLEX 12.6.3]
- Chen et al. [2015] Up to 43 streams, 462 binaries
 - In 2017, 5 of 10 problems solve, 4 of 10 if using transportation model
- Grossmann [2017]

Up to 43 streams, 462 binaries

• In 2017, 0 of 12 problems solve

Can't we just use state-of-the-art MILP solvers?

Test set of 48 minimum number of matches problems

• Furman & Sahinidis [2004] Up to 38 streams, 357 binaries

- In 2004, 22 of 26 problems solve [7 hr timeout, CPLEX 7.0]
- In 2017, 23 of 26 problems solve [30 min timeout, CPLEX 12.6.3]
- Chen et al. [2015]

Up to 43 streams, 462 binaries

- In 2017, 5 of 10 problems solve, 4 of 10 if using transportation model
- Grossmann [2017]

Up to 43 streams, 462 binaries

• In 2017, 0 of 12 problems solve

	FS04		LKM17		
Test Id	Obj	CPU s	Obj	CPU s	Rel Gap
20sp1	19	*	19	*	15%
22sp1	25	*	25	*	8%
23sp1	23	*	23	*	26%
37sp-yfyv	36	*	36	7.32	

Computational Optimisation Group

What's the difficulty here? Symmetry [Kouyialis & Misener, 2017] $\delta \delta_{1,t}$ $\mathbf{O} \delta_{1,t}$ If $\delta_{1,t} = \delta_{2,t}$ $\sigma_{i,t}$ O $\sigma_{i,t}$ C $\flat o \delta_{2,t}$ $\mathbf{O} \delta_{2,t}$ Degeneracy $\cdots \circ \delta_{1,t}$ $\mathbf{O} \delta_{1,t}$ $\longleftrightarrow \quad \sigma_{i,t} = 10$ $\sigma_{i,t} = 10$ 1 to $\delta_{2,t}$Ο δ_{2.t}

What's the difficulty here? Symmetry [Kouyialis & Misener, 2017] $\delta_{1,t}$ $\mathbf{O} \delta_{1,t}$ If $\delta_{1,t} = \delta_{2,t}$ $\sigma_{i,t}$ O $\sigma_{i,t}$ $\flat \delta_{2.t}$ $\mathbf{O} \delta_{2,t}$ Degeneracy 8.9 O $\delta_{1,t}$ O $\delta_{1,t}$ $\sigma_{i,t} = 10$ $\sigma_{i,t} = 10$ $1 \rightarrow \delta_{2,t}$ $\delta_{2.t}$

Strongly \mathcal{NP} -hard optimization problem [Furman & Sahinidis, 2001]

We developed an alternative \mathcal{NP} -hardness reduction to bin-packing.

Strongly *NP*-hard optimization problem [Furman & Sahinidis, 2001]

We developed an alternative \mathcal{NP} -hardness reduction to bin-packing.

Similar problems

Scheduling • Cloud computing • Bin packing

Computational Optimisation Group

Three classes of heuristic methods

Relaxation rounding

Motivation Optimize a simpler, relaxed problem. Round the result.

- Fractional linear programming rounding[†]
- $\bullet\,$ Lagrangian relaxation rounding †
- Covering relaxation rounding
- [†] Extensions to Furman & Sahinidis [2004]

Water filling heuristics

Motivation Solve temperature intervals serially. Keep composition feasible.

Greedy packing heuristics

Motivation Bin packing \iff minimum number of matches problem Similar to Linnhoff & Hindmarsh [1983], Cerda, Westerberg, Mason & Linnhoff [1983]

Furman & Sahinidis [2004]

1. Original MILP
$$\begin{split} \min \sum_{i \in H} \sum_{j \in C} y_{i,j} \\ \vdots \\ \sum_{s,t \in T} q_{i,s,j,t} \leq U_{i,j} y_{i,j} \ i \in H, j \in C \\ q_{i,s,j,t} \geq 0 \qquad \forall i,s,j,t \\ y_{i,j} \in \{0, 1\} \qquad i \in H, j \in C \end{split}$$

Furman & Sahinidis [2004]

1. Original MILP
$\min \sum_{i \in H} \sum_{j \in C} \mathbf{y}_{i,j}$
÷
$\sum_{s,t\in T} q_{i,s,j,t} \le U_{i,j} \mathbf{y}_{\mathbf{i},\mathbf{j}} \ i \in H, j \in C$
$q_{i,s,j,t} \ge 0 \qquad \qquad \forall i,s,j,t$
$\mathbf{y}_{i,j} \in \{0,1\} \hspace{1cm} i \in \mathbf{H}, j \in \mathbf{C}$

Furman & Sahinidis [2004]

1. Original MILP	2. Relax MILP integrality
$\min \sum_{i \in H} \sum_{j \in C} \mathbf{y}_{i, \mathbf{j}}$	$\min \sum_{i \in H} \sum_{j \in C} \mathbf{y_{i,j}}$
÷	÷
$\sum_{s,t\in T} q_{i,s,j,t} \le U_{i,j} \mathbf{y}_{\mathbf{i},\mathbf{j}} \ i \in H, j \in C$	$\sum_{s,t\in T} q_{i,s,j,t} \le U_{i,j} \mathbf{y}_{\mathbf{i},\mathbf{j}} \ i \in H, j \in C$
$q_{i,s,j,t} \ge 0 \qquad \qquad \forall i,s,j,t$	$q_{i,s,j,t} \ge 0 \qquad \qquad \forall i,s,j,t \in \mathbb{C}$
$\mathbf{y_{i,j}} \in \{0,1\}$ $\mathbf{i} \in \mathbf{H}, \mathbf{j} \in \mathbf{C}$	$\mathbf{y_{i,j}} \in [0,1]$ $\mathbf{i} \in \mathbf{H}, \mathbf{j} \in \mathbf{C}$

Furman & Sahinidis [2004]

1. Original MILP $\min \sum_{i \in H} \sum_{j \in C} \mathbf{y}_{i,j}$: $\sum_{s,t \in T} q_{i,s,j,t} \leq U_{i,j} \mathbf{y}_{i,j} \ i \in H, j \in C$ $q_{i,s,j,t} \geq 0 \qquad \forall i, s, j, t$ $\mathbf{y}_{i,j} \in \{\mathbf{0}, 1\} \qquad \mathbf{i} \in \mathbf{H}, \mathbf{j} \in \mathbf{C}$ 2. Relax MILP integrality

$$\begin{split} & \min \sum_{i \in H} \sum_{j \in C} \mathbf{y}_{\mathbf{i}, \mathbf{j}} \\ & \vdots \\ & \sum_{s, t \in T} q_{i, s, j, t} \leq U_{i, j} \mathbf{y}_{\mathbf{i}, \mathbf{j}} \ i \in H, j \in C \\ & q_{i, s, j, t} \geq 0 \qquad \forall i, s, j, t \\ & \mathbf{y}_{\mathbf{i}, \mathbf{j}} \in [\mathbf{0}, \mathbf{1}] \qquad \mathbf{i} \in \mathbf{H}, \mathbf{j} \in \mathbf{C} \end{split}$$

3. Solve the relaxed problem

Optimize the linear program.

n
Fractional linear programming rounding

Furman & Sahinidis [2004]

1. Original MILP
$\min \sum_{i \in H} \sum_{j \in C} \mathbf{y_{i,j}}$
÷
$\sum_{s,t\in T} q_{i,s,j,t} \le U_{i,j} \mathbf{y}_{\mathbf{i},\mathbf{j}} \ i \in H, j \in C$
$q_{i,s,j,t} \ge 0 \qquad \qquad \forall i,s,j,t$
$\mathbf{y}_{\mathbf{i},\mathbf{j}} \in \{0,1\} \qquad \mathbf{i} \in \mathbf{H}, \mathbf{j} \in \mathbf{C}$

2. Relax MILP integrality

$$\begin{split} \min \sum_{i \in H} \sum_{j \in C} \mathbf{y}_{\mathbf{i}, \mathbf{j}} \\ \vdots \\ \sum_{s, t \in T} q_{i, s, j, t} \leq U_{i, j} \mathbf{y}_{\mathbf{i}, \mathbf{j}} \ i \in H, j \in C \\ q_{i, s, j, t} \geq 0 \qquad \forall i, s, j, t \\ \mathbf{y}_{\mathbf{i}, \mathbf{j}} \in [\mathbf{0}, \mathbf{1}] \qquad \mathbf{i} \in \mathbf{H}, \mathbf{j} \in \mathbf{C} \end{split}$$

 $\begin{array}{ll} \text{4. Generate a feasible solution} \\ \text{If } \sum_{s,t\in T} q_{i,s,j,t} > 0, & \mathbf{1} \to \mathbf{y_{i,j}}. \\ \text{Else} & \mathbf{0} \to \mathbf{y_{i,j}}. \end{array}$

3. Solve the relaxed problem

Optimize the linear program.

Fractional linear programming rounding Furman & Sahinidis [2004]

1. Original MILP2. $\min \sum_{i \in H} \sum_{j \in C} \mathbf{y}_{i,j}$ min \vdots $\sum_{s,t \in T} \mathbf{q}_{i,s,j,t} \leq U_{i,j} \mathbf{y}_{i,j} \ i \in H, j \in C$ $\mathbf{q}_{i,s,j,t} \geq \mathbf{0}$ $\forall i, s, j, t$ $\mathbf{y}_{i,j} \in \{\mathbf{0}, 1\}$ $\mathbf{i} \in \mathbf{H}, \mathbf{j} \in \mathbf{C}$

2. Relax MILP integrality min $\sum_{i \in H} \sum_{j \in C} \mathbf{y}_{i,j}$: $\sum_{s,t \in T} \mathbf{q}_{i,s,j,t} \leq U_{i,j} \mathbf{y}_{i,j} \ i \in H, j \in C$ $\mathbf{q}_{i,s,j,t} \geq 0 \qquad \forall i, s, j, t$ $\mathbf{y}_{i,j} \in [0, 1]$ $\mathbf{i} \in \mathbf{H}, \mathbf{j} \in \mathbf{C}$

4. Generate a feasible so	olution
If $\sum_{s,t\in T} \mathbf{q}_{\mathbf{i},\mathbf{s},\mathbf{j},\mathbf{t}} > 0$,	$1 \to \mathbf{y}_{i,j}.$
Else	$0 \to \mathbf{y}_{i,j}.$

3. Solve the relaxed problem

Optimize the linear program.

FLPR is $\Omega(n)$ -approximate

Consider 1 temperature interval ...

- $\sigma_{1,t} = n$ **O O** $\delta_{1,t} = n$
- $\sigma_{2,t} = n \mathbf{O}$ $\mathbf{O} \ \delta_{2,t} = n$
 - 0 0 0 0 0 0

 $\sigma_{n,t} = n \mathbf{O}$ $\mathbf{O} \, \delta_{n,t} = n$

- Min n edges with capacity n;
- Alg n^2 edges with capacity 1;
- No approximation ratio asymptotically less than *n*.

FLPR is $\Omega(n)$ -approximate

Consider 1 temperature interval ...

 $\sigma_{1,t} = n \bigcirc \delta_{1,t} = n$ $\sigma_{2,t} = n \bigcirc \delta_{2,t} = n$ $\delta_{2,t} = n$

- Min n edges with capacity n;
- Alg n^2 edges with capacity 1;
- No approximation ratio asymptotically less than *n*.

FLPR is $\Omega(n)$ -approximate

Consider 1 temperature interval ...

- Min n edges with capacity n;
- Alg n^2 edges with capacity 1;
- No approximation ratio asymptotically less than *n*.

FLPR is $\Omega(n)$ -approximate

Consider 1 temperature interval ...

- Min n edges with capacity n;
- Alg n^2 edges with capacity 1;
- No approximation ratio asymptotically less than *n*.

FLPR is $O(\max_{(i,j)} U_{ij}/L_{ij})$ approx Heuristic $y_{i,j}$ versus optimum $y_{i,j}^*$?

$$\sum_{i \in H, j \in C} y_{i,j} = \sum_{i \in H, j \in C} \frac{U_{i,j}}{L_{i,j}} \sum_{s,t \in T} \frac{q_{i,s,j,t}}{U_{i,j}}$$
$$\leq \left(\max_{(i,j)} \frac{U_{ij}}{L_{ij}} \right) \sum_{i \in H, j \in C} y_{i,j}^{LP}$$
$$\leq \left(\max_{(i,j)} \frac{U_{ij}}{L_{ij}} \right) \sum_{i \in H, j \in C} y_{i,j}^*.$$

 $U_{ij} \equiv Max$ heat transfer $i \rightarrow j$ $L_{ij} \equiv Min$ heat transfer $i \rightarrow j$

Big-M parameter $U_{i,j}$ critical!

FLPR is $\Omega(n)$ -approximate

Consider 1 temperature interval ...

- Min n edges with capacity n;
- Alg n^2 edges with capacity 1;
- No approximation ratio asymptotically less than *n*.

FLPR is $O(\max_{(i,j)} U_{ij}/L_{ij})$ approx

Heuristic $y_{i,j}$ versus optimum $y_{i,j}^*$?

$$\sum_{i \in H, j \in C} \mathbf{y}_{i,j} = \sum_{i \in H, j \in C} \frac{U_{i,j}}{L_{i,j}} \sum_{s,t \in T} \frac{q_{i,s,j,t}}{U_{i,j}}$$
$$\leq \left(\max_{(i,j)} \frac{U_{ij}}{L_{ij}} \right) \sum_{i \in H, j \in C} y_{i,j}^{LP}$$
$$\leq \left(\max_{(i,j)} \frac{U_{ij}}{L_{ij}} \right) \sum_{i \in H, j \in C} \mathbf{y}_{i,j}^*.$$

 $U_{ij} \equiv Max$ heat transfer $i \rightarrow j$ $L_{ij} \equiv Min$ heat transfer $i \rightarrow j$

Big-M parameter $U_{i,j}$ critical!

FLPR is $\Omega(n)$ -approximate

Consider 1 temperature interval ...

- Min n edges with capacity n;
- Alg n^2 edges with capacity 1;
- No approximation ratio asymptotically less than *n*.

FLPR is $O(\max_{(i,j)} U_{ij}/L_{ij})$ approx

Heuristic $y_{i,j}$ versus optimum $y_{i,j}^*$?

$$\sum_{i \in H, j \in C} \mathbf{y}_{i,j} = \sum_{i \in H, j \in C} \frac{U_{i,j}}{L_{i,j}} \sum_{s,t \in T} \frac{q_{i,s,j,t}}{U_{i,j}}$$
$$\leq \left(\max_{(i,j)} \frac{U_{ij}}{L_{ij}} \right) \sum_{i \in H, j \in C} y_{i,j}^{LP}$$
$$\leq \left(\max_{(i,j)} \frac{U_{ij}}{L_{ij}} \right) \sum_{i \in H, j \in C} \mathbf{y}_{i,j}^{*}.$$

$$\begin{split} \mathbf{U_{ij}} &\equiv \mathsf{Max} \text{ heat transfer } \mathbf{i} \to \mathbf{j} \\ \mathbf{L_{ij}} &\equiv \mathsf{Min} \text{ heat transfer } \mathbf{i} \to \mathbf{j} \end{split}$$

Big-M parameter $U_{i,j}$ critical!

Paper improves big-M values

Computational Optimisation Group

Three classes of heuristic methods

Relaxation rounding

Motivation Optimize a simpler, relaxed problem. Round the result.

- Fractional linear programming rounding[†]
- $\bullet\,$ Lagrangian relaxation rounding †
- Covering relaxation rounding
- [†] Extensions to Furman & Sahinidis [2004]

Water filling heuristics

Motivation Solve temperature intervals serially. Keep composition feasible.

Greedy packing heuristics

Motivation Bin packing \iff minimum number of matches problem Similar to Linnhoff & Hindmarsh [1983], Cerda, Westerberg, Mason & Linnhoff [1983]

Three classes of heuristic methods

Relaxation rounding

Motivation Optimize a simpler, relaxed problem. Round the result.

- Fractional linear programming rounding[†]
- Lagrangian relaxation rounding[†]
- Covering relaxation rounding
- [†] Extensions to Furman & Sahinidis [2004]

Water filling heuristics

Motivation Solve temperature intervals serially. Keep composition feasible.

Greedy packing heuristics

Motivation Bin packing \iff minimum number of matches problem Similar to Linnhoff & Hindmarsh [1983], Cerda, Westerberg, Mason & Linnhoff [1983]

Three classes of heuristic methods

Relaxation rounding

Motivation Optimize a simpler, relaxed problem. Round the result.

- Fractional linear programming rounding[†]
- Lagrangian relaxation rounding[†]
- Covering relaxation rounding
- [†] Extensions to Furman & Sahinidis [2004]

Water filling heuristics

Motivation Solve temperature intervals serially. Keep composition feasible.

Greedy packing heuristics

Motivation Bin packing \iff minimum number of matches problem Similar to Linnhoff & Hindmarsh [1983], Cerda, Westerberg, Mason & Linnhoff [1983]

Three classes of heuristics in competition

3 Relaxation rounding, 2 Water filling, 4 Greedy packing

Performance ratio heuristic value/best known sol'n

Performance guarantees

- LP rounding $\Omega(n)$
- Greedy packing $O(\log n + \log(h_{\max}/\epsilon))$
- Worst case greedy packing asymptotic ratio better than best case LP rounding in pathological example.

Computational Optimisation Group

Heat exchanger networks – Larger instances [160 streams]

In all 3 cases, the high quality CPLEX solution took 2 hours to compute. For 1-2 hours, the heuristic is better (> 10%).

	Greedy Packing		CPLEX	
Test Case	SS		Transsh	ipment
	Value	Time	Value	Time
large_scale0	233	642.94	175	*
large_scale1	218	652.00	219	*
large_scale2	242	670.32	239	*

Practical applicability of approximation algorithms?

Useful for process systems engineering?

- Important optimization problems in PSE applications
 - Heat recovery networks
 - State-task network
 - Pooling problem
- Recovery & reoptimization
 - Royal Mail van allocation
- Explainable scheduling

Baltean-Lugojan & Misener, J Global Optim, 71:655-690, 2018.

Computational Optimisation Group

Practical applicability of approximation algorithms?

Useful for process systems engineering?

- Important optimization problems in PSE applications
 - Heat recovery networks
 - State-task network
 - Pooling problem
- Recovery & reoptimization
 - Royal Mail van allocation
- Explainable scheduling

Baltean-Lugojan & Misener, J Global Optim, 71:655-690, 2018.

Computational Optimisation Group

State-task network

STN complexity & efficient heuristics

Modelling formulations [Maravelias, 2005]
Generalises job-shop scheduling, so NP-hard [Burkard et al., 1998]
Special polynomial cases [Blömer & Günther, 2000]
Efficient feas solutions [Burkard et. al, 1998, Blömer & Günther, 2000]

Computational Optimisation Group

Approximation Algorithms

Complexity & Heuristics https://github.com/cog-imperial/pooling-network

- Reduction from maximum independent set, so \mathcal{NP} -hard [Alfaki & Haugland, 2013]
- Polynomial cases [Haugland, 14; Boland et al., 17; Baltean-Lugojan & M, 18]
- MIP approximation heuristic [Dey & Gupte, 2015]

Computational Optimisation Group

Approximation Algorithms

Practical applicability of approximation algorithms?

Useful for process systems engineering?

- Important optimization problems in PSE applications
 - Heat recovery networks
 - State-task network
 - Pooling problem
- Recovery & reoptimization
 - Royal Mail van allocation
- Explainable scheduling

Letsios & Misener, European J Operational Research, 2021.

Computational Optimisation Group

Practical applicability of approximation algorithms?

Useful for process systems engineering?

- Important optimization problems in PSE applications
 - Heat recovery networks
 - State-task network
 - Pooling problem
- Recovery & reoptimization
 - Royal Mail van allocation
- Explainable scheduling

Letsios & Misener, European J Operational Research, 2021.

Computational Optimisation Group

How to deal with highly uncertain environments?

Planning & Recovery

Liebchen, Lübbecke, Möhring, Stiller [2009]

Planning & Recovery

Liebchen, Lübbecke, Möhring, Stiller [2009]

Sources of uncertainty

- Unexpected incidents,
- Erroneous input data,
- Future events.

Related Work

- 2-stage robust optimization,
- Recoverable robustness,
- Adjustable robustness.

Planning & Recovery

Liebchen, Lübbecke, Möhring, Stiller [2009]

Sources of uncertainty

- Unexpected incidents,
- Erroneous input data,
- Future events.

Related Work

- 2-stage robust optimization,
- Recoverable robustness,
- Adjustable robustness.

Benefit of reoptimization

Reactive response in case of unexpected disturbances.

Computational Optimisation Group

Approximation Algorithms

Multiprocessor scheduling – Strongly \mathcal{NP} -hard

Input

- Set $J=\{1,2,\ldots,n\}$ of jobs,
- Job j has a processing time p_j ,
- Set $M = \{1, 2, \dots, m\}$ of parallel identical machines.

Objective

• Construct a non-preemptive schedule with minimum makespan C_{\max} .

Multiprocessor scheduling – Mixed-integer optimization

$$\begin{array}{ll} \min_{\mathbf{x},C_{\max}} & C_{\max} \\ & \sum_{j=1}^{n} x_{i,j} \cdot p_j &\leq C_{\max} & i \in M \\ & \sum_{i=1}^{m} x_{i,j} &= 1 & j \in J \\ & x_{i,j} \in \{0,1\} & j \in J, i \in M \end{array}$$

Input

- Set $J=\{1,2,\ldots,n\}$ of jobs,
- Job j has a processing time p_j ,
- Set $M = \{1, 2, \dots, m\}$ of parallel identical machines.

Objective

• Construct a non-preemptive schedule with minimum makespan C_{\max} .

Multiprocessor scheduling – Perturbation types

Groups of perturbations

- Machine activation,
- Job arrival, processing time augmentation & machine failure,
- Job removal & processing time reduction,

Hardness of rescheduling

Job removal & processing time reduction

Job removal example

Instance I_{init} has m machines & n+1 jobs. One job has processing time $p_{n+1} = \sum_{j=1}^{n} p_j$. Perturb I_{init} by removing job J_{n+1} .

Hardness of rescheduling

Job removal & processing time reduction

Job removal example

Instance I_{init} has m machines & n+1 jobs. One job has processing time $p_{n+1} = \sum_{j=1}^{n} p_j$. Perturb I_{init} by removing job J_{n+1} .

Observations

- The recovery problem is strongly \mathcal{NP} -hard.
- In a limited recovery setting, the initial schedule is a weak $\Omega(m)$ approximation for the new instance.

Hardness of rescheduling

Job removal & processing time reduction

Job removal example

Instance I_{init} has m machines & n+1 jobs. One job has processing time $p_{n+1} = \sum_{j=1}^{n} p_j$. Perturb I_{init} by removing job J_{n+1} .

Observations

- The recovery problem is strongly \mathcal{NP} -hard.
- In a limited recovery setting, the initial schedule is a weak $\Omega(m)$ approximation for the new instance.

Reoptimization Travelling Salesman Problem (R-TSP)

R-TSP remains highly inapproximable even if all optimal solutions of the initial instance are known. *Böckenhauer, Hromkovič, Sprock* [2011]

Computational Optimisation Group

Approximation Algorithms

Re-scheduling with a lexicographic optimal schedule

If the initial schedule S_{init} is lexicographic optimal and 1 disturbance occurs, then S_{init} can become a 2-approximate schedule for the new instance.

Re-scheduling with a lexicographic optimal schedule

If the initial schedule S_{init} is lexicographic optimal and 1 disturbance occurs, then S_{init} can become a 2-approximate schedule for the new instance.

Lexicographic Optimization Definition

- m objective functions F_1, F_2, \ldots, F_m ordered with respect to priority.
- $F_i: S \to \mathbb{R}_0^+$.
- lex $\min_{x \in S} \{F_1(x), F_2(x), \dots, F_m(x)\}$ computes a solution x^* where:

•
$$F_1(x^*) = v_1^* = \min\{F_1(x) : x \in S\},\$$

and

Re-scheduling with a lexicographic optimal schedule

If the initial schedule S_{init} is lexicographic optimal and 1 disturbance occurs, then S_{init} can become a 2-approximate schedule for the new instance.

Lexicographic Optimization Definition

- m objective functions F_1, F_2, \ldots, F_m ordered with respect to priority.
- $F_i: S \to \mathbb{R}_0^+$.
- lex $\min_{x \in S} \{F_1(x), F_2(x), \dots, F_m(x)\}$ computes a solution x^* where:

•
$$F_1(x^*) = v_1^* = \min\{F_1(x) : x \in S\}$$
, and

•
$$F_2(x^*) = v_2^* = \min\{F_2(x) : x \in S, F_1(x) = v_1^*\},$$
 and

Re-scheduling with a lexicographic optimal schedule

If the initial schedule S_{init} is lexicographic optimal and 1 disturbance occurs, then S_{init} can become a 2-approximate schedule for the new instance.

Lexicographic Optimization Definition

- m objective functions F_1, F_2, \ldots, F_m ordered with respect to priority.
- $F_i: S \to \mathbb{R}_0^+$.
- lex $\min_{x \in S} \{F_1(x), F_2(x), \dots, F_m(x)\}$ computes a solution x^* where:
 - $F_1(x^*) = v_1^* = \min\{F_1(x) : x \in S\},$ and
 - $F_2(x^*) = v_2^* = \min\{F_2(x) : x \in S, F_1(x) = v_1^*\},$ and
 - $F_3(x^*) = v_3^* = \min\{F_3(x) : x \in \mathcal{S}, F_1(x) = v_1^*, F_2(x) = v_2^*\}, \dots$

Practical applicability of lexicographic optimization?

Recover feasibility only

Allow limited recovery actions

Test conditions

- Medium instances only,
- Starting with the solution pool of possible heuristic solutions,
- Normalise the initial and recovered schedules.

Royal Mail's van allocation problem

Challenge

- ullet At a delivery office in a morning \implies deliver by afternoon
- 1250 delivery offices
- 37,000 vans; 90,000 drivers; 27 million locations

Letsios, Bradley, Suraj G, Misener & Page, Journal of Scheduling, 2021.

Bounded Job Start Scheduling Problem (1a)Tmin x_{is}, T $T \ge x_{i,s}(s+p_i)$ $i \in \mathcal{J}, s \in D$ (1b) $\sum \sum x_{j,s} \le m$ (1c) $t \in D$ $i \in \mathcal{J} \in A_{i+1}$ $\sum x_{j,s} = 1$ $j \in \mathcal{J}$ (1d) $s \in F_i$ $\sum x_{j,s} \le g$ $s \in D$ (1e) $i \in \mathcal{J}_{s}$ $x_{i,s} \in \{0,1\}$ $i \in \mathcal{J}, s \in F_i$ (1f)

BJSP is strongly \mathcal{NP} -hard in the case g = 1, reduction to 3-Partition and ...

- Generalize fundamental makespan scheduling, i.e. $P||C_{\max}$,
- Relax forbidden sets scheduling, job subsets can't run in parallel [Schäffter, 1997],
- Relax scheduling with forbidden job start times [Billaut & Sourd, 2009; Rapine & Brauner, 2013; Gabay et al. 2016; Mnich & van Bevern, 2018] .
Comparing solutions

Worst case analysis

 $P||C_{\max}$ optimum may be a factor $\Omega(m)$ from bounded job start optimum

(a) Bounded job start optimal schedule

(b) $P||C_{\max}$ optimal schedule

Longest job processing time won't save us

(a) LPT schedule S

(b) Optimal schedule S^*

Figure: LPT is 2-approximate for minimizing makespan and this ratio is tight.

Computational Optimisation Group

Approximation Algorithms

How to get an approximation ratio better than 2?

Cases when longest job processing time is useful

Instance $\langle m, \mathcal{J} \rangle$ is long if $p_j \geq m, \forall j \in \mathcal{J}$ and short if $p_j < m, \forall j \in \mathcal{J}$.

- LPT is 5/3-approximate for long instances,
- LPT is optimal for short instances.

Shortest processing time first [good if p_{\max} smaller than average load]

LSPT is 2-approximate for minimizing makespan. For long instances, LSPT is $(1 + \min\{1, 1/\alpha\})$ -approximate, where $\alpha = (\frac{1}{m} \sum_{j \in \mathcal{J}} p_j)/p_{\max}$.

Mixing long & short jobs with machine augmentation

LSM computes a 1.985-approximate schedule with 1.2-machine augmentation by having some machines work with long jobs and some with short jobs. The bad case (needing machine augmentation) is with many very long jobs, i.e. more than $\lceil 5m/6 \rceil$ jobs with $p_j > T^*/2$.

LexOpt Scheduling with Machine Augmentation

$$\min_{x_{j,s}, v,w} \quad v + \theta \left(\sum_{j,s} x_{j,s} w_{j,s+p_j} \right) \tag{2a}$$

$$v \ge \sum_{j,s} x_{j,s} \quad j \in \mathcal{J}, s \in D \qquad (2b)$$

$$x_{j,s}(s+p_j) \le D \quad j \in \mathcal{J}, s \in D \qquad (2c)$$

$$\sum_{j \in \mathcal{J}} \sum_{s \in A_{j,t}} x_{j,s} \le m \quad t \in \mathcal{D} \qquad (2d)$$

$$\sum_{s \in F_j} x_{j,s} = 1 \quad j \in \mathcal{J} \qquad (2e)$$

$$\sum_{s \in F_j} x_{j,s} \le g \quad s \in D \qquad (2f)$$

$$x_{j,s} \in \{0,1\} \quad j \in \mathcal{J}, s \in F_j \qquad (2g)$$

Evaluating historical schedules ...

Evaluating historical schedules ...

Sensitivity analysis

Delivery Office 1

Sensitivity analysis

Delivery Office 2

Sensitivity analysis

Delivery Office 3

Advantage of lexicographic optimization Delivery Office 1

Computational Optimisation Group

Tuesday 30th March, 2021

Advantage of lexicographic optimization Delivery Office 2

Advantage of lexicographic optimization Delivery Office 3

Extensions to other applications

Facility Location

- n customers
- $\bullet \ m \ {\rm facility} \ {\rm locations}$
- Open k < m facilities.
- Minimise maximum distance of a customer to its closest facility.

Extensions to other applications

Facility Location

- n customers
- $\bullet \ m \ {\rm facility} \ {\rm locations}$
- Open k < m facilities.
- Minimise maximum distance of a customer to its closest facility.

Extensions to other applications

Facility Location

- n customers
- m facility locations
- Open k < m facilities.
- Minimise maximum distance of a customer to its closest facility.

Min-Max Graph Partitioning

- G: graph with edge weights,
- Partition the vertices into equal-sized subsets,
- Minimise the maximum total weight of the edges leaving a single part.

Commonalities:

- Partitioning problems with a cost tied to each partition component,
- Min-max problems.

Practical applicability of approximation algorithms?

Useful for process systems engineering?

- Important optimization problems in PSE applications
 - Heat recovery networks
 - State-task network
 - Pooling problem
- Recovery & reoptimization
 - Royal Mail van allocation
- Explainable scheduling

Čyras, Letsios, Misener & Toni, AAAI [oral], 2019.

Practical applicability of approximation algorithms?

Useful for process systems engineering?

- Important optimization problems in PSE applications
 - Heat recovery networks
 - State-task network
 - Pooling problem
- Recovery & reoptimization
 - Royal Mail van allocation
- Explainable scheduling

Čyras, Letsios, Misener & Toni, AAAI [oral], 2019.

Makespan scheduling

Example: nurse rostering

Input

• Set
$$J = \{J_1, J_2, \dots, J_n\}$$
 of jobs

- Job J_j has a processing time p_j
- Set $M = \{M_1, M_2, \dots, M_m\}$ of machines

Objective

• Construct a schedule S with minimum makespan (\mathcal{NP} -hard)

Challenge: Explain this to a nurse!

Schedule S is efficient iff

- Feasible \star
- No job can be moved from a busiest machine: $C_i C_{i'} \leqslant p_j$
- No jobs can be exchanged with any busiest machine: for $j' \neq j$ with $x_{i',j'} = 1$, if $p_j > p_{j'}$, then $C_i + p_{j'} \leqslant C_{i'} + p_j$

for any $j \in J$ such that $x_{i,j} = 1$ and $C_i = C_{\max}$.

Explanation desiderata

Cognitive tractability

Explanations pertaining to schedule S are concise (polynomial in size)

Computational tractability

Explaining whether and why schedule S is (not) good can be performed efficiently (in polynomial time)

Soundness & completeness

Given schedule S, there exists an explanation why S is (not) good $\inf S$ is (not) good

Build an interpretive model for classification

Dash, Günlük & Wei. Boolean decision rules via column generation. Advances in Neural Information Processing Systems (NeurIPS). 2018.

Computational Optimisation Group

Approximation Algorithms

ArgOpt: Argumentation-Optimization

Argumentation

Explainable abstraction paradigm for reasoning with incomplete and conflicting information

Explanations with respect to

- Schedules from the optimization solver
- Schedules from the user

Argumentation

Argumentation framework

Directed graph with:

- nodes *arguments*
- edges attacks

Argumentation

Argumentation framework

Directed graph with:

- nodes arguments
- edges attacks

Stable extension of AF

- A set S of arguments such that:
 - $\bullet\,$ no attacks between arguments in S
 - internally consistent (conflict-free)
 - $\bullet\,$ attacks all arguments not in S
 - externally aggressive, global

 $\{a,b\} \text{ is stable} \\ (\text{so is } \{a,d\})$

Mapping makespan scheduling argumentation frameworks An argumentation framework models decisions with arguments, and incompatibilities with attacks:

- Assignments $x_{i,j}$ become arguments $a_{i,j}$
- $a_{i,j}$ attacks $a_{k,l}$ iff $i \neq k$ and j = l
 - Different machines compete for the same job
- Stable extensions are 'good' schedules

Nurse: Can I do this?

Feasible. . .

Stable

Nurse: Can I do this?

But not efficient! Swap jobs.

Nurse: Can I do this?

But not efficient! Swap jobs.

An attacked argument that does not counter-attack represents an inefficient allocation!

Natural language explanations

Natural language explanations extracted from AFs

The attack from $a_{2,3}$ to $a_{1,2}$ explains why $S \approx \{a_{1,1}, a_{1,2}, a_{2,3}\}$ is not efficient:

Because S can be improved by swapping jobs 3 and 2 between nurses 2 and 1.

Practical applicability of approximation algorithms?

$$C_{\mathsf{LB}} \quad C_{\mathsf{OPT}} \quad C_{\mathsf{ALG}} \qquad \rho \cdot C_{\mathsf{LB}} \quad \rho \cdot C_{\mathsf{OPT}}$$

Useful for process systems engineering?

- Important optimization problems in PSE applications
 - Heat recovery networks
 - State-task network
 - Pooling problem
- Recovery & reoptimization
 - Royal Mail van allocation
- Explainable scheduling

Lexicographic optimal scheduling

MILP reformulation

- Machines ordered in non-increasing order of completion times.
- Completion time bound strengthening constraints.

Input

- Set $J=\{1,2,\ldots,n\}$ of jobs,
- Job j has a processing time p_j ,
- Set $M = \{1, 2, ..., m\}$ of parallel machines with completion time C_i .

State-of-the-art lexicographic optimization methods

Sequential method

- $v_1^* = \min\{F_1(\vec{x}, \vec{C}) : (\vec{x}, \vec{C}) \in \mathcal{S}\}.$
- For i = 2, ..., m,
 - $v_i^* = \min\{F_i(\vec{x}, \vec{C}) : x \in S, F_1(\vec{x}, \vec{C}) = v_1^*, \dots F_{i-1}(\vec{x}, \vec{C}) = v_{i-1}^*\}$
- Return the last computed solution.

State-of-the-art lexicographic optimization methods

Sequential method

- $v_1^* = \min\{F_1(\vec{x}, \vec{C}) : (\vec{x}, \vec{C}) \in \mathcal{S}\}.$
- For i = 2, ..., m,
 - $v_i^* = \min\{F_i(\vec{x}, \vec{C}) : x \in S, F_1(\vec{x}, \vec{C}) = v_1^*, \dots F_{i-1}(\vec{x}, \vec{C}) = v_{i-1}^*\}$
- Return the last computed solution.

Simultaneous (highest rank objective) method

- Solve $v_1^* = \min\{C_1 : (\vec{x}, \vec{C}) \in S\}.$
- Compute the solution pool $\mathcal{P} = \{(\vec{x}, \vec{C}) \in S : C_1 = v_1^*\}.$
- Return the lexicographically smallest solution in \mathcal{P} .

State-of-the-art lexicographic optimization methods

Sequential method

- $v_1^* = \min\{F_1(\vec{x}, \vec{C}) : (\vec{x}, \vec{C}) \in \mathcal{S}\}.$
- For i = 2, ..., m,
 - $v_i^* = \min\{F_i(\vec{x}, \vec{C}) : x \in S, F_1(\vec{x}, \vec{C}) = v_1^*, \dots F_{i-1}(\vec{x}, \vec{C}) = v_{i-1}^*\}$
- Return the last computed solution.

Simultaneous (highest rank objective) method

- Solve $v_1^* = \min\{C_1 : (\vec{x}, \vec{C}) \in S\}.$
- Compute the solution pool $\mathcal{P} = \{(\vec{x}, \vec{C}) \in S : C_1 = v_1^*\}.$
- Return the lexicographically smallest solution in \mathcal{P} .

Weighting method

- Set big-M parameter M = 2.
- For $i = 2, \ldots, m$, set machine weight $w_i = M^{m-i}$.
- Solve $\min\{\sum_{i=1}^m w_i \cdot C_i : (\vec{x}, \vec{C}) \in \mathcal{S}\}.$

Novel bounding technique

Can we develop methodology for bounding the best solution?

Let's develop strong lexicographic optimization lower bounding technique to solve the lex optimization problem exactly.

Novel bounding technique

Can we develop methodology for bounding the best solution?

Let's develop strong lexicographic optimization lower bounding technique to solve the lex optimization problem exactly.

Vectorial lower bound of schedule S

• A vector $\vec{L} = (L_1, \ldots, L_m)$, s.t. $L_i \leq C_i(S)$, for all $i = 1, 2, \ldots, m$ (both vectors \vec{L} and $\vec{C}(S)$ are sorted in non-increasing order).
Novel bounding technique

Can we develop methodology for bounding the best solution?

Let's develop strong lexicographic optimization lower bounding technique to solve the lex optimization problem exactly.

Vectorial lower bound of schedule S

• A vector $\vec{L} = (L_1, \ldots, L_m)$, s.t. $L_i \leq C_i(S)$, for all $i = 1, 2, \ldots, m$ (both vectors \vec{L} and $\vec{C}(S)$ are sorted in non-increasing order).

Vectorial bounds may enforce exact, branch-and-cut methods

- Better convergence to efficient solutions,
- Improved global optimality proving.

Lexicographic branch-and-bound method

Branch-and-bound ingredients

- Sort the jobs $p_1 \geq \ldots \geq p_n$,
- Search a tree with n+1 levels. Level ℓ has assigned jobs J_1, \ldots, J_ℓ ,
- Depth first search.

Lexicographic branch-and-bound method

Branch-and-bound ingredients

- Sort the jobs $p_1 \geq \ldots \geq p_n$,
- Search a tree with n+1 levels. Level ℓ has assigned jobs J_1, \ldots, J_ℓ ,
- Depth first search.

- Sinc: Best found (incumbent) solution,
- At node u, compute a vectorial lower bound $\vec{L}(u)$ of the lex best schedule in $\mathcal{S}(u)$,
- If $\vec{C}(S_{inc}) \leq_{\mathsf{lex}} \vec{L}(u),$ then prune the subtree.

S(u): set of all schedules below node u

Vectorial lower bound computation

- In our concrete scheduling problem:
 - Approximate scheduling problem with job rejections,
 - Use knapsack-like bounding approaches,
 - Equivalent to constructing a pseudo-schedule which is feasible except that some jobs are scheduled fractionally.

Vectorial lower bound computation [cont.]

Computation of the k-th component of vectorial lower bound

- 1: Select job index $q = \min\{j : \sum_{j'=\ell+1}^{j} p_{j'} \ge \sum_{i=1}^{k-1} (U_i t_i)\}.$
- 2: Compute remaining load $\lambda = \sum_{j=q+1}^{n} p_j$.
- 3: Return the maximum among:

•
$$\min_{k \le i \le m} \{t_i\} + p_{q+1}$$
, and
• $\max_{k \le i \le m} \{t_i\} + \max\left\{\frac{1}{m-k+1} \left(\lambda - \sum_{i=k+1}^m (\max_{k \le i \le m} \{t_i\} - t_i)\right), 0\right\}$.

 L_3 Computation

→time

1) Round-robin algorithm is
$$O(k)$$
-time $\left(1 + \left\lceil \frac{k}{m} \right\rceil\right)$ -approximate.

→time

→time

1) Round-robin algorithm is
$$O(k)$$
-time $\left(1 + \left\lceil \frac{k}{m} \right\rceil\right)$ -approximate.

1) **Round-robin** algorithm is
$$O(k)$$
-time $\left(1 + \left\lceil \frac{k}{m} \right\rceil\right)$ -approximate.

- If $k \leq m$, then it is 2-approximate.
- If k is large, then the approximation ratio can be arbitrarily bad.

1) Round-robin algorithm is O(k)-time $\left(1 + \left\lceil \frac{k}{m} \right\rceil\right)$ -approximate.

- If $k \leq m$, then it is 2-approximate.
- If k is large, then the approximation ratio can be arbitrarily bad.

2) List scheduling algorithm is $O(k \log m)$ -time 2-approximate (tight).

- Sort the jobs $p_1 \ge \ldots \ge p_n$,
- Schedule next job to machine with lowest current completion time.

Random instance set-up & solution termination criteria

Number of machines	3, 4, 5, 6
Number of jobs	20, 30, 40, 50
Processing time parameter	100, 1000
Processing time distributions	Uniform, normal, symmetric normal
Relative error	0.0001
Time limit	10^4 seconds

Computational Optimisation Group

Random instance set-up & solution termination criteria

Number of machines	10, 12, 14, 16
Number of jobs	100, 200, 300, 400
Processing time parameter	1000, 10000
Processing time distributions	Uniform, normal, symmetric normal
Relative error	0.0001
Time limit	10^4 seconds

Computational Optimisation Group

Random instance set-up & solution termination criteria

Number of machines	10, 15, 20, 25
Number of jobs	200, 300, 400, 500
Processing time parameter	1000, 10000
Processing time distributions	Uniform, normal, symmetric normal
Relative error	0.0001
Time limit	10^4 seconds

Computational Optimisation Group