DERIVATIVE-FREE OPTIMIZATION Algorithms, software and applications

Nick Sahinidis

National Energy Technology Laboratory Department of Chemical Engineering Carnegie Mellon University sahinidis@cmu.edu

Acknowledgments:

Luis Miguel Rios NIH and DOE/NETL

DERIVATIVE-FREE OPTIMIZATION

- Optimization of a function for which
 - derivative information is not symbolically available
 - derivative information is not numerically computable

• Talk outline

- Motivation
- Review of algorithms and software
- Application to protein-ligand binding
- Two new algorithms

MODEL CALIBRATION

(Maguthan and Shoemaker, 2005)

APPLICATIONS

- Parameter estimation over differential equations
- Optimal control problems
- Simulation-based optimization
 - Objective computation may involve sampling
- Automatic calibration of optimization algorithms
- Experimental design/optimization

TIMELINE OF INNOVATION

1960	
1970	 1961 Hooke and Jeeves algorithm is proposed 1962 First simplex-based optimization algorithm 1965 Nelder-Mead simplex algorithm is proposed 1969 First use of trust-region quadratic-based models
1980	1973 First published monograph 1975 Genetic algorithms are proposed 1979 Hit-and-run algorithms are proposed
1990	1983 First use of simulated annealing in optimization 1989 DACE stochastic model is proposed
2000	 1991 Convergence of multi-directional search algorithm is shown 1993 Ideas from Lipschitzian optimization introduced 1994 Geometry considerations for points in trust-region methods 1995 Implicit filtering and particle swarm algorithms proposed 1997 DACE surrogate model introduced 1998 First use of radial basis functions in surrogate models 1999 Introduction of multilevel coordinate search
2000	 2002 First use of augmented Lagrangian in pattern search methods 2003 Generating set nomenclature introduced 2004 Incorporation of filters and simplex derivatives in pattern search 2009 First textbook

MOST CITED WORKS

Publication	Year appeared	$\operatorname{Citations}^{1}$
Hooke and Jeeves [59]	1961	1567
Nelder and Mead [92]	1965	9101
Holland [53]	1975	22277
Kirkpatrick et al. [72]	1983	16109
Eberhart and Kennedy [39, 71]	1995	10099

1. From Google Scholar on 16 December 2009.

DERIVATIVE-FREE OPTIMIZATION ALGORITHMS

- LOCAL SEARCH METHODS
 GLOBAL SEA
 - Direct local search
 - » Nelder-Mead simplex algorithm
 - » Generalized pattern search and generating search set
 - Based on surrogate models
 - » Trust-region methods
 - » Implicit filtering

GLOBAL SEARCH METHODS

- Deterministic global search
 - » Lipschitzian-based partitioning
 - » Multilevel coordinate search
- Stochastic global optimization
 - » Hit-and-run
 - » Simulated annealing
 - » Genetic algorithms
 - » Particle swarm
- Based on surrogate models
 - » Response surface methods
 - » Surrogate management framework
 - » Branch-and-fit

PATTERN SEARCH ALGORITHMS

DIRECT ALGORITHM

ALGORITHMIC COMPONENTS

Random elements

- Deterministic vs. stochastic

• Set of points considered in each iteration

- None; One; Many

• Partitioning

- Without: local optimality
 - » Torczon (1991)
- With: global optimality, provided search is "dense"

DERIVATIVE-FREE OPTIMIZATION SOFTWARE

LOCAL SEARCH

FMINSEARCH (Nelder-Mead) DAKOTA PATTERN (PPS) HOPSPACK (PPS) SID-PSM (Simplex gradient PPS) NOMAD (MADS) DFO

(Trust region, quadratic model) IMFIL (Implicit Filtering) BOBYQA

(Trust region, quadratic model) NEWUOA

(Trust region, quadratic model)

GLOBAL SEARCH

DAKOTA SOLIS-WETS (Direct) DAKOTA DIRECT (DIRECT) TOMLAB GLBSOLVE (DIRECT) TOMLAB GLCSOLVE (DIRECT) MCS (Multilevel coordinate search) TOMLAB EGO (RSM using Kriging) TOMLAB RBF (RSM using RBF) SNOBFIT (Branch and Fit) TOMLAB LGO (LGO algorithm)

STOCHASTIC

ASA (Simulated annealing) CMA-ES (Evolutionary algorithm) DAKOTA EA (Evolutionary algorithm) GLOBAL (Clustering - Multistart) PSWARM (Particle swarm)

SOLVERS CONSIDERED

Solver	URL	Version	Language	Bounds	Constraints	
					Linear	Black-box
ASA	www.ingber.com	26.30	С	required	no	no
BOBYQA	N/A	N/A	Fortran	required	no	no
CMA-ES	www.lri.fr/~hansen/	3.26.beta	Matlab	optional	no	no
	cmaesintro.html					
DAKOTA/DIRECT	www.cs.sandia.gov/dakota/	4.2	C++	required	yes	yes
DAKOTA/EA	www.cs.sandia.gov/dakota/	4.2	C++	required	yes	yes
DAKOTA/PATTERN	www.cs.sandia.gov/dakota/	4.2	C++	required	yes	yes
DAKOTA/SOLIS-WETS	www.cs.sandia.gov/dakota/	4.2	C++	required	yes	yes
DFO	projects.coin-or.org/Dfo	2.0	Fortran	required	yes	yes
FMINSEARCH	www.mathworks.com	N/A	Matlab	not allowed	no	no
GLOBAL	www.inf.u-szeged.hu/~csendes	1.0	Matlab	required	no	no
HOPSPACK	software.sandia.gov/trac/	2.0	C++	optional	yes	yes
	hopspack					
IMFIL	www4.ncsu.edu/~ctk/imfil.html	0.86	Matlab	required	no	yes
MCS	www.mat.univie.ac.at/~neum/	2.0	Matlab	required	no	no
	software/mcs/					
NEWUOA	N/A	N/A	Fortran	not allowed	no	no
NOMAD	www.gerad.ca/nomad/	3.3	C++	optional	no	yes
PSWARM	www.norg.uminho.pt/aivaz/	1.3	C, Matlab	required	yes	no
	pswarm/					
SID-PSM	www.mat.uc.pt/sid-psm/	1.1	Matlab	optional	yes	no
SNOBFIT	www.mat.univie.ac.at/~neum/	2.1	Matlab	required	no	no
	software/snobfit/					
TOMLAB/GLCCLUSTER	tomopt.com	7.3	Matlab	required	yes	yes
TOMLAB/LGO	www.pinterconsulting.com/	7.3	Matlab	required	yes	yes
TOMLAB/MULTIMIN	tomopt.com	7.3	Matlab	required	yes	yes
TOMLAB/OQNLP	www.opttek.com	7.3	Matlab	required	yes	yes

SEARCH PROGRESS FOR camel6

14

SEARCH PROGRESS FOR camel6—Continued

TEST PROBLEMS

1. Richtarik's [112] piece-wise linear problems:

$$\min_{x} \max_{i} \{ |\langle a_i, x \rangle| : i = 1, 2, \dots, m \},\$$

2. Nesterov's [94] quadratic test problems:

$$\min_{x} \frac{1}{2} \|Ax - b\|_{2}^{2} + \|x\|_{1},$$

3. a variant of Nesterov's test problems without the nonsmooth term:

$$\min_{x} \frac{1}{2} \|Ax - b\|_{2}^{2},$$

4. The ARWHEAD quadratic test problem from Conn et al. [28]:

$$\min_{x} \sum_{i=1}^{n-1} (x_i^2 + x_n^2)^2 - 4x_i + 3,$$

5. 248 nonconvex problems from the globallib [47] and princetonlib [109],
 6. and 49 nonsmooth problems from the collection of Lukšan and Vlček [85].

TEST PROBLEM CHARACTERISTICS

EXPERIMENTAL SETUP

- For all solvers
 - Default settings / non-intrusive interface
 - Same bounds; only if required by solver; mostly [-10000, 10000]
 - Same starting points
 - Limit of 2500 iterations and 600 CPU seconds
- BARON and LINDOGlobal used to find global solutions
 for all problems
- Absolute Tolerance of 0.01 or Relative Tolerance of 1% used for solver comparisons
- Average-case comparisons based on median objective function value of 10 runs from randomly generated starting points
 - But DAKOTA/DIRECT, MCS, TOMLAB/CLUSTER

QUESTIONS ADDRESSED

- What is the quality of solutions obtained by current solvers for a given limit on the number of allowable function evaluations?
- Does quality drop significantly as problem size increases?
- Which solver is more likely to obtain global or near-global solutions for nonconvex problems?
- Is there a subset of existing solvers that would suffice to solve a large fraction of problems?

FRACTION OF PROBLEMS SOLVED: CONVEX SMOOTH

FRACTION OF PROBLEMS SOLVED: CONVEX NONSMOOTH

FRACTION OF PROBLEMS SOLVED: NONCONVEX SMOOTH

FRACTION OF PROBLEMS SOLVED: NONCONVEX NONSMOOTH

FRACTION OF PROBLEMS SOLVER WAS BEST: CONVEX SMOOTH

FRACTION OF PROBLEMS SOLVER WAS BEST: CONVEX NONSMOOTH

FRACTION OF PROBLEMS SOLVER WAS BEST: NONCONVEX SMOOTH

FRACTION OF PROBLEMS SOLVER WAS BEST: NONCONVEX NONSMOOTH

FRACTION OF PROBLEMS SOLVED: 1 TO 2 VARIABLES

FRACTION OF PROBLEMS SOLVED: 3 TO 9 VARIABLES

FRACTION OF PROBLEMS SOLVED: 10 TO 30 VARIABLES

FRACTION OF PROBLEMS SOLVED: 31 TO 300 VARIABLES

STARTING POINT IMPROVEMENT

For a given τ between 0 and 1, and a given starting point x₀, a solver improves the starting point if

$$f(x_0) - f_{\text{solver}} \ge (1 - \tau)(f(x_0) - f_L)$$

where f_L is the best possible solution for the problem

• Problem considered solved if one or more runs satisfied this requirement

FRACTION OF PROBLEMS IMPROVED: CONVEX SMOOTH

FRACTION OF PROBLEMS IMPROVED: CONVEX NONSMOOTH

FRACTION OF PROBLEMS IMPROVED: NONCONVEX SMOOTH

FRACTION OF PROBLEMS IMPROVED: NONCONVEX NONSMOOTH

FRACTION OF PROBLEMS SOLVED: MULTISTART STRATEGY

MINIMUM SET OF SOLVERS CONVEX SMOOTH PROBLEMS

MINIMUM SET OF SOLVERS CONVEX NONSMOOTH PROBLEMS

MINIMUM SET OF SOLVERS NONCONVEX SMOOTH PROBLEMS

MINIMUM SET OF SOLVERS NONCONVEX NONSMOOTH PROBLEMS

MINIMUM SET OF SOLVERS ALL PROBLEMS

REFINEMENT ABILITY

- Solvers were started from an starting point close to a global minimum of the problem
- A range of 0.2 for each variable was used (unless problem bounds were tighter)

FRACTION OF LOCAL PROBLEMS SOLVED: ALL PROBLEMS

- + 1 to 2 variables
- 3 to 9 variables
- # 10 to 30 variables
- × 31 to 300 variables

MODEL-AND-SEARCH LOCAL ALGORITHM

BRANCH-AND-MODEL GLOBAL ALGORITHM

PROTEIN-LIGAND DOCKING

- Identify binding site and pose
- Conformation must minimize binding free energy
- Docking packages
 - AutoDock, Gold, FlexX ...
 - Most rely on genetic and other stochastic search algorithms

BINDING ENERGIES

B&M outperformed AutoDock in 11 out of 12 cases, and found the best solution amongst all solvers for 3 complexes

CONCLUSIONS

- MCS, LGO, and NEWOA/BOBYQA stand out
- Stochastic solvers do not perform as well as deterministic ones
 - CMA-ES and PSWARM are occasionally competitive
- Many opportunities
 - New algorithms needed
 - Applications abound
- Readings
 - Rios and Sahinidis (2010)
 - Conn, Scheinberg and Vicente (2009)