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Deterministic Optimization

¢ wo broad categories of optimization
models:

1)Deterministic models
¢ Parameters/datal are knewn with
+» Can be, theught as a speciall case off stochastic models

¢ FouIr main sub-categories:
= [linear Programs
— Nonlinearr Programs
= IRteger Prograimis
= DVRamicl Progiams

2)Stochastic models
¢ Paraimetersy/ datal arernot KReWRNWIEhHECERtaIRLY,




What Is Stochastic Programming
(SP)?

- A Stochastic Program is a mathematical program in
which some of the parameters defining a problem
Instance are random

* A stochastic linear program (SLP) is the simplest case
of stochastic program

Common Assumptions in SP:
* The probability distribution for the uncertainty is known

and independent of the decisions (exceptions, e.g. Goel
and Grossmann)

* The stages interact linearly




Formulating Stochastic Programs

The sequence of events and decisions in a two-stage SLP with
recourse (2SLPwR):

X —> Realizationof ® 2> y(w)

*First-stage decisions (x) are taken before the uncertainty w is
realized (known)

*Second-stage decisions (y(w)) are taken as corrective actions
after the actual value of w becomes known

Standard Objective: minimize first-stage cost plus expected
second-stage costs




Formulating Stochastic Programs

e Familiar Linear Program (LP):

min cTx
s.t. Ax = b,
x=20

« 2SLPwR

min c’ x + Q(x)
s.t. Ax=Db
x=0
where Q(x), the expected recourse function, gives the expected
cost of the optimal second-stage decision given first-stage
decision X




What can be random?

¢ In the second stage, the objective, constraints and
right-hand sides are permitted to be random. Also,
the matrix describing the relationship between X
and V.

¢ For scenario m:
— Qbjectives alw)
— Right-Ranarsides nw)
— @onstraint (recourse) matrixs WWilw)
=V atrExarelating X oA (LECHINBI OGN aid X))




Expected Recourse Function

»How do we define Q(x)?

o For any scenario w, Define Q(x,w) by
Qx,w) = min g(w)y(w)
s.t. W(w)v(w) = h(o) — T(w)x
Vitay)r= 0

AndlQ(3) = E,Q(4w)

Netice that the relationshiprBEtWEER X and V{®)
mlist De deserivedineary,




Properties of the Expected
Recourse Function

o What do we know' about Q(x)?

o Q%) Is convex (whew!)

— But not I y(®) must be; integer-valued
— This convexity!is critical for'solvingl SLPs

¢ If there are a finite NUMDEr Of SCENArIos,
Q%) s piece-wise lineal




Expected Recourse Function

The expected recourse function Q(x) is convex and, if
there are a finite number of scenarios, is also piece-wise
linear




“Extensive-Form”
Two-stage SLPs with Recourse

¢ We could solve a 2SLLPwR as a (really big) linear
program,, called the extensive rorm

Min z = c™x+ E_[min q(w)"y(w)]
S.t.
AxXx =D
T(w) x + W(w) y(w) = h(w) for all w
x20,y(w)=0




Extensive Form of a
Two-stage Stochastic Linear Program

Min CTX+PQiT Yy +Po0s" Yo+ -+ P’ Vs




“Staircase Structure”

¢ [his “dual block angular® or
“stailrcase” structure is critical for
selving| stochastic linear programs




SP Applications - Examples

¢ Investment decisions in portfolio planning:

— Portfolio planning Problems must be implemented before
stock perfiormance can be observed

¢ Power Generation:

— Utilities must plan pewer generation befiore the demand
for electricity is realized

o SUpply chiain Manadement:

— Uncertainty inrdemanalanal stpply: dataris Considerea
tegetherwithr capacity limitstandl service level
Feduirements

¥ llelecommunications NEtWOrK planning




How can | solve Two-Stage
Stochastic Linear Programs?

: Two stage SLP
EZ,'.TEL,, generally solved by
decomposition
cuts/




How do we solve the simplest
form of Stochastic Programs?

¢ Linear Approaches

— Jihe L-Shaped Method! (most common)
¢ (Single; cut & Multicut version)
¢ Numerous computationall EnNancCEMENTES

— Inner Cinearization Metheads (Woen't discuss)
— [3aS]S Factoerization Metheds (Wen't discuss)




The L-Shaped Method

The most commonly used technique.

Basic idea: To approximate the convex term in the objective
function.

Recourse function involves al solution of all second stage
FECoUrse linear' programs, We want tor aveld numerous
fUnction evaluations for It.

fherefore, divide the problem inte two: stage;:
— Master Problem
— Sub-problems

Converges te the optimal solution In finite steps; with adding
2, NEW! tYPE] OF  constraints to) the master problem: called
ieasibilitys cUtsfancreptimalitys CUts:

Feasibility, Cuts — Ensure that the Second-stade prowlems) are
ieasislie

@ptimality, cuts — relate; the Seconad-stade costs to)first-stage
CONStralnts




L-shaped Restricted
Master Problem

Master problem is as follows:
min  z=c'x+8
st Ax=Db
D,x>d, (=l,.....,5 — Feasibility cuts

EXx+0>€, ¢=1...r — Optimality cuts
x>0 0N




|-shaped Optimality
Subproblem

Recourse problem for scenario k
given first-stage x is as follows:

min W:qkTy
s.t Wy=h -T,x
y>0

Let m denote the duals. Then E, = w'T,

and e = 1Th,




Algorithm

At each iteration:
Step 1: Solve the master problem

Step 2: Iff the solution to the master problem (x*)

leads to feasible recoulrse problems for all
SCENAarios,

— (GO Lo step 3
— Elseradd a FEASIBILITY: CUT and go) te stepr 1 anadl selve master
pProblemragain:

Step 3 Iff the expected value for the optimall valles
Off thel recourrse; problems (W)L s Ne; greater thian
6 ebtained in step: 1
— Stop thercurrentt selution istoptimeal;

— gjse add an OPMALIHNAGCUIF aneigortorstep i anairesplve
MaSter prowlem




Expected Recourse Function

The expected recourse function Q(x) is convex and, if there are a finite
number of scenarios, is also piece-wise linear

'L-shaped optimality cuts support Q(x) from below. If there are a finite
number of scenarios, there are a finite number of optimality cuts




Multicut Version

¢ Instead of using © to represent Q(Xx),
WE use B to represent Q(x,wx)

¢ \We may add as many: as K cuts per
teration), but We get more
INFOrMAation

% Il general, multictic Woriks Well i
CRERE; et = toor many: SCERAIoSs

¢ FOr Integer kst stage, multicCUE IS not
cCompEtitiverwithrsinglercul:




Stochastic Integer Programs

o When recourse problem is an MIP, Q(x) is (in
general) and discontinuous

< T#e apbsence of general efficient methods' reflects
this
¢ Some technigues have been proposed that

address) Specific problems or Use a particular
PROPERLY

¢ Much work needs to be done; te solve: SIPSs
efiiciently,

¢ NornmaustrialFsized proplems with IRnteger
FECOUISE have been solved thus fiar

¢ [IhE field ISfeExpECted te eVvolve a great deal in
the future




How to solve SIPs?

¢ A set of valid feasibility cuts and optimality cuts,
which are based on duality theory of linear
programming, Is knewn tor exist in the
continuous case and fierms the basis of the
classical I--shaped method

¢ hey can alse be uUsed in the case Where only.

the first-stage Variaples contain seme Integrality
FESLHICHIGNS

¢ e most common methodl tor solve SIPS s the
Se-calledhinteger t=Slicped Y etod.

— GeEneralimethod) DUt often InEfMfective




Multistage SP with Recourse

¢ Involves a sequence of decisions that react to
outcomes that evolve over time

¢ [he extensive form of an N-stage fixed-recourse
problem:

min z=c'x + E,. [ (@)X (@) +...+ E.. [c" (0)x" (@")]...]
s.t. W !ix!' = h!
TH@)X' +W2X2(0?) = h* (@)

TN—I(a))XN—l(a)N—l)+W NXN (a)N): hN(a))
X' >0,x(@0')=20,t=2,...,N

where o' denotes the history up to time ¢




Nonanticapitivity

Scenarios 1 and 2 are

indistinguishable in stage Scenario 1
2. x3(w1)
Stage 2

Scenario 2

x3(w?)

Scenario 3

x3(w?)

X*(W?) = x*(w?)

Separable by scenario with
nonanticapitivity constraints
as linking constraints x3(w*)

Scenario 4




Solving SPs with Nonanticipativity

¢ Suchi a model is decomposable by
scenario, where nonanticipativity.
constraints are linking constraints

¢ Lagrangian relaxation off linking
CoORStraints

¢ [FOr rEasenably, Iarge SCENaKo; trees,
Che RUMIPEr off Ppessible
RORERECIPAIVIEY CORSHAINESHIS
ENORMOLS




Nested Benders' Decomposition

¢ Another method generalizes the LL-
shaped method

¢ Candidate solutions are passed from
Stade t te stage t+1

¢ [.-shiaped cuts (Tfeasipility: or
eptimality)r are passedi firom: stage
eI LOrStad et




Continuous Distributions

¢ How can| stochastic programming
handle continuous distributions?

o With a continuous distribution, there
arré infinitely, many: Scenarios (%
becomes, )

¢ lIhe extensive form formulation: IS
infinite-dimensional

¥ [HOWEVEL, thEre arerWay/sito
OVErCOME! thEeSE diiculities




Sample Average Approximation
(SAA)
¢ One approach is to sample from the
continuous distribution (w#, ..., W)
¢ Assign| each scenario probability: 1/N

¢ IHow: big should N be?

— Usse statistical properties te estimate
CONVErgence; to optimal selutien




SAA Advantages

¢ The two key sources off difficulty in
selving stechastic programs:

— Exact evaluation of the expected
FECOUIFSE funCction.

— Optimizing the expected recourse
FURCtIon; GVEr the first stage decisions,

¢ SAA addresses the above difficulties.




SAA Main Idea

¢ [he main idea of the SAA method is
as follows:

— A sample ¢t ..., €N of N realizations of
the random Vector ¢(w) Isigenerated.

— Q) IS approximated by,




SAA Main Idea

¢ Sample average approximation problem

min
xe X n=1

IS then solved by a deterministic optimization
algorithm.

¢ et @' and X denote the optimal value and
the eptimal splution off the SAA problen),
fESPECtIVEIV.

¢ [Let ¢ = andl X denete theroptimaltvalue and
the eptimalr selttion i the truerproblien,
FESPECEIVEIN.




The crucial iIssues to address

— Whether ¢ and x" converges to their true
counterparts ¢ and x=.

— [ff s, can we, analyze the rate; of:
CONVErgence?

— Can we estimate; the required sample size
te ebtain a true; optimal selutien with
CErtaln CoNfideENCe?

— IS thEre an EffiCIEnt optimIZation appreaCH
for selvingl the, SAA: problem) fier the
required  sampler size?

= @anrWe takeradVvanitager eiVariance

FEG UGB tECIHIFIGUES 2.6, Antithetic Variables,
Stratified Sampling, ConditionalfSampling, etc....)




SAA Results

# A solution to the SAA problem converges to

a solution of the true problem as N =»oo.
(Schultz, 1996).

¢ For SILPs withr discrete distributions, an
optimal selution oF the SAA problem
PreVides: anl exact optimal selution off the
true problemwith preability, appreaching
ene exponentialiv ast ast /N IRCreEasEsS.
(Shapirerandriiemem-ae-Melle,96)




SAA Results cntd...

¢ Kleywegt et al.(2001) extended the
convergence off the SAA approach to SPs
where the set of first-stage decisions is
finite.

» Ahmed! and Shapire (2002) extendead
these results ter tWe-stage stochiastic
pPreograms Withr IntEgEr rEecolrse WhErRe the
SpPaCe Of fieasipvle first-stage decisions: IS
IRGIRIGES




SAA Algorithm Design

& Selection Of the Sample Size N

— TTheoretical bounds exist on the sample size
required to find an e-optimal solution with
probability at least 1—a.

— [fhey are usually: hard te compute and far too
conservative to obtain a practical estimate.

— Ihe choelce off sample size N may: be adjustea
dynamically;, depending on the results off
preliminary, computations.

— e trade-ofif between: the quality o an
optimal selution: of the SAA problem, and the
pPEUNAS e the eptimality gapron the ene hanad,
and compltationaltefifert onrthe otherhand,
shoularve taken inte: accoUnL.




1. Initialization

Choose initial sample size N
Set a decision rule for determining the number M of SAA iterations.

Set iteration counter t = 0

\ 4

2.1. Generate sample size N and
solve the SAA problem.

\ 4

3. Increase the sample size N 2t ESEATEIEE thg optimality gap,
= and the variance of the gap
Reset countert = 0 :
estimator.

4

2.3. The optimality gap and the
variance of the gap
estimator are sufficiently small

4. Terminate

Choose the best solution among all
candidate solutions and STOP




Using Sampling in the
L-Shaped Algorithm

¢ Importance sampling

— [0o reduce variance in deriving each cut
Pased on a large sample

¢ Stochastic decompesition

—Uses| a single; sample stream) tor derive
MRy, CUtS that eventtally: phase ot as
tEration AUMILESS INCrEase




Importance Sampling

¢ Importance sampling
— [echnigues to reduce the variance

¢ Dantzig and Glyan (1990), Infanger
(1992)

—Sample @ inrthe -shapeadmethod
Instead ol actUally cComputing it

— [mpoKrtancersamplingr can be Useadrto
aChIEVEe ConVErgIng resulits




Importance Sampling

¢ Q(x)Is an expectation of random variables

Q(x,<) -

¢ Estimate Q(x) instead of actually.
computing It:
— niindependent random vectors: &', &°,..., &"
— Crude Monte Carle Sampling

- 10 I.
Q(X)=—ZQ(X,§ )
- Importance Sampllng EBZZ?\E’;E;yg

A probability mass
function introduced

" to reduce the
variance




Importance Sampling

o Variance of Q(x)

var(é<x>>=1i[Q(X’ e Jp(¢ ) —Q(x)] A

i—1 q(&')
— Cheesingl ar good propability, massi fitRctien g
nelp te reduce the variancel
¢ BV USing lmpertance sampling wWithin the
[E=shiaped algoexrithmi We calcuiate
estimates for the coefficients and RIHS
Valles off thie' cuts,




Stochastic Decomposition

¢ Works for 2SLP with complete
recourse (Higle & Sen)

¢ Sample; to create cuts omn each
teration; off the L-shaped algorithm

¢ [hese cuts fall ofif (are given less
WEIgNt) as! the algorithm’ pProgresses




Stochastic Decomposition

o Step 1. Setv=0,£° =& and let x' solve
mln {C X +Q(x,&°)).

Ax=b, x

o Step 2. Let v=v+1 and &£“ be an
INdEPENCdEnt  Ssample’ generated
Femi & .

"4




Stochastic Decomposition

¢ Step 3. Update all previous cuts by
E. < V_1ES and e, < V;1es for
"4

s=1....v-1.

o Step 4. Alter addingl ar new: cut by,
Stepr 2 andupaating) the existing
@NESI WIth Stepr 3i, solve: the updated
[-sheped master problem terebtain X
aNd ger ter SteEpr 2.




Convergence and Extensions

¢ Higle and Sen have shown that
stochastic decomposition can
COoNVerge under certain conditions

¢ In the last ten years Sem has
extended thisfand ether ideas to
stechastic InteEger programs




Scenario Reduction

¢+ Number of scenarios is a key
parameter determining the
computationall effort fior selving
stochastic optimization moedels.

o Main Idea: Scenario-based
approximations: off the randem: data
PIFOCESS.

o Simall AUMPEr O SCENAIIOS FEPRESERL:
reasenaply: Well approximations:




Optimal Scenario Reduction

¢ For a stochastic program given by a probability
distribution P with finitely many scenarios and
their probabilities, the optimal scenario
reduction consists of:

— determining a scenario subset (of prescribed cardinality.
Of acculiFacy.) and

— assign new: probapilities te) the preserVvead SCeENarios, SUch
thal

— the corresponding reduced probability, measuke @ s the
closest to) the eriginal meastire: Phn teErms) Of al Certaln
prewability, distance; between! P and @




Scenario Reduction Results

¢ Optimal Scenario Reduction problem
Is NP-Hard.

¢ Heitsch and Romisch, 2003 and

Dupacova et al., 2003 developed
forWardrandidackwWarrd ty/pe
algoRtRIMSH oK approXimately
cOompUting reducear propalsliity
MESSURES)




Conclusions

¢ Stochastic programming is an
emerging field that extends classical
optimization te stochastic and
dynamic settings

» SP as significant potential in EWO

¢ Stochastic programs are difficult to
selve, s modelingl DECOMES
challenging

¢ [DEespite thelr Iherent difffictity,
INGAUSERIBIESIZEGNSEeENaSHE PreEiFams
Ca MeWIE SEIVED




