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Outline

• What is stochastic programming?
• How do I formulate a stochastic program?
• Have these been used in industry?
• How can I solve a stochastic program?
• What about extensions? 



Deterministic Optimization

• Two broad categories of optimization models 
exist
– Deterministic

• Parameters/data are known with certainty

– Stochastic
• Parameters/data are known with uncertainty

It may be helpful to think of deterministic models 
as a special case of stochastic models



Deterministic Optimization

• Components
– Decision variables
– Objective function
– Constraints



General Model
Objective 
Function
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Decision 
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Deterministic Optimization Models

• Linear Programs
• Nonlinear Programs
• Integer Programs
• Dynamic Programs



Shortcomings of 
Deterministic Optimization

• Deterministic optimization requires being 
certain about the parameters/data
– In reality, we are almost never certain about the 

parameters/data of the problem.
– Exact data is unavailable or expensive

• Tradeoff between validity and tractability
– Stochastic models produce more valid results
– Deterministic models are easier to solve; typically can 

have finer granularity than stochastic optimization 
models



What is Stochastic Programming (SP)?
• A Stochastic Program is a mathematical program in 
which some of the parameters defining a problem 
instance are random
• A stochastic linear program (SLP) is the simplest case 
of stochastic program 

Assumptions in SP:

• The probability distribution for the uncertainty is known 
or can be approximated
• The probabilities are independent of the decisions that 
are taken (with few exceptions; see Goel dissertation 
2005)



Formulating Stochastic Programs
Stages – time periods

The sequence of events and decisions in a two-stage SLP with 
recourse (2SLPwR):

x  Realization of ω y(ω)

•First-stage decisions (x) are taken before the uncertainty ω is 
realized (known)

•Second-stage decisions (y(ω)) are taken as corrective actions 
after the actual value of ω becomes known 

Standard Objective: minimize first-stage cost plus expected 
second-stage costs



Formulating Stochastic Programs

• Familiar Linear Program (LP):

min  cT x 
s.t. Ax = b, 

x ≥ 0

• 2SLPwR

min   cT x + Q(x)
s.t. Ax = b

x ≥ 0
where Q(x), the expected recourse function, gives the 
expected cost of the optimal second-stage decision given first-
stage decision x



What can be random?
• In the second stage, the objective, constraints and right-

hand sides are permitted to be random. Also, the matrix 
describing the relationship between x and y

• For scenario ω:
– Objective: q(ω)
– Right-hand side: h(ω)
– Constraint (recourse) matrix: W(ω)
– Matrix relating x to y (technology matrix): T(ω)



Expected Recourse Function
•How do we define Q(x)? 

•For any scenario ω, Define Q(x,ω) by
Q(x,ω) = min q(ω)ty(ω)
s.t. W(ω)y(ω) = h(ω) – T(ω)x

y(ω) ≥ 0

And Q(x) = EωQ(x,ω)

Notice that the relationship between x and y(ω) must be 
described linearly



“Extensive-Form”
Two-stage SLPs with Recourse

• We could solve a 2SLPwR as a (really big) linear 
program, called the extensive form

Min z = cTx+ Eω[min q(ω)Ty(ω)]
s.t.

Ax = b 
T(ω) x + W(ω) y(ω) = h(ω) for all ω
x ≥ 0, y(ω) ≥ 0



Extensive Form of a
Two-stage Stochastic Linear Program

Min      cT x + p1q1
T y1 + p2q2

T y2 + · · · + psqs
T ys

s.t.      Ax                                        = b
T1x   + W1y1 = h1
T2x   +       W2y2 = h2
:       +                  .       = :
:       +                     .    = :
:       +                          .       = :
TSx +                             Wsys = hs
x ≥ 0, y1 ≥ 0, y2 ≥ 0, ……….,ys ≥ 0



Properties of the Expected 
Recourse Function

• What do we know about Q(x)?
• Q(x) is convex (whew!)

– But not if y(ω) must be integer-valued
– This convexity is critical for solving SLPs

• If there are a finite number of scenarios, Q(x) is 
piece-wise linear



Expected Recourse Function

The expected recourse function Q(x) is convex and, if there are a finite 
number of scenarios, is also piece-wise linear 



SP Applications

• SP deals with a class of optimization models and 
algorithms
– some of the data may be subject to significant 

uncertainty
• Such models appropriate when 

– data evolve over time 
– decisions need to be made prior to observing the 

entire data stream



SP Applications - Examples

• Investment decisions in portfolio planning:
– Portfolio planning Problems must be implemented 

before stock performance can be observed

• Power Generation:
– Utilities must plan power generation before the 

demand for electricity is realized



Optimizing electricity distribution using 
two-stage integer recourse models

• Consider two planning problems faced by an 
(Dutch) electricity distributor 
– Every year a contract with the power plants.
– Determine a supply schedule for each single day.

• Electricity: 
– 1- Power plant 
– 2- Small generators (i.e. hospitals, greenhouses, 

industrial consumers) 

Willem K. Klein Haneveld and Maarten H. van der Vlerk (May 2000)



Optimizing electricity distribution using 
two-stage integer recourse models

• Future demand for electricity is uncertain 
• Price

– Depends on quota
– Yearly contract

• Various constraints on switching generators 
on/off

• Two-stage integer recourse models.
– Very hard to solve in general
– Develop tailor-made solution methods
– Use of valid inequalities and Lagrange relaxation



IBM Research in SP

• Duality and martingales: a stochastic 
programming perspective on contingent claims

– The hedging of contingent claims in the discrete time, discrete 
state case 

– Modeling the hedging problem as an SP 
– Model easily extends to the analysis of options pricing 
– An extension: Incorporate pre-existing liabilities and 

endowments           why buyers and sellers trade in options 

Alan J. King - IBM Research Division, Mathematical Sciences Department



Uncertainty Modeling & 
Management in MRP Systems

• Examine an MRP environment with
– Demand and supply uncertainty 
– Capacity limits 
– Service level requirements

• Static, finite horizon SP
• Feasible instances Develop optimal / heuristic 

solutions 
• Infeasible instances Identify good, feasible 

combinations of capacity and service 

Ramesh Bollapragada - Lucent Technology Bell Labs
Uday S. Rao - Carnegie Mellon University



The Russell-Yasuda Kasai Model:

• Frank Russell Company and the Yasuda Fire 
and Marine Insurance Co. Ltd. 

• An asset/liability model
• For a Japanese insurance company
• Multistage stochastic programming

David R. Carino; Terry Kent; David H. Myers; Celine Stacy; Mike 
Sylvanus; Andrew L. Turner; Kouji Watanabe; William T. Ziemba



The Russell-Yasuda Kasai Model:

• Model          Optimal investment strategy
– Integrates a multi period method  
– Allows decision makers to describe risks in tangible operational

terms. 

• Generate an extra revenue of 42 basis points 
(about $79 million during the first two years of its 
use).



Some Other Applications
• Electric power generation 

– Murphy, F.H., Sen, S., and Soyster, A.L. (1982). “Electric utility 
capacity expansion planning with uncertain load forecasts.” AIIE 
Transaction 14, 52-59.

• Supply chain management 
– Fisher, M., J. Hammond, W. Obermeyer, and A. Raman [1997]. 

“Configuring a supply chain to reduce the cost of demand 
uncertainty,” Production and Operations Management, 6,pp.211-
225. 

• Telecommunications network planning 
– Sen, S. R.D. Doverspike and S. Cosares [1994]. “Network 

Planning with Random Demand,” Telecommunication Systems, 
3, pp. 11-30.



How can I solve Two-Stage 
Stochastic Linear Programs?

1st Stage

Scen 1 Scen 2 Scen K

Two stage SLP 
generally solved by 
decomposition

cuts

primal
solution



How do we solve the simplest form of 
Stochastic Programs?

• Linear Approaches

– The L-Shaped Method (most common)
• (Single cut & Multicut version)

– Inner Linearization Methods (won’t discuss)
– Basis Factorization Methods (won’t discuss)



The L-Shaped Method
• The most commonly used technique.
• Basic idea: To approximate the convex term in the objective function.
• Recourse function involves a solution of all second stage recourse 

linear programs, we want to avoid numerous function evaluations for 
it.

• Therefore, divide the problem into two stage:
– Master Problem
– Sub-problems

• Converges to the optimal solution in finite steps with adding 2 new 
type of  constraints to the master problem called feasibility cuts and 
optimality cuts.

• Feasibility cuts – ensure that the second-stage problems are feasible
• Optimality cuts – relate the second-stage costs to first-stage 

constraints



L-shaped Restricted 
Master Problem

θ+= xcz T

bAx =
s,........,1=l

0≥x ℜ∈θ
r,......,1=lll exE ≥+θ

ll dxD ≥

min
s.
t

Master problem is as follows:

Feasibility cuts

Optimality cuts



L-shaped Optimality 
Subproblem

Recourse problem for scenario k 
given first-stage x is as follows:

yqw T
k=

0≥y
xThWy kk −=

min
s.t

Let π denote the duals. Then El = πTTk

and el = πThk



Algorithm
At each iteration:
Step 1: Solve the master problem 
Step 2: If the solution to the master problem (x*) leads to 

feasible recourse problems for all scenarios,
– Go to step 3
– else add a FEASIBILITY CUT and go to step 1 and solve master 

problem again.
Step 3: If the expected value for the optimal values of the 

recourse problems (w*) is greater than Θ obtained 
in step 1

– Stop the current solution is optimal,
– else add an OPTIMALITY CUT and go to step 1 and resolve master 

problem.



Expected Recourse Function

The expected recourse function Q(x) is convex and, if there are a finite 
number of scenarios, is also piece-wise linear 
.
L-shaped optimality cuts support Q(x) from below. If there are a finite
number of scenarios, there are a finite number of optimality cuts



Multicut Version

• Instead of using Θ to represent Q(x), we 
use Θk to represent Q(x,ωk)

• We may add as many as K cuts per 
iteration, but we get more information

• In general, multicut works well if there 
aren’t “too many” scenarios

• For integer first stage, multicut is not 
competitive with single cut



Stochastic Integer Programs

• When recourse problem is an MIP, Q(x) is nonconvex
and discontinuous

• The absence of general efficient methods reflects this 
• Some techniques have been proposed that address 

specific problems or use a particular property
• Much work needs to be done to solve SIPs efficiently
• No industrial-sized problems with integer recourse have 

been solved thus far
• The field  is expected to evolve a great deal in the future



How to solve SIPs?

• A set of valid feasibility cuts and optimality cuts, which 
are based on duality theory of linear programming, is 
known to exist in the continuous case and forms the 
basis of the classical L-shaped method

• They can also be used in the case where only the first-
stage variables contain some integrality restrictions

• The most common method to solve SIPs is the so-
called Integer L-Shaped Method



A little history
• The first application of the integer L-shaped method was 

proposed by Laporte and Louveaux (1993) for the case 
of binary first- and second-stage variables

• A full characterization of the method based general 
duality theory is given by Carøe and Tind (1996)

• A stochastic version of the branch and cut method 
(stochastic branch and bound) using statistical 
estimation of the recourse function instead of exact 
evaluation is given by Norkin, Ermoliev, and Ruszczyński
(1997)



Simple Integer Recourse

• When a stochastic program has simple 
recourse, the only feasible solutions are to 
pay a shortage or surplus penalty

• With simple integer recourse, the recourse 
variables must take integer values

• These are the best understood SIP 
models



An SIP with a special structure
(Simple integer recourse)

• 2-stage SP with simple recourse can be transformed into :
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SIP with Stochastic Right-hand 
Sides

• Kong et al. considered two-stage SIPs
where the randomness was on the r.h.s.

• They reformulated the problem using the 
superadditive dual of IPs in both stages

• They developed methods for finding these 
superadditive duals

• They were able to solve relatively large 
problems (D.E. ~ 1010 columns, 107 rows)



Solving SIPs via Global 
Optimization

• Ahmed, Tawarmalani and Sahinidis (2004) 
used a similar reformulation and applied 
global optimization techniques

• Their model could handle stochasticity in 
the objective function



Other approaches to solving SIPs

• Extensive forms & decomposition
• Asymptotic analysis / approximation
• Markov Chains
• Dynamic programming
• Lagrangean decomposition



Multistage SP with Recourse
• Involves a sequence of decisions that react to outcomes 

that evolve over time

min )]...]()([...)()([ 22211
2

NNN xcExcExcz N ωωωω
ξξ

+++=
s.t. 111 hxW =

)()()( 222211 ωωω hxWxT =+
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• The extensive form of an N-stage fixed-recourse problem:

tωwhere        denotes the history up to time t



Multistage SP with Recourse
To obtain the deterministic equivalent form
• Let

• Also, let
)](,([)( 111 ωξϑ ξ

+++ = ttttt xQEx

)()(min))(,( 1 NNNNNN xcxQ ωωωξ =−

11 )()()( −−−= NNNNN xThxW ωωωs.t.
0)( ≥ωNx

for all t and obtain the recursion for t=2,…,N-1

)()()(min))(,( 11 ttttttt xxcxQ +− += ϑωωωξ
11 )()()( −−−= ttttt xThxW ωωωs.t.

0)( ≥ωtx



Multistage SP with Recourse

Deterministic Equivalent:

)(min 111 xxcz ϑ+=
s.t. 111 hxW =

01 ≥x



Nonanticapitivity Stage 3

Stage 1

Stage 2

x2(ω1) = x2(ω2)

x2(ω3) = x2(ω4)

x1(ω1) = x1(ω2) = x1(ω3) = x1(ω4)

Scenarios 1 and 2 are
indistinguishable in stage
2.

Scenario 1
x3(ω1)

Scenario 2

x3(ω2)

Scenario 3

x3(ω3)

Separable by scenario with
nonanticapitivity constraints
as linking constraints

Scenario 4

x3(ω4)



Solving SPs with Nonanticipativity

• Such a model is decomposable by 
scenario, where nonanticipativity
constraints are linking constraints

• Lagrangian relaxation of linking constraints
• For reasonably large scenario trees, the 

number of possible nonanticipativity
constraints is enormous 



Solving Multistage SPs
Nested Decomposition
• Built on the two-stage L-shaped method
• Extended to the multistage case by Birge
• The idea is to place cuts on               and to add other 

cuts to achieve an      that has a feasible completion in 
all descendant scenarios

• Successive linear approximations of   
• Due to the polyhedral structure of      , the process 

converges finitely

)(1 tt x+ϑ
tx

1+tϑ
1+tϑ



Continuous Distributions

• How can stochastic programming handle 
continuous distributions?

• With a continuous distribution, there are 
infinitely many scenarios (Σ becomes ∫)

• The extensive form formulation is infinite-
dimensional

• However, there are ways to overcome 
these difficulties



Sampling Approach

• One approach is to sample from the 
continuous distribution (ω1, …, ωN)

• Assign each scenario probability 1/N
• As N →∞, get optimal solution
• How big should N be? Use statistical 

properties to estimate convergence to 
optimal solution



Stochastic Decomposition

• Works for 2SLPwR (Higle & Sen)
• Sample to create cuts on each iteration
• These cuts fall off (are given less weight) 

as the algorithm progresses



Conclusions

• Stochastic programming is an emerging 
filed that extends classical optimization to 
stochastic and dynamic settings

• SP has significant potential in EWO
• Stochastic programs are difficult to solve, 

so modeling becomes challenging
• Despite their inherent difficulty, industrial-

sized stochastic programs can now be 
solved
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