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Introduction 
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      Topside Facilities: 

Primary oil treatment 

Gas treatment and compression system  

MODELING & SIMULATION OF OFFSHORE PRODUCTION 

SYSTEMS WITH EMPHASIS IN PROCESS MONITORING, 

CONTROL AND OPTIMIZATION 

      

riser 

  

flowline 

production 

column 
     Pipelines (riser, flowline  and production column) and subsea: 

Black oil and compositional modeling 

Fast multiphase flow simulator 

Physical and thermodynamic properties determination 

Subsea processing evaluation (HISEP, ESP, etc.) 

Gas Lift  optimization 

Flow Assurance studies (paraffin deposition and hydrates formation) 

  
Image: flexible risers © 4subsea  

Solutions for Process Control and Optimization
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Introduction: Offshore Processing 

 Ensure Process Stability and Safety 

 Flow Assurance (prevent: hydrate, paraffin, 

asphaltene, fouling) 

 Ensure Quality Specification (oil, water & gas) 

 Maximize Production (oil & gas) 

 Maximize remaining useful lifetime 

 Minimize Losses (flare & TOG) 

 Minimize Energy Consumption (heat & power) 

 Minimize Operational Costs (maintenance & 

shutdowns) 

 Minimize Process variability 

Formulation of control and 

optimization problems aiming to: 
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Introduction: Subsea Processing 

Accelerates the production during field lifespan. 

Makes the production in remote and marginal fields 
feasible. 

Improves recovery and  production rates from the 
reservoir by reducing backpressure on wells. 

Provides advantages in flow assurance risk management.1 

1Kondapi et al. (2017) 
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Introduction: Subsea Processing 

Difficult access 

High intervention costs 

High complexity 

Subsea processing installations 

Unknown External disturbances 

Insufficient data Parametric uncertainties 

Simplification in the model Structural uncertainties 

Noise and/or sensor lack  Measurement errors 

Operation under uncertainty2 

2Krishnamoorthy et al. (2016) 
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tools 

applications 

PSE CAPE 

Inherently 

Dynamic 

Product & 

Controlability & 

Operability 

Introduction: CAPE Tools 
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Digital Twin Machine Learning 

Reinforcement Learning Soft Sensors 

Big Data 

AI 

IoT 

Deep Learning Cloud Computing 

Industry 4.0 

Reasoning Transfer Learning 

Quantum Computing 

Introduction: Digital Technologies 
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Detection 

Diagnosis 

Prognosis 

Events 

Remote 
Monitoring 

Predictive 
Maintenance 

Analysis of 
sceneries 

Process 
Digital Twin Real-Time 

Optimization 

Source: shutterstock 

Introduction: Digital Technologies 
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Process 
Digital Twin 

Source: neilpatel 

Introduction: Digital Technologies 
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Digital Twin 

First-principles model 

Data-based model 

  Hybrid model 

Remote Monitoring 

Process Control 

Process Optimization 

Downtime prediction 

Introduction: Digital Technologies 
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Fundamentals 
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5D Modeling Approach 

MDT = f(PE,VM,Ss,DD,CN)3 

• Physical Entities (PE): physical laws + uncertainty; 

• Virtual Models (VM): first principles, data based, 

stochastic, and rules from experts; 

• Services (Ss): monitoring, optimization, diagnosis, 

prognostics and health management, advanced control, 

soft sensor, health-aware control; 

• Digital Twin Data (DD): multi-temporal scale, multi-

dimension, multi-source and heterogeneous data; 

• Connections (CN): CN_PV, CN_PD, CN_PS, CN_VD, 

CN_VS, CN_SD. 
     3Qi et al. (2019) 



15 

Fundamentals: 5D Models 

3Qi et al. (2019) 

Remote Soft Sensor Fault Detection and Diagnosis 

First Principles Dry Gas Seal 



16 

Fundamentals: Data driven 

4Soares (2020) 

Data-based Modeling 
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PE: conventional and pre-salt platforms, including production well 

and riser, topside separation equipment (3-phase and electrostatic 

separators, molecular sieves, gas-separation membrane, hydro-

cyclones), gas compression cycle and auxiliary equipment (flash 

vessels, heat exchangers, PID controllers, etc.), subsea processing 

(3-phase LLV or LLL separators, pumps, heat exchangers, valves). 

 

VM: equipment library implemented in EMSO (Environment for 

Modeling, Simulation and Optimization), an equation-oriented 

simulator and optimizer, with an object-oriented modeling language. 

Fundamentals: First Principles 
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PE and VM: Offshore Platforms & 

Subsea Operations 

Fundamentals: First Principles 
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Digital Technology Infrastructure 

Sensors and remote connections 

Data treatment and storage 

Data modeling and sytems 
interoperability 

Digital Technologies 

Human-Machine Interface 

Industry 

Required infrastructure 

Remote Soft SensorFault Detection and Diagnosis

First PrinciplesDry Gas Seal
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Objective of this Presentation 
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Objective of the Presentation 

Brief overview of Digital Technologies developments carried out 

at LADES/PEQ/COPPE-UFRJ for offshore and subsea O&G 

applications. 
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Portfolio of Case Studies 
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Combined 

effect 

Ss: Short-Term Production Optimization 

     5Ribeiro et al. (2019) 

     6Carpio et al. (2020) 

PE: Wells and topside VM: First Principles, Ss: MILP-MINLP 
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Ss: Short-Term Production Optimization 

6Carpio et al. (2020) 

Kriging 

surrogate 

model 
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Ss: Short-Term Production Optimization 

     6Carpio et al. (2020) 

Combined 

effect 

Limitation on compression system 

Limitation on water treatment system Limitation on export gas system 
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Ss: Data-based Self Optimizing Control 

7Jäschke & Skogestad (2013) 

8Dias et al. (2019)  

Quadratic model 

PE: Well & Choke, VM: Data-based Linear Network, Ss: SOC7 
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Ss: Data-based Self Optimizing Control 

Linear network: 

But database are: 

o Huge; 

o Significant amounts of useless data; 

o Measurement noise; 

o Outliers; 

o Frozen values; 

o Missing values… 

It is important to select the best subset of 

variables 

EVALUATING THE LOSS! 

8Dias et al. (2019)  
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Ss: Data-based Self Optimizing Control 

Gas lift well 

Comparison between Exact Local method (model based) 

and data-based method: 

8Dias et al. (2019)  

No plant-model mismatch With plant-model mismatch 

DB for SOC can be better than MB and does not 

require a deep knowledge about the process neither a 

derivative step, but require large set of historical data. 
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PE: Gas compression system, VM: Hybrid model (first principles + 

performance curve + univariate quality control charts) 
 

Ss: Monitoring of performance and Fault Detection and Diagnosis 

(FDD).   

Ss: Remote Monitoring & FDD 

SIMULATION 

PERFORMANCE 

CURVE 

THERMODYNAMIC 

EFFICIENCY 

REFERENCE 

EFFICIENCY 

RESIDUALS 

                 9Miyoshi et al. (2012) 
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PE: Dry Gas Seal, VM: Data-based SVM, Ss: FDD.   

Ss: Remote Monitoring & FDD 

4Soares (2020) 

• Fault detection model that also indicates the level of “health” 

in the system: how close it is from fault or normal operation 

• This model helps preventing faulty operation of a dry gas 

seal system 
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PE: Water Injection Pumps, VM: DB Random Forest + PCA, Ss: FDD.   

Ss: Remote Monitoring & FDD 

10Souza et al. (2020),   11Xavier & Xavier (2011),    12Xavier (2016) 

• Fault and pre-fault detection by abnormal vibration 

• Use of data clustering11 and dimensionality reduction 

method12 for data visualization in a 3D scatter plot 

Variable contribution 
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Ss: Remote Monitoring & FDD 

10Souza et al. (2020) 

Web application for remote monitoring and FDD 

Clustering and 

dimensionality 

reduction make data 

visualization an 

easier task 
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Performance 

monitoring and 

equipment health 

based on hybrid 

models 

Gas Turbines 

Furnaces 

Minimize Gibbs energy 

Ss: Remote Monitoring & FDD 

Continuous Emission Monitoring 

System (CEMS) 

 

Predictive Emission Monitoring 

System (PEMS) 

Residual modeling 
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Ss: Remote Monitoring & FDD 

PE: Gas turbines, VM: Hybrid model, Ss: PEMS.   
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Ss: DTCMPC in Compression System  

      13Giraldo et al. (2020) 

MPC with dead-time 

compensator strategy 

to provide setpoints 

for the regulatory 

control layer of a gas 

compression 

system, which aim to 

avoid excessive 

energy consumption, 

decrease variability of 

the plant, and 

guaranty a stable and 

safe operation against 

load disturbances. 

PE: Gas compression system, VM: Data based, Ss: DTC-MPC.   
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Ss: DTCMPC in Compression System  

      13Giraldo et al. (2020) 

Total Energy 

Consumption 

PID pressure 

setpoints 
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Ss: MPC in CO2 Subsea Separation 

PE: PETROBRAS14 subsea CO2 

separation process, VM: First 

Principles, Ss: MPC.  

Reservoir 

75% CO2 

150.103 bpd 

Lower 

Pressure 

Increase 

Temperature 

Depressurization 

Valve 

Heater 

Feed 

Conditioning 

System 

Vessel 

3-phase 

CO2  

Rich Phase 

Oil + Aqueous 

Phases 

Topside 
Control 

Valve 

Production 

System 

Cooler 

Increase 

Density 

Injection 

Pump 

Provides 

DP 

Control 

Valve 

Injection  

Well 

Injection 

System 

14Passarelli (2017) 

15Souza et al. (2019) 
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15Souza et al. (2019) 

 

70% CO2 

VLE 

LLLE 

1% H2O  70% CO2 

Ss: MPC in CO2 Subsea Separation 
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15Souza et al. (2019) 

 

T1T2>T1

Ss: MPC in CO2 Subsea Separation 
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Ss: Health-Aware Control & Prognosis 

PROGNOSTIC MODULE: a pump wear stochastic model was proposed 

including dependence with pump operating power. Particle filters were 

employed to estimate states and predict Remaining Useful Lifetime (RUL). 

Pump 

Health 

Multivariable 

Control 

HEALTH-AWARE CONTROL (HAC): 

16Bernardino et al. (2019) 

 

PE: liquid CO2 pump, VM: Stochastic, Ss: HAC   
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16Bernardino et al. (2019) 

 

As health and control objectives compete against each other, the 

obtained solution is a compromise between these objectives. 

MPC 
 

HAC 
 Flash pressure set-point change 

 

Ss: Health-Aware Control & Prognosis 
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Ss: Adaptive MPC control of ESP 

17,18Delou et al. (2019,2020) 

The adaptive MPC control was 

capable of dealing with process 

nonlinearities and lack of 

measurements enhancing the 

control performance within a 

wide range of operation of an 

Electrical Submersible Pump. 

PE: ESP, VM: Data based, Ss: AMPC   

homotopic (SKF1) or multilinear interpolation (SKF2) 
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Ss: Flow Assurance Control 

19Góes et al. (2019) 

Drift-Flux model to predict the location of wax (WAT) or hydrate (HAT) 

appearance temperature. 

PE: Flowline + riser, VM: First Principles, Ss: Flow assurance control.   
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Ss: Virtual Flow Metering 

20Góes et al. (2020) 

Predict the oil, water and gas flow rates of each well as 

function of measured variables available in plant data 

collected in real time. 

PE: Choke Valve, VM: First Principles, Ss: Soft Sensor.   

BSW, GOR 
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Ss: Virtual Flow Metering 

20Góes et al. (2020) 

The proposed method presented good agreement with fiscal 

measurement and Daily Operation Report (DOR), with relative errors 

below 3.5%. 

Opens new 

alternatives for 

production 

optimization 

PE: Choke Valve, VM: First Principles, Ss: Soft Sensor.   
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 Final Remarks 
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Final Remarks 

• Implementation of first-principles models for topside and subsea 

environments are relevant in many stages of DT developments; 

 

• The hybridization of first-principles model with data-based model 

enhances its predictive-adaptive capability; 

 

• Data treatment and analysis are important and time consuming. 

Feedback from operators is beneficial in machine learning projects; 

 

• Identification of the real starting moment of the fault (pre-fault) 

before system power off occurs is highly relevant and challenging; 

 

• The Digital Technologies need an integrated and standardized 

cyber-physical infrastructure for effective application (e.g.: OPC-UA 

and https://www.opengroup.org/). 
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