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What is stochastic programming?What is stochastic programming?
How do I formulate a stochastic How do I formulate a stochastic 
program?program?
Properties of stochastic programs.Properties of stochastic programs.
Have these been used in industry?Have these been used in industry?
How can I solve a stochastic How can I solve a stochastic 
program?program?
Sampling ApproachesSampling Approaches
Scenario Reduction TechniquesScenario Reduction Techniques



Deterministic OptimizationDeterministic Optimization
Two broad categories of optimization Two broad categories of optimization 
models:models:

1)1)DDeterministiceterministic modelsmodels
PParametersarameters/data /data are are known with known with certaintycertainty
Can be thought as a special case of stochastic modelsCan be thought as a special case of stochastic models
Four main subFour main sub--categories:categories:

–– Linear ProgramsLinear Programs
–– Nonlinear ProgramsNonlinear Programs
–– Integer ProgramsInteger Programs
–– Dynamic ProgramsDynamic Programs

2)2)SStochastictochastic modelsmodels
PParametersarameters/data/data areare not knownot knownn with certaintywith certainty



What is Stochastic Programming What is Stochastic Programming 
(SP)?(SP)?

• A Stochastic Program is a mathematical program in 
which some of the parameters defining a problem 
instance are random
• A stochastic linear program (SLP) is the simplest case 
of stochastic program 
Common Assumptions in SP: 
• The probability distribution for the uncertainty is known 
and independent of the decisions (exceptions, e.g. Goel 
and Grossmann)
• The stages interact linearly



Formulating Stochastic ProgramsFormulating Stochastic Programs

Stages (decision epochs) 

The sequence of events and decisions in a two-stage SLP with 
recourse (2SLPwR):

x  Realization of ω y(ω)

•First-stage decisions (x) are taken before the uncertainty ω is 
realized (known)

•Second-stage decisions (y(ω)) are taken as corrective actions 
after the actual value of ω becomes known 

Standard Objective: minimize first-stage cost plus expected 
second-stage costs



Formulating Stochastic ProgramsFormulating Stochastic Programs
• Familiar Linear Program (LP):

min  cT x 
s.t. Ax = b, 

x ≥ 0

• 2SLPwR

min   cT x + Q(x)
s.t. Ax = b

x ≥ 0
where Q(x), the expected recourse function, gives the expected 
cost of the optimal second-stage decision given first-stage 
decision x



What can be random?What can be random?
In the second stage, the objective, constraints and In the second stage, the objective, constraints and 
rightright--hand sides are permitted to be random. Also, hand sides are permitted to be random. Also, 
the matrix describing the relationship between x the matrix describing the relationship between x 
and yand y

For scenario For scenario ωω::
–– Objective: q(Objective: q(ωω))
–– RightRight--hand side: h(hand side: h(ωω))
–– Constraint (Constraint (recourserecourse) matrix: W() matrix: W(ωω))
–– Matrix relating x to y (Matrix relating x to y (technology matrix)technology matrix): T(: T(ωω))



Expected Recourse FunctionExpected Recourse Function
How do we define How do we define Q(xQ(x)? )? 

For any scenario For any scenario ωω, Define , Define Q(xQ(x,,ωω) by) by
Q(xQ(x,,ωω) = min q() = min q(ωω))ttyy((ωω))

s.ts.t.    W(.    W(ωω)y()y(ωω) = h() = h(ωω) ) –– T(T(ωω)x)x
y(y(ωω) ) ≥≥ 00

And And Q(xQ(x) = E) = EωωQ(xQ(x,,ωω))

Notice that the relationship between x and y(Notice that the relationship between x and y(ωω) ) 
must be described linearlymust be described linearly



Properties of the Expected Properties of the Expected 
Recourse FunctionRecourse Function

What do we know about What do we know about Q(xQ(x)?)?
Q(xQ(x) is convex (whew!)) is convex (whew!)
–– But not if y(But not if y(ωω) must be integer) must be integer--valuedvalued
–– This convexity is critical for solving This convexity is critical for solving SLPsSLPs

If there are a finite number of scenarios, If there are a finite number of scenarios, 
Q(xQ(x) is piece) is piece--wise linearwise linear



Expected Recourse FunctionExpected Recourse Function

The expected recourse function Q(x) is convex and, if 
there are a finite number of scenarios, is also piece-wise 
linear



Min z = cTx+ Eω[min q(ω)Ty(ω)]
s.t.

Ax = b 
T(ω) x + W(ω) y(ω) = h(ω) for all ω
x ≥ 0, y(ω) ≥ 0

““ExtensiveExtensive--FormForm””
TwoTwo--stage stage SLPsSLPs with Recoursewith Recourse

We could solve a 2SLPwR as a (really big) linear We could solve a 2SLPwR as a (really big) linear 
program, called the program, called the extensive formextensive form



Extensive Form of aExtensive Form of a
TwoTwo--stage Stochastic Linear Programstage Stochastic Linear Program

Min      cT x + p1q1
T y1 + p2q2

T y2 + · · · + psqs
T ys

s.t.      Ax                                        = b
T1x   + W1y1 = h1
T2x   +       W2y2 = h2
:       +                  .       = :
:       +                     .    = :
:       +                          .       = :
TKx +                             WKyK = hK
x ≥ 0, y1 ≥ 0, y2 ≥ 0, ……….,yK ≥ 0



““Staircase StructureStaircase Structure””

This This ““dual block angulardual block angular”” or or 
““staircasestaircase”” structure is critical for structure is critical for 
solving stochastic linear programssolving stochastic linear programs



SP Applications SP Applications -- ExamplesExamples
Investment decisions in portfolio planning:Investment decisions in portfolio planning:
–– Portfolio planning Problems must be implemented before Portfolio planning Problems must be implemented before 

stock performance can be observedstock performance can be observed

Power Generation:Power Generation:
–– Utilities must plan power generation before the demand Utilities must plan power generation before the demand 

for electricity is realizedfor electricity is realized

Supply chain management:Supply chain management:
–– Uncertainty in demand and supply data is considered Uncertainty in demand and supply data is considered 

together with capacity limits and service level together with capacity limits and service level 
requirementsrequirements

Telecommunications network planning Telecommunications network planning 



How can I solve TwoHow can I solve Two--Stage Stage 
Stochastic Linear Programs?Stochastic Linear Programs?

1st Stage

Scen 1 Scen 2 Scen K

Two stage SLP 
generally solved by 
decomposition

primal
solution

cuts



How do we solve the simplest How do we solve the simplest 
form of Stochastic Programs?form of Stochastic Programs?

Linear ApproachesLinear Approaches

–– The LThe L--Shaped Method (most common)Shaped Method (most common)
(Single cut & (Single cut & MulticutMulticut version)version)
Numerous computational enhancementsNumerous computational enhancements

–– Inner Linearization Methods (wonInner Linearization Methods (won’’t discuss)t discuss)
–– Basis Factorization Methods (wonBasis Factorization Methods (won’’t discuss)t discuss)



The LThe L--Shaped MethodShaped Method
The most commonly used technique.The most commonly used technique.
Basic idea: To approximate the convex term in the objective Basic idea: To approximate the convex term in the objective 
function.function.
Recourse function involves a solution of all second stage Recourse function involves a solution of all second stage 
recourse linear programs, we want to avoid numerous recourse linear programs, we want to avoid numerous 
function evaluations for it.function evaluations for it.
Therefore, divide the problem into two stage:Therefore, divide the problem into two stage:
–– Master ProblemMaster Problem
–– SubSub--problemsproblems

Converges to the optimal solution in finite steps with adding Converges to the optimal solution in finite steps with adding 
2 new type of  constraints to the master problem called 2 new type of  constraints to the master problem called 
feasibility cuts and optimality cuts.feasibility cuts and optimality cuts.
Feasibility cuts Feasibility cuts –– ensure that the secondensure that the second--stage problems are stage problems are 
feasiblefeasible
Optimality cuts Optimality cuts –– relate the secondrelate the second--stage costs to firststage costs to first--stage stage 
constraintsconstraints



LL--shaped Restricted shaped Restricted 
Master ProblemMaster Problem

Tz c x θ= +
Ax b=

1,........,s=l

0x ≥ θ∈ℜ
1,......,r=lE x eθ+ ≥l l

D x d≥l l

min
s.t

Master problem is as follows:

Feasibility cuts

Optimality cuts



Recourse problem for scenario k 
given first-stage x is as follows:

T
kw q y=

0y≥
k kWy h T x= −

min
s.t

LL--shaped Optimality shaped Optimality 
SubproblemSubproblem

Let π denote the duals. Then El = πTTk

and el = πThk



AlgorithmAlgorithm
At each iteration:At each iteration:

Step 1:Step 1: Solve the master problem Solve the master problem 

Step 2:Step 2: If the solution to the master problem (x*) If the solution to the master problem (x*) 
leads to feasible recourse problems for all leads to feasible recourse problems for all 
scenarios,scenarios,
–– Go to step 3Go to step 3
–– Else add a Else add a FEASIBILITY CUTFEASIBILITY CUT and go to step 1 and solve master and go to step 1 and solve master 

problem again.problem again.

Step 3:Step 3: If the expected value for the optimal values If the expected value for the optimal values 
of the recourse problems (w*) is no greater than of the recourse problems (w*) is no greater than 
ΘΘ obtained in step 1obtained in step 1
–– Stop the current solution is optimal,Stop the current solution is optimal,
–– else add an else add an OPTIMALITY CUTOPTIMALITY CUT and go to step 1 and resolve and go to step 1 and resolve 

master problem.master problem.



Expected Recourse FunctionExpected Recourse Function

The expected recourse function Q(x) is convex and, if there are a finite 
number of scenarios, is also piece-wise linear 
.
L-shaped optimality cuts support Q(x) from below. If there are a finite
number of scenarios, there are a finite number of optimality cuts



MulticutMulticut VersionVersion

Instead of using Instead of using ΘΘ to represent to represent Q(xQ(x), ), 
we use we use ΘΘkk to represent to represent Q(xQ(x,,ωωkk))
We may add as many as K cuts per We may add as many as K cuts per 
iteration, but we get more iteration, but we get more 
informationinformation
In general, In general, multicutmulticut works well if works well if 
there arenthere aren’’t t ““too manytoo many”” scenariosscenarios
For integer first stage, For integer first stage, multicutmulticut is not is not 
competitive with single cutcompetitive with single cut



Stochastic Integer ProgramsStochastic Integer Programs

When recourse problem is an MIP, When recourse problem is an MIP, Q(xQ(x) is (in ) is (in 
general) general) nonnon--convexconvex and discontinuousand discontinuous
The absence of general efficient methods reflects The absence of general efficient methods reflects 
this this 
Some techniques have been proposed that Some techniques have been proposed that 
address specific problems or use a particular address specific problems or use a particular 
propertyproperty
Much work needs to be done to solve Much work needs to be done to solve SIPsSIPs
efficientlyefficiently
No industrialNo industrial--sized problems with integer sized problems with integer 
recourse have been solved thus farrecourse have been solved thus far
The field  is expected to evolve a great deal in The field  is expected to evolve a great deal in 
the futurethe future



How to solve How to solve SIPsSIPs??

A set of valid feasibility cuts and optimality cuts, A set of valid feasibility cuts and optimality cuts, 
which are based on duality theory of linear which are based on duality theory of linear 
programming, is known to exist in the programming, is known to exist in the 
continuous case and forms the basis of the continuous case and forms the basis of the 
classical Lclassical L--shaped methodshaped method

They can also be used in the case where only They can also be used in the case where only 
the firstthe first--stage variables contain some integrality stage variables contain some integrality 
restrictionsrestrictions

The most common method to solve The most common method to solve SIPsSIPs is the is the 
soso--called called Integer LInteger L--Shaped MethodShaped Method
–– General method, but often ineffectiveGeneral method, but often ineffective



Multistage SP with RecourseMultistage SP with Recourse
Involves a sequence of decisions that react to Involves a sequence of decisions that react to 
outcomes that evolve over timeoutcomes that evolve over time

tωwhere        denotes the history up to time t

min 2
1 1 2 2 2[ ( ) ( ) ... [ ( ) ( )]...]N

N N Nz c x E c x E c x
ξ ξ

ω ω ω ω= + + +

s.t. 1 1 1W x h=
1 1 2 2 2 2( ) ( ) ( )T x W x hω ω ω+ =

1 1 1( ) ( ) ( ) ( )N N N N N N NT x W x hω ω ω ω− − − + =
1 0, ( ) 0, 2,...,t tx x t Nω≥ ≥ =

…

The extensive form of an NThe extensive form of an N--stage fixedstage fixed--recourse recourse 
problem:problem:



Scenario 1

Scenario 2

Scenario 3

Scenario 4

Stage 1

Stage 2

Stage 3

x3(ω1)

x3(ω2)

x3(ω3)

x3(ω4)

x2(ω1) = x2(ω2)

x2(ω3) = x2(ω4)

x1(ω1) = x1(ω2) = x1(ω3) = x1(ω4)

Nonanticapitivity
Scenarios 1 and 2 are
indistinguishable in stage
2.

Separable by scenario with
nonanticapitivity constraints
as linking constraints



Solving Solving SPsSPs with with NonanticipativityNonanticipativity

Such a model is decomposable by Such a model is decomposable by 
scenario, where scenario, where nonanticipativitynonanticipativity
constraints are linking constraintsconstraints are linking constraints
LagrangianLagrangian relaxation of linking relaxation of linking 
constraintsconstraints
For reasonably large scenario trees, For reasonably large scenario trees, 
the number of possible the number of possible 
nonanticipativitynonanticipativity constraints is constraints is 
enormous enormous 



Nested BendersNested Benders’’ DecompositionDecomposition

Another method generalizes the LAnother method generalizes the L--
shaped methodshaped method
Candidate solutions are passed from Candidate solutions are passed from 
stage stage tt to stage to stage t+1t+1
LL--shaped cuts (feasibility or shaped cuts (feasibility or 
optimality) are passed from stage optimality) are passed from stage 
t+1t+1 to stage to stage tt



Continuous DistributionsContinuous Distributions

How can stochastic programming How can stochastic programming 
handle continuous distributions?handle continuous distributions?
With a continuous distribution, there With a continuous distribution, there 
are infinitely many scenarios (are infinitely many scenarios (ΣΣ
becomes becomes ∫∫))
The extensive form formulation is The extensive form formulation is 
infiniteinfinite--dimensionaldimensional
However, there are ways to However, there are ways to 
overcome these difficultiesovercome these difficulties



Sample Average Approximation Sample Average Approximation 
(SAA)(SAA)

One approach is to sample from the One approach is to sample from the 
continuous distribution (continuous distribution (ωω11, , ……, , ωωNN))
Assign each scenario probability 1/NAssign each scenario probability 1/N
How big should N be?How big should N be?
–– Use statistical properties to estimate Use statistical properties to estimate 

convergence to optimal solutionconvergence to optimal solution



SAA AdvantagesSAA Advantages

The two key sources of difficulty in The two key sources of difficulty in 
solving stochastic programs:solving stochastic programs:
–– Exact evaluation of the expected Exact evaluation of the expected 

recourse function.recourse function.
–– Optimizing the expected recourse Optimizing the expected recourse 

function over the first stage decisions.function over the first stage decisions.

SAA addresses the above difficulties.SAA addresses the above difficulties.



SAA Main IdeaSAA Main Idea

The main idea of the SAA method is The main idea of the SAA method is 
as follows:as follows:
–– A sample A sample ξξ11 ,,……, , ξξNN of  N realizations of of  N realizations of 

the random vector the random vector ξξ((ωω) is generated.) is generated.
–– Q(xQ(x) is approximated by ) is approximated by 

1

1 ( , )
N

n

n
Q x

N
ξ

=
∑



SAA Main IdeaSAA Main Idea
Sample average approximation problemSample average approximation problem

is then solved by a deterministic optimization is then solved by a deterministic optimization 
algorithm.algorithm.
LetLet ζζN N and and xxNN denote the optimal value and denote the optimal value and 
the optimal solution of the SAA problem, the optimal solution of the SAA problem, 
respectively.respectively.
LetLet ζζ ** and and x* x* denote the optimal value and denote the optimal value and 
the optimal solution of the true problem, the optimal solution of the true problem, 
respectively.respectively.

1

1 ( , )min
N

T n

x X n
c x Q x

N
ξ

∈ =

+ ∑



The crucial issues to addressThe crucial issues to address
–– Whether Whether ζζN N and and xxNN converges to their true converges to their true 

counterparts counterparts ζζ** and and x*.x*.
–– If so, can we analyze the rate of If so, can we analyze the rate of 

convergence?convergence?
–– Can we estimate the required sample size Can we estimate the required sample size 

to obtain a true optimal solution with to obtain a true optimal solution with 
certain confidence?certain confidence?

–– Is there an efficient optimization approach Is there an efficient optimization approach 
for solving the SAA problem for the for solving the SAA problem for the 
required sample size?required sample size?

–– Can we take advantage of Can we take advantage of variance variance 
reduction techniques?reduction techniques? (e.g. (e.g. Antithetic Variables, Antithetic Variables, 
Stratified Sampling, Conditional Sampling, etcStratified Sampling, Conditional Sampling, etc…… ))



SAA ResultsSAA Results
A solution to the SAA problem converges to A solution to the SAA problem converges to 
a solution of the true problem as N a solution of the true problem as N ∞∞. . 
(Schultz, 1996).(Schultz, 1996).

For For SLPsSLPs with discrete distributions, an with discrete distributions, an 
optimal solution of the SAA problem optimal solution of the SAA problem 
provides an exact optimal solution of the provides an exact optimal solution of the 
true problem with probability approaching true problem with probability approaching 
one exponentially fast as one exponentially fast as NN increases. increases. 
(Shapiro and Homem(Shapiro and Homem--dede--Mello, 98)Mello, 98)



SAA Results SAA Results cntdcntd……
KleywegtKleywegt et al.(2001) extended the et al.(2001) extended the 
convergence of the SAA approach to convergence of the SAA approach to SPsSPs
where the set of firstwhere the set of first--stage decisions is stage decisions is 
finite.finite.

Ahmed and Shapiro (2002) extended Ahmed and Shapiro (2002) extended 
these results to twothese results to two--stage stochastic stage stochastic 
programs with integer recourse where the programs with integer recourse where the 
space of feasible firstspace of feasible first--stage decisions is stage decisions is 
infinite. infinite. 



SAA Algorithm DesignSAA Algorithm Design
Selection Of the Sample Size Selection Of the Sample Size NN
–– Theoretical bounds exist on the sample size Theoretical bounds exist on the sample size 

required to find anrequired to find an ε-optimaloptimal solution with solution with 
probability at leastprobability at least 1−α.

–– They are usually hard to compute and far too They are usually hard to compute and far too 
conservative to obtain a practical estimate.conservative to obtain a practical estimate.

–– The choice of sample size The choice of sample size NN may be adjusted may be adjusted 
dynamically, depending on the results of dynamically, depending on the results of 
preliminary computations.preliminary computations.

–– The tradeThe trade--off between the quality of an off between the quality of an 
optimal solution of the SAA problem, and the optimal solution of the SAA problem, and the 
bounds on the optimality gap on the one hand, bounds on the optimality gap on the one hand, 
and computational effort on the other hand, and computational effort on the other hand, 
should be taken into account.should be taken into account.



1. Initialization
Choose initial sample size N
Set a decision rule for determining the number M of SAA iterations.
Set iteration counter t = 0

4. Terminate
Choose the best solution among all 

candidate solutions and STOP

2.3. The optimality gap and the 
variance of the gap

estimator are sufficiently small.

2.1. Generate sample size N and 
solve the SAA problem.

2.2. Estimate the optimality gap,
and the variance of the gap 
estimator.

3. Increase the sample size N
Reset counter t = 0

t<M

NO

NO YES

YES



Using Sampling in theUsing Sampling in the
LL--Shaped AlgorithmShaped Algorithm

Importance samplingImportance sampling
–– To reduce variance in deriving each cut To reduce variance in deriving each cut 

based on a large samplebased on a large sample

Stochastic decompositionStochastic decomposition
–– Uses a single sample stream to derive Uses a single sample stream to derive 

many cuts that eventually phase out as many cuts that eventually phase out as 
iteration numbers increaseiteration numbers increase



Importance SamplingImportance Sampling

Importance samplingImportance sampling
–– Techniques to reduce the varianceTechniques to reduce the variance

DantzigDantzig and Glynn (1990), and Glynn (1990), InfangerInfanger
(1992)(1992)
–– Sample Q in the LSample Q in the L--shaped method shaped method 

instead of actually computing itinstead of actually computing it
–– Importance sampling can be used to Importance sampling can be used to 

achieve converging resultsachieve converging results



Importance SamplingImportance Sampling
is an expectation of random variables     is an expectation of random variables     

..
Estimate        instead of actually Estimate        instead of actually 
computing it:computing it:
–– n independent random vectors:    n independent random vectors:    
–– Crude Monte Carlo SamplingCrude Monte Carlo Sampling

–– Importance SamplingImportance Sampling

( )Q x
ξ( , )Q x

ξ
=

= ∑
1

1( ) ( , )
n

i

i
Q x Q x

n

ξ ξ ξ1 2, ,..., n

ξ ξ
ξ=

= ∑
1

1 ( , ) ( )( )
( )

i in

i
i

Q x pQ x
n q

Probability of 
observing ξ i

A probability mass 
function introduced 
to reduce the 
variance

( )Q x



Importance SamplingImportance Sampling

Variance ofVariance of

–– Choosing a good probability mass function q Choosing a good probability mass function q 
help to reduce the variance!help to reduce the variance!

By using importance sampling within the By using importance sampling within the 
LL--shaped algorithm, we calculate shaped algorithm, we calculate 
estimates for the coefficients and RHS estimates for the coefficients and RHS 
values of the cuts.values of the cuts.

( )Q x

ξ ξ ξ
ξ=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑

2

1

1 ( , ) ( )var( ( )) ( ) ( )
( )

i in
i

i
i

Q x pQ x Q x q
n q



Stochastic DecompositionStochastic Decomposition

Works for 2SLP with complete Works for 2SLP with complete 
recourse (recourse (HigleHigle & & SenSen))
Sample to create cuts on each Sample to create cuts on each 
iteration of the Literation of the L--shaped algorithmshaped algorithm
These cuts fall off (are given less These cuts fall off (are given less 
weight) as the algorithm progressesweight) as the algorithm progresses



Stochastic DecompositionStochastic Decomposition

Step 1. Set                and let    solveStep 1. Set                and let    solve

Step 2. LetStep 2. Let andand be an be an 
independent  sample  generated independent  sample  generated 
from   . from   . 
FindFind

Let    Let    and and 

ξ ξ= =00,v 1x

ξ
= ≥

+ 0

, 0
min { ( , )}.T

Ax b x
c x Q x

= +1v v ξ v

ξ
ξ π ξ

= =

= = −∑ ∑
1 1

1 1( ) ( , ) ( ) ( )
v v

v v v s v T s v
s

s s
Q x Q x Tx

v v

π
=

= ∑
1

1 ( )
v

v T
v s

s
E T

v
π ξ

=

= ∑
1

1 ( )
v

v T s
v s

s
e

v



Stochastic DecompositionStochastic Decomposition

Step 3. Update all previous cuts byStep 3. Update all previous cuts by
andand for for 

Step 4. After adding a new cut by Step 4. After adding a new cut by 
Step 2 and updating the existing Step 2 and updating the existing 
ones with Step 3, solve the updated ones with Step 3, solve the updated 
LL--shaped master problem to obtain shaped master problem to obtain 
and go to Step 2. and go to Step 2. 

−
←

1
s s

vE E
v

−
←

1
s s

ve e
v

= −1,..., 1.s v

+1vx



Convergence and ExtensionsConvergence and Extensions

HigleHigle and and SenSen have shown that have shown that 
stochastic decomposition can stochastic decomposition can 
converge under certain conditionsconverge under certain conditions
In the last ten years In the last ten years SenSen has has 
extended this and other ideas to extended this and other ideas to 
stochastic integer programsstochastic integer programs



Scenario ReductionScenario Reduction

Number of scenariosNumber of scenarios is a key is a key 
parameter determining the parameter determining the 
computational effort for solving computational effort for solving 
stochastic optimization models.stochastic optimization models.
Main Idea:Main Idea: ScenarioScenario--based based 
approximations of the random data approximations of the random data 
process.process.
Small number of scenarios represent Small number of scenarios represent 
reasonably well approximations.reasonably well approximations.



Optimal Scenario ReductionOptimal Scenario Reduction
For a stochastic program given by a probability For a stochastic program given by a probability 
distribution P with finitely many scenarios and distribution P with finitely many scenarios and 
their probabilities, their probabilities, the optimal scenario the optimal scenario 
reductionreduction consists of:consists of:

–– determining a scenario subset (of prescribed cardinality determining a scenario subset (of prescribed cardinality 
or accuracy) and or accuracy) and 

–– assign new probabilities to the preserved scenarios such assign new probabilities to the preserved scenarios such 
that that 

–– the corresponding reduced probability measure Q is the the corresponding reduced probability measure Q is the 
closest to the original measure P in terms of a certain closest to the original measure P in terms of a certain 
probability distance between P and Q. probability distance between P and Q. 



Scenario Reduction ResultsScenario Reduction Results

Optimal Scenario Reduction problem Optimal Scenario Reduction problem 
is NPis NP--Hard.Hard.

HeitschHeitsch and and RRöömischmisch,, 20032003 andand
DupaDupaččovováá et al., 2003et al., 2003 developed developed 
forward and backward type forward and backward type 
algorithms for approximately  algorithms for approximately  
computing reduced probability computing reduced probability 
measures.measures.



ConclusionsConclusions
Stochastic programming is an Stochastic programming is an 
emerging field that extends classical emerging field that extends classical 
optimization to stochastic and optimization to stochastic and 
dynamic settingsdynamic settings
SP has significant potential in EWOSP has significant potential in EWO
Stochastic programs are difficult to Stochastic programs are difficult to 
solve, so modeling becomes solve, so modeling becomes 
challengingchallenging
Despite their inherent difficulty, Despite their inherent difficulty, 
industrialindustrial--sized stochastic programs sized stochastic programs 
can now be solvedcan now be solved


