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DERIVATIVE-FREE 
OPTIMIZATION

• Optimization of a function for which
– derivative information is not symbolically available
– derivative information is not numerically computable

• Talk outline
– Motivation
– Review of algorithms and software
– Application to protein-ligand binding
– Two new algorithms
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MODEL CALIBRATION 
(Maguthan and Shoemaker, 2005)
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APPLICATIONS

• Parameter estimation over differential 
equations

• Optimal control problems
• Simulation-based optimization

– Objective computation may involve sampling

• Automatic calibration of optimization 
algorithms

• Experimental design/optimization
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TIMELINE OF INNOVATION
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MOST CITED WORKS
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DERIVATIVE-FREE 
OPTIMIZATION ALGORITHMS

• LOCAL SEARCH METHODS
– Direct local search

» Nelder-Mead simplex 
algorithm

» Generalized pattern 
search and generating 
search set

– Based on surrogate 
models

» Trust-region methods
» Implicit filtering

• GLOBAL SEARCH METHODS
– Deterministic global search

» Lipschitzian-based partitioning 
» Multilevel coordinate search

– Stochastic global optimization
» Hit-and-run
» Simulated annealing
» Genetic algorithms
» Particle swarm

– Based on surrogate models
» Response surface methods
» Surrogate management 

framework
» Branch-and-fit
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PATTERN SEARCH ALGORITHMS
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DIRECT ALGORITHM
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BIG partitions and/or LOW function values are preferable
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ALGORITHMIC COMPONENTS

• Random elements
– Deterministic vs. stochastic

• Set of points considered in each iteration
– None; One; Many

• Partitioning
– Without: local optimality

» Torczon (1991)
– With: global optimality, provided search is “dense”
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DERIVATIVE-FREE 
OPTIMIZATION SOFTWARE

LOCAL SEARCH
FMINSEARCH (Nelder-Mead)
DAKOTA PATTERN (PPS)
HOPSPACK (PPS)
SID-PSM (Simplex gradient PPS)
NOMAD  (MADS)
DFO  
(Trust region, quadratic model)
IMFIL (Implicit Filtering)
BOBYQA 
(Trust region, quadratic model)
NEWUOA 
(Trust region, quadratic model)

GLOBAL SEARCH
DAKOTA SOLIS-WETS (Direct)
DAKOTA DIRECT (DIRECT)
TOMLAB GLBSOLVE (DIRECT)
TOMLAB GLCSOLVE (DIRECT)
MCS (Multilevel coordinate search)
TOMLAB EGO (RSM using Kriging)
TOMLAB RBF (RSM using RBF)
SNOBFIT (Branch and Fit)
TOMLAB LGO (LGO algorithm)

STOCHASTIC
ASA  (Simulated annealing)
CMA-ES (Evolutionary algorithm)
DAKOTA  EA (Evolutionary 
algorithm)
GLOBAL (Clustering - Multistart)
PSWARM (Particle swarm)
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SOLVERS CONSIDERED
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SEARCH PROGRESS
FOR camel6
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SEARCH PROGRESS
FOR camel6—Continued 
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TEST PROBLEMS
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TEST PROBLEM 
CHARACTERISTICS

Over 500 problems
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• For all solvers
– Default settings / non-intrusive interface
– Same bounds; only if required by solver; mostly [-10000, 10000]
– Same starting points
– Limit of 2500 iterations and 600 CPU seconds

• BARON and LINDOGlobal used to find global solutions 
for all problems

• Absolute Tolerance of 0.01 or Relative Tolerance of 1% 
used for solver comparisons

• Average-case comparisons based on median objective 
function value of 10 runs from randomly generated 
starting points

– But DAKOTA/DIRECT, MCS, TOMLAB/CLUSTER

EXPERIMENTAL SETUP
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QUESTIONS ADDRESSED

• What is the quality of solutions obtained by 
current solvers for a given limit on the 
number of allowable function evaluations?

• Does quality drop significantly as problem 
size increases?

• Which solver is more likely to obtain global or 
near-global solutions for nonconvex 
problems?

• Is there a subset of existing solvers that 
would suffice to solve a large fraction of 
problems?
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FRACTION OF PROBLEMS SOLVED: 
CONVEX SMOOTH
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FRACTION OF PROBLEMS SOLVED: 
CONVEX NONSMOOTH
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FRACTION OF PROBLEMS SOLVED: 
NONCONVEX SMOOTH
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FRACTION OF PROBLEMS SOLVED: 
NONCONVEX NONSMOOTH
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FRACTION OF PROBLEMS 
SOLVER WAS BEST: 

CONVEX SMOOTH
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FRACTION OF PROBLEMS 
SOLVER WAS BEST:

CONVEX NONSMOOTH
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FRACTION OF PROBLEMS 
SOLVER WAS BEST: 

NONCONVEX SMOOTH
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FRACTION OF PROBLEMS 
SOLVER WAS BEST: 

NONCONVEX NONSMOOTH
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FRACTION OF PROBLEMS SOLVED: 
1 TO 2 VARIABLES
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FRACTION OF PROBLEMS SOLVED: 
3 TO 9 VARIABLES



30

FRACTION OF PROBLEMS SOLVED: 
10 TO 30 VARIABLES
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FRACTION OF PROBLEMS SOLVED: 
31 TO 300 VARIABLES
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STARTING POINT IMPROVEMENT

• For a given τ between 0 and 1, and a given 
starting point x0, a solver improves the 
starting point if

where fL is the best possible solution for the 
problem

• Problem considered solved if one or more 
runs satisfied this requirement
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FRACTION OF PROBLEMS IMPROVED:
CONVEX SMOOTH
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FRACTION OF PROBLEMS IMPROVED:
CONVEX NONSMOOTH
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FRACTION OF PROBLEMS IMPROVED:
NONCONVEX SMOOTH
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FRACTION OF PROBLEMS IMPROVED:
NONCONVEX NONSMOOTH
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1 to 2
variables

3 to 9
variables

10 to 30
variables

31 to 300
variables

FRACTION OF PROBLEMS SOLVED:
MULTISTART STRATEGY
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MINIMUM SET OF SOLVERS
CONVEX SMOOTH PROBLEMS
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MINIMUM SET OF SOLVERS
CONVEX NONSMOOTH PROBLEMS
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MINIMUM SET OF SOLVERS
NONCONVEX SMOOTH PROBLEMS
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MINIMUM SET OF SOLVERS
NONCONVEX NONSMOOTH PROBLEMS
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MINIMUM SET OF SOLVERS
ALL PROBLEMS
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REFINEMENT ABILITY

• Solvers were started from an starting point 
close to a global minimum of the problem

• A range of 0.2 for each variable was used 
(unless problem bounds were tighter)
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FRACTION OF LOCAL PROBLEMS 
SOLVED: ALL PROBLEMS
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MODEL-AND-SEARCH 
LOCAL ALGORITHM

Collect points 
around current 
iterate

Scale and shift 
origin to current 
iterate

Add points: n 
linearly 
independent points

Check for positive 
basis. Add points if 
necessary

Build and optimize 
interpolating 
model

Evaluate points in 
specific order
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BRANCH-AND-MODEL 
GLOBAL ALGORITHM

Partition the space 
as a collection H of 
hypercubes

Reduce H to 
potentially optimal 
set O

For hypercubes in 
O,  FIT models

Sort O by size of 
hypercubes.
Evaluate n2 points

Sort O by 
predicted optimal 
values. Evaluate n1
points

Optimize models in 
O
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PROTEIN-LIGAND DOCKING

• Identify binding site and pose
• Conformation must minimize binding free 

energy
• Docking packages

– AutoDock, Gold, FlexX …
– Most rely on genetic and other stochastic search algorithms
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BINDING ENERGIES

B&M outperformed AutoDock in 11 out of 12 cases, 
and found the best solution amongst all solvers for 3 complexes
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CONCLUSIONS

• MCS, LGO, and NEWOA/BOBYQA stand out
• Stochastic solvers do not perform as well as 

deterministic ones
– CMA-ES and PSWARM are occasionally competitive

• Many opportunities
– New algorithms needed
– Applications abound

• Readings
– Rios and Sahinidis (2010)
– Conn, Scheinberg and Vicente (2009)


