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Introduction to Osaka University

Mathematical Science for Social Systems

Department of Systems Innovation

Graduate School of Engineering Science

Osaka University

3 main campus

•Toyonaka campus

•Suita campus

•Minoo campus

bachelor students:  15,358

master students   :  4,691

doctor students   :   3,165

Total  students     :   23,214

Professors           :   942

Associate Prof. :   1014

Assistant Prof.    :   1151

Total  staffs          :   6,654

International students:   2,480
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Non-academic staff  :  3113
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Introduction of Engineering Science

Toyonaka campus (450000m2)

School of Engineering

School of Science

School of Engineering Science

More basic than Engineering

Mathematical Science Department

・Finance and Insurance
・Data Science
・Mathematical Model

System Mathematics Research Group
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Center for Mathematical Modeling
And Data Science, Osaka University
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Brief Introduction: Associate Prof. Tatsushi Nishi

Research areas: system optimization, automation, supply chain
planning and scheduling, combinatorial optimization, 
multi-robot control, public transport, process systems engineering

PhD Degree in Kyoto University (Chemical Engineering)
Assistant Professor of Okayama University (Electrical Engineering)
Associate Professor of Osaka University from 2006 (Mathematical Science for 

Social Systems)
March 2014-2017, Visiting Professor of Beijing University of  Chemical Technology

June-Sept 2015, Visiting Professor of University of Hamburg, Germany

Associate Editor of IEEE Transactions on Automation Science and Engineering 2012-
(Impact factor: 2.428 (2015), 2.162 (2014), 3.667 (2017))    

Conference Editorial Board of IEEE ICRA (top robotics conference)

Courses taught: discrete optimization, graph theory
operations research, intelligent mathematical programming 
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Our team 

・Scheduling

public transport, railway crew scheduling, airline scheduling

transportation, routing, logistics, production scheduling

・Supply chain optimization
production planning, supplier selection, revenue management, 

contract decision, quantity discounts or volume discounts

・Discrete event systems

Petri nets, timed automata, modeling, optimization, automated guided 
vehicles, deadlock avoidance, Petri net decomposition technique
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Collaboration with industries

railway crew scheduling in Japan Railway 

Control of automated guided vehicles for transportation

• Semiconductor factory automation

• Railway scheduling automation

Scheduling of cluster tool for silicon wafer production

• Petroleum chemical industry automation

International ship scheduling for crude oil transportation 

Transportation network design

train-set scheduling with maintenance constraints 

shift scheduling
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Supply chain optimization
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Supply chain management： integrated optimization of material 

purchase, production, sales management
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Dynamic Model Construction Platform for Collaboration and 
Optimization among Enterprises in Smart Supply Chains
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・Real time data extraction and analysis
Visualization, cloud computing，manufacturing control loop

・Game theoretical approach for real time optimization of equilibrium solution
・Standardization of protocols (ISO), common resources for electrical-catalog

Research
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Lagrangian Relaxation and Cut Generation

Lagrangian relaxation for production scheduling

Relax machine capacity constraints

Decomposition into each single job-level subproblem (Luh et al. 1994)

Additional constraints are imposed to the related problem to derive better lower bound

Lagrangian relaxation with cut generation

Job 1
Job 2

Job 3
Job 4

Job 5

Job 6

Original problem

Job 1
Job 2

Job 3
Job 4

Job 5

Job 6

Ordinary Lagrangian Relaxation 

Job 1
Job 2

Job 3
Job 4

Job 5

Job 6

Cut generation with tree structure

We developed a novel dynamic programming recursion with tree structure

T. Nishi et al. Lagrangian relaxation with cut generation for hybrid flowshop
scheduling problems to minimize the total weighted tardiness (2010)
Computers and Operations Research, IF:2.962 (cited in scopus 39 times) 

𝑂(𝑀𝐻)𝑂(𝐻𝑀) 𝑂(𝑀𝐻 + 2𝑝𝑚𝑎𝑥|𝐶𝑖|) 10



Logic-based Benders decomposition with CMU

2 Process 2 AGVs

T. Nishi, Y. Hiranaka, I. Grossmann, A bilevel decomposition algorithm for 
simultaneous production scheduling and conflict-free routing for automated guided vehicles 
Computers and Operations Research, IF:2.962 (cited 42 times in scopus) 

Logic-based Benders (Hooker, 1994)

Master problem

),(min yxf

s. t. 

xDx

Subproblem

),(min yxf

s. t. ),( yxC

yDy

x

Cut generation

constraints

)(,),(),( 21 xCxCxC kK

Relaxed solution

Cut １

Cut ２

Fig.1 Gantt Chart
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Optimization in Public Transport with Prof. Voss

Heuristics for Mathematical Programming Based Railway 
Crew Scheduling, Awarded by Scheduling Society of Japan

T. Nishi et al., A Combined Column Generation and 
Heuristics for Railway Short-Term Rolling Stock Planning 
with Regular Inspection Constraints, Computers and 
Operations Research, IF:2.962 (2017)

timetable

Railway crew scheduling Railway rolling stock planning

station

time

A

B

C

Train 1

Train 2

Train 3

inspection

st
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n

A

B

C

Duty for a crew member
Cyclic schedule with maintenance
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Matheuristic and Logistic Optimization 

Split-delivery vehicle routing problem 

Airline Crew Rostering Optimization

Dynamic berth allocation

G. Zhang, T. Nishi, et al., Omega (2017)
IF: 4.311, Most Downloaded Omega Article (2017)

Start(midpoint) BaseLoading places Unloading places

Loading planning Unloading planning 

Outbound transportation Inbound transportation

Total

Demand

Demand

Warehouse

Production Process

Stock Yard

T. Nishi, T. Izuno, Column generation approach to
Ship scheduling problems for international crude oil 
Transportation Comp. Chem. Engng. (2014), IF: 3.113

T. Nishi et al. , A dynamic programming-based 
Matheuristic for the dynamic berth allocation problem
Annals of Operations Research (2018), IF 1.864

Simultaneous Optimization of Production Planning
Warehouse Layout

T. Doi, T. Nishi, S. Voss, European Journal of 
Operational Research (2018), IF: 3.428
EJOR Editors’Choice Article, June 2018
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Decomposable condition

・ J

・ The final making is not specified for 
the duplicated places.

The objective function       is represented by 

the summation for each of subnet.

P1

P2

t2 t3

t1 P3 t4 P4

t5

P1

P2

t2 t3

t1 P’3
t4 P4

t5

P’’3

decomposition

Local optimizationLocal optimization

Petri net decomposition approach
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General Conversion of IP into Petri nets

Structural analysis is conducted via Petri net representation
and reachability analysis

T. Nishi, A. Kodama, Petri net representation of 0-1 integer linear programming
problems, Information Sciences (2017) (IF: 4.305)

New Approach for Discrete Optimization

Integer 
Programming

Petri net model

Valid 
Inequalities

Original IP 
+ Valid Inequalities

Conversion

Reachability Analysis

Conversion
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Cell-based Heuristic Algorithm for 

Capacitated Multi-commodity Network 

Design Problem

Research Talk, March 6, EWO seminar, Carnegie Mellon University



Outline
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1. Introduction

2. Dynamic Multi-commodity Network Design Problem

3. Cell-based Heuristic Algorithm

4. Improvement of Performance

5. Computational experiments

6. Summary and conclusion
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Networked System

Connectivity is important for social systems

Transportation systems Communication systemsLayout design in warehousing

Society 5.0 promotes connection between people and physical 
world via Internet of Things. Network design is a significant issue.

Introduction

Research Talk, March 6, EWO seminar, Carnegie Mellon University



Conventional Network Design Problem

Network design problem

• Determine a network structure (graph and flow) to minimize total costs

Multi-commodity Network Design Problem (Magnanti, 1984)
• To determine the selection of arcs and flow of commodities. 

Commodities are routed from its origin to destination satisfying total 
capacity constraints.    

 Input
 Output

Origin 2

Destination 1

Destination 2

Origin 1

20

 Input  Output

 Candidate of graph 𝐺 = 𝑁, 𝐴
 Origin and destination

 Derived graph 𝐺′ = 𝑁′, 𝐴′
 Flow quantity from origin to destination 

Research Talk, March 6, EWO seminar, Carnegie Mellon University



Commodities are routed over a time horizon.

• Dynamics of commodities (conflicts and jams) are represented.

→ More exact network design can be achieved.

Connectivity

• Most of real-world network has connectivity between their origin and 
destination -> Connectivity of the selected arcs is important

Dynamic Multi-Commodity Network 

Design Problem (DMCND)

21
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Few works have been developed for DMCND.

 Conversion of DMCMD into time-space network

 Formulation of dynamic multi-commodity network design problem

 Effective local search algorithm

Our objective

→ Network size issues

 Hall et al. (2007) developed a greedy algorithm for S-T path which 
has conflicts in dynamic commodities when the distance is equal. 

→ Problem is not general

Conventional works on DMCND

S
T
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Performance indices
• Quickest flow ： Minimize the sum of total time to reach destination
• Maximum flow ： Maximize the total flow quantity
• Minium cost flow ：Mimimize the total costs

fixed costs + transportation costs

(3)

𝑥𝑖𝑗𝑡
k = 𝑥𝑗𝑙𝑡+1

k (1)

𝑖

𝑗

𝑙

𝑥𝑖𝑗𝑡
k < 𝑐𝑖𝑗 𝑦𝑖𝑗 (2)

1. Flow conservation constraints

2. Arc capacity constraints

3. Connectivity constraint of the selected arcs

Dynamic Multi-Commodity Network Design Problem (DMCND)

 Input  Output
 𝐺 = 𝑁, 𝐴, 𝐾
 (demand 𝑞𝑘 , origin 𝑜𝑘 , destination 𝑑𝑘)

 Capacity of arc 𝑐𝑖,𝑗
 Fixed costs 𝑚𝑖,𝑗 , transportation cost 𝑙𝑖,𝑗
 Time periods T = 0,1,…

 Designed network 𝑮′ = 𝑵′, 𝑨′

 Selection of arcs 𝑦𝑖,𝑗 ∈ 0,1

 Flow quantity 𝑥𝑘𝑖,𝑗,𝑡 ∈ ℝ
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Conventional method

We propose a neighborhood search which repeats the generation of the 
selection of arcs and LP for multi-commodity flow problem.

Four dimensions of 𝑥𝑖𝑗𝑡
k and binary 𝑦𝑖,𝑗 ∈ 0,1 are too huge for computations.

For only 𝑥𝑖𝑗𝑡
k → Dynamic multi-commodity flow is an LP problem.

Proposed method

Initial generation of 𝐺

Dynamic MCND problem

Neighborhood search

Original problem

Static MCND problem

Time space network

Slope Scale Lagrangian
perturbation heuristic

Two-stage heuristic algorithm
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Introduction of concept of cells

Search space for the selection of arcs is too huge
⇒Cell is defined as minimal set of arcs which constitutes a loop.

Cell-based heuristics

Single cell k-neighborhood

Neighborhood search with K-neighborhood cell

Cell 1

Cell 2

Cell 4

Cell 3

Cell 5

Cell 6

Cell 7

flow

Current selection of arcs 2-cells {𝑐2, 𝑐4}
Neighborhood using 2-cells

Cell 1
Cell 1

Cell 2

Cell 4

Cell 3
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Properties of K-neighborhood cells

1. Intensification of search using flow information.
2. Redundant arc elimination
3. Subtour elimination
4. Network size reduction
5. Variable neighborhood search 

Proposition 1. All selection of arcs can be represented by cells.

Proposition 2. Cell-based neighborhood solutions always satisfy 
connectivity. 

The proposed algorithm can be strengthened by the 
following components.

→ An optimal solution can be represented by cell-based neighborhood.

Cell-based heuristic algorithm
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The layout design of AGV systems |N|=101,|A|=371

• CPLEX requires more than 10000 sec. 
• The proposed method derive a solution with 1000 sec with 7% gap

Application to guide path layout design of Automated 
Guided Vehicles

General purpose solver (CPLEX) Proposed method

demand Time [s] Obj [-] Time [s] Obj [-]

28 75.8 26189 269.7 27709

78 10801.9 132378 1122.6 141599

88 - - 2423.7 191011
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Improvement of cell based heuristics to
general graph structure

Variable size of neighborhood

Reduction of time-space network

Some unreachable arcs for each time period are eliminated by backward and forward 
calculations

Problem size
= A 𝑇 − 1 𝐾
=3 ∗ 2 ∗ 1

Reduced size
=2

Variable neighborhood depending on the search times
Cell 2

Cell 4

Partially opened outside loop

Application to general graph structure
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Computational experiments

Benchmark instance for capacitated fixed cost multi-commodity 
network design problem (Gendron and Crainic, 1994)

General purpose 
solver (CPLEX)

Proposed method Ant Colony 
Optimization

Slope Scaling and 
Lagrangean

Perturbation

|M| |N| |A| Time [s] Objective 
value

Time [s] Objective 
value

Time [s] Objective 
value

Time [s] Objective 
value

10 10 90 2.44 1014 40.9 1227 65.1 1014 316.6 1113

10 10 56 0.95 1213 37.9 1325 68.4 1213 226.9 1213

25 10 90 3.78 2922 91.9 3140 200.9 2927 497.4 2927

100 20 204 - - 381 17892 - - - -
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We have proposed a cell-based heuristic for dynamic multi-
commodity network design problem.

The proposed heuristic utilizes the cell-based arc selection 
and multi-commodity flow problem repeatedly. The 
performance is strengthened by variable neighborhood 
search and intensification of search.

The effectiveness of the proposed method is confirmed 
from computational experiments.

Summary and conclusion
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Simultaneous Optimization of Product 
Configuration and Supply Chain Planning 
Considering Customer's Participation
in Product Design

Takuya Tsuboi and Tatsushi Nishi
Graduate School of Engineering Science

Osaka University, Japan
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Introduction
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 Modular Production: Produce a large number of modules and 
manufacture a variety of products by assembling them

Mass Customization = Mass Production + Customization

http://www.Nissanglobal.com/EN/NEWS/2012/_STORY/120227-01-e.html

Ex: Nissan Common Module Family

 There are main four modules:
Engine compartment, Cockpit, 
Front underbody and Rear underbody

 Each module has appropriate variations

 A variety of vehicles can be designed 
by assembling these modules

→ Electric appliance, Computer, Car, Bike , Shoes, Clothes… 

Research Talk, March 6, EWO seminar, Carnegie Mellon University
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Now:

Shoes customization on “miadidas”

Bike customization on “Built Own Your Bike”(adidas)

(HARLEY DAVIDSON)

“https://shop.adidas.jp/miadidas/”

“https://www.harley-davidson.com/us/en/tools/bike-builder/index.html”

Conventional :Product configuration is determined by manufacturer

Customer can determine product configuration

Introduction online self-customization service

Customer's participation in product design

Research Talk, March 6, EWO seminar, Carnegie Mellon University
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Simultaneous optimization of product configuration and supply chain planning

 Challenges in Mass Customization 

Introduction

 Supply chain planning : Operation of facilities, Selection of suppliers
Production products, Inventory, Distribution

 Product configuration : Selection of products and modules 
Configurations of products

 Customer's participation in product design (e.g. Online self-customization)

Optimization model considering customer's preferences and purchasing behavior

 Fluctuated costs and demands

Dynamic(multi-period) optimization model

Research Talk, March 6, EWO seminar, Carnegie Mellon University
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 Product configuration (PC) problem

 Supply chain planning (SCP) problem

 Simultaneous optimization of PC and SCP

Facility location, Supplier selection …

 Comparison two-phase model and integrated model (Khalf et al. 2010 )

 Stackelberg model (Yang et al. 2015 )

Single period, Cost minimization only

Customer utility maximization and Cost minimization

Single period, Not consider customer purchasing behavior 

 Consumer choice rule (Cao et al. 2012)

Consider customer purchasing behavior

 Maximization customer utility model (Frutos et al, 2004)

integrated

 Conventional works

Introduction
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Introduction
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 Our research

・ We optimize both customer satisfaction and total profit by     

Game theoretical approach

・We formulate new multi-period model for mass customization

 Simultaneous optimization of PC and SCP
 Customer model based on customer purchasing behavior
 Delayed demand satisfaction

・ We reformulate Bilevel problem into single-level problem    

and obtain an exact Stackelberg equilibrium

 Leader : Manufacturer, Follower: Customers
 Leader : Customer, Follower: Manufacturer

Research Talk, March 6, EWO seminar, Carnegie Mellon University
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Production system and interaction between 
manufacturer and customers

Manufacturer Customers

・
・
・

1. Product configuration request

Customers’ 
Model

Supply Chain 
Planning

2. Simultaneous optimization

Product
configuration 3. Send available 

to promise

4. Customer satisfaction evaluation

Due dates

P1

M1 M2

Bilevel Optimization Model
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Problem definition

 The module is a part of product and it has several functions
 Each product can be manufactured by assembling some 

modules selected from candidate modules

Ex: Alternative two configurations for product 1

P1
111010

M1
010010

M2
101000

F2 F5 F1 F3

P1
111010

F2F5F1 F3

M3
100010

M4
010000

M5
001000

Assembly

 Product and module definition

Product

Module

Function

0.7 0.5
0.6 0.2 0.3

1.2 1.1
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 Modules are supplied by suppliers and transported to production sites 

 Products are manufactured by assembling some modules at production site 

 Products are directly sold to customers

 Modules are stocked as inventories 

Problem definition

 Supply chain planning is to determine the production volume of the 
products and the procurement volume of modules , the operation of 
production sites and the selection of suppliers

Supplier Production 
Site

Customer

M1 M1

M2 P1

M1

Research Talk, March 6, EWO seminar, Carnegie Mellon University



Stackelberg model between customers and manufacturer

40

Manufacturer: to maximize total profit

Customers: to maximize own satisfaction
Different decision makers

Derive the equilibrium solution by Game theoretical approach

 Stackelberg model

・We propose Bilevel optimization model that the manufacturer predicts  
customers' purchasing behavior and maximize total profit

Customer1

Manufacturer

Customer 2 ・・・ Customer 𝐾

Leader

Followers
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max (𝑇𝑈𝑘)

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 14𝑘 − (16𝑘)

max (TP)

s.t. 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 1 − (13)

Manufacturer’s objective function

Manufacturer’s constraints

Customer’s objective function

Customer’s constraintss.t.

Bilevel programming problem between customers and manufacturer (BP)

Formulation of Bilevel problem

・In this model, the follower’s optimization problem is a LP

Bilevel programming problem 
can not be solved directly

・Iterative optimization
・Single-level reformulation
・Nested evolutionally algorithm …

 Reformulate BP into a single-level programming problem
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Reformulation method

Duality
Theorem

In LP, if either P or D has a finite optimal value, then so does 
the other, the optimal values coincide, and optimal solutions to 
both P and D exist.

1. Dual optimality condition

Proposition：Reformulated SP is equivalent to original BP

2. Dual feasibility condition

(→ the optimality of lower-level problem)

(→ the feasibility of lower-level problem)

：

・Transform the followers’ optimization problems 
to some constraints based on duality theorem

・Remove the objective functions of followers from BP
and add two kinds of constraint to BP

42Research Talk, March 6, EWO seminar, Carnegie Mellon University
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max
s.t.

𝐹(𝑥)
𝐺(𝑥) ≤ 0

Bilevel programming problem(BP)

max

s.t.

𝑓(𝑥)
𝑔(𝑥) ≤ 0

Single-level programming problem(SP)

max
s.t.

𝐹(𝑥)

Add new constraints 
based on duality theorem

𝐺(𝑥) ≤ 0

𝐻(𝑥) ≤ 0

The reformulated single-level problem can be solved by general-purpose solver

Reformulation

• Reformulation Bilevel programming problem to Single-level programming problem

Research Talk, March 6, EWO seminar, Carnegie Mellon University
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Computational results

Ins 1(T=3) Ins 2(T=3) Ins 3(T=4) Ins 4(T=3) Ins 5(T=4)

Total profit 1197.75 2681.13 5315.89 6240.17 9184.77

Cus. 1 satisfaction 331.64 338.21 603.85 541.51 563.54

Cus. 2 satisfaction 343.59 335.51 510.51 632.25 515.40

Cus. 3 satisfaction - 381.25 527.46 540.81 525.71

Cus. 4 satisfaction - - - 502.43 599.56

Cus. 5 satisfaction - - - - 467.88

Computation time(s) 25.13 119.61 1619.60 4857.80 (36346.15)

・Stackelberg equilibrium between the manufacturer and multiple customers

(Problem size： P = 4, M = 9, I = 3, J = 1, ρ = 1 𝑜𝑟 2) 
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Stackelberg model between customer and manufacturer

max (TP)

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 7 − (16)

max (TU)

s.t. 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 1 − (6)

Customer’s objective function

Customer’s constraints

Manufacturer’s objective function

Manufacturer’s constrainss.t.

Proposal: Bilevel optimization model that prioritize customer's     
requests and maximize customer satisfaction

 Stackelberg model

Customer

Manufacturer

Leader

Follower

Bilevel programming problem between customers and manufacturer (BP)

(Restriction: single customer)
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Computational results

SP(・) SP(0) SP(1) SP(10)

Customer Satisfaction 95.49 91.77 88.53

Product configuration utility 95.49 95.49 88.53

Delivery delay penalty 0 3.72 0

Total profit -124.69 -129.07 -172.20

Computational time[s] 3.67 6.24 5.28

(Problem size： 𝑇 = 3, P = 3, M = 8, I = 2, J = 1, ρ = 1) 

 The influence of delivery delay to supply chain

The coefficient related to delivery delay (B) : 0, 1, 10

The coefficient related to product configuration (A) : 1

← change

Customer purchasing behavior affects
product configuration and supply chain planning
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Conclusion and Future work

 Future work

• We will develop an effective solution approach

• We will extend supply chain model
 Multiple customers are leader, manufacturer is follower

 Conclusion

• We propose new multi-period model for Simultaneous optimization 
 Formulate two Bilevel programming problems

• Reformulation based on duality theorem
 The effectiveness of the proposed model is confirmed

from computational experiment
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Integration of Data Science, AI and Optimization

Data-based

Discrete Optimization

Conversion

ValidationMore trustable model
with validated results

Specification

Discrete event systems

Conversion

Data Analytics

Extraction of constraints
Extraction of objective function

Input and output data
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Objective

Extract objective function from input and output data of scheduling problems
．
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Scheduling Problem

• Single Machine Scheduling Problem

ω d p

JOB1 𝜔1 𝑑1 𝑝1

JOB2 𝜔2 𝑑2 𝑝2

JOB3 𝜔3 𝑑3 𝑝3

… … … …

ω : weight d : due date p : processing time

Integer 

programing

Instanc

e

time

M1

machine

…JOB1JOB3 JOB2

Output
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Construction of scheduling 
problems

• Variant of objective functions
Objective Function :    min  z

①Weighted Completion Time                z =   𝜔𝑖𝐶𝑖

②Weighted Lateness                            z =  𝜔𝑖𝐿𝑖

③Weighted Number of Tardy Jobs       z =   𝜔𝑖𝑈𝑖

④Maximum Lateness                            z =  max
𝑖
𝐿𝑖

51Research Talk, March 6, EWO seminar, Carnegie Mellon University



Neural Network

Instances

Outputs

Untrained

Model

Training

Data

Labels 
(Type of Objective 

Function )

Preprocessing

Training Phase
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Learning Process for NN

• Preprocessing
JOB1 JOB2 JOB3 …

𝜔1 𝜔2 𝜔3 …

𝑑1 𝑑2 𝑑3 …

𝑝1 𝑝2 𝑝3 …

𝜔1
𝑝1

𝜔2
𝑝2

𝜔3
𝑝3

…

𝜔1
𝑑1

𝜔2
𝑑2

𝜔3
𝑑3

…

1

𝑝1𝑑1

1

𝑝2𝑑2

1

𝑝3𝑑3

…

𝜔1
𝑝1𝑑1

𝜔2
𝑝2𝑑2

𝜔3
𝑝3𝑑3

…

𝑡1 𝑡2 𝑡3 …

Ranking 𝜏𝜔

𝜏𝑑
𝜏𝑝
𝜏𝜔/𝑝

𝜏𝜔/𝑑

𝜏1/𝑝𝑑

𝜏𝜔/𝑝𝑑

𝜏𝑡

t : start time
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Learning Process for NN

• ②(preprocessing)
– Spearman’s rank correlation coefficient

𝜌 = 1 −
6 𝑖=1

𝑁 𝜏𝑥 𝑖 − 𝜏𝑦 𝑖
2

𝑁3 − 𝑁
𝜏𝑡 と 𝜏𝜔 ⇒ 𝜌𝜔
𝜏𝑡 と 𝜏𝑑 ⇒ 𝜌𝑑
𝜏𝑡 と 𝜏𝑝 ⇒ 𝜌𝑝
𝜏𝑡 と 𝜏𝜔/𝑝 ⇒ 𝜌𝜔/𝑝
𝜏𝑡 と 𝜏𝜔/𝑑 ⇒ 𝜌𝜔/𝑑
𝜏𝑡 と 𝜏1/𝑝𝑑 ⇒ 𝜌1/𝑝𝑑
𝜏𝑡 と 𝜏𝜔/𝑝𝑑 ⇒ 𝜌𝜔/𝑝𝑑
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Learning Neural Network

• Three layers Neural Network

Output value is the percentage 
of the objective function

𝑥1 = 𝜌𝜔
𝑥2 = 𝜌𝑑
𝑥3 = 𝜌𝑝
𝑥4 = 𝜌𝜔/𝑝
𝑥5 = 𝜌𝜔/𝑑
𝑥6 = 𝜌1/𝑝𝑑
𝑥7 = 𝜌𝜔/𝑝𝑑
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Identification of the objective 
function

New Instance

New Output

Preprocessing

Test

Data

Predictive

Model

Label (Type of 

Objective Function )

Prediction Phase
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Computational Results

Type Accuracy

1.   𝜔𝑖𝐶𝑖 0.95

2.   𝜔𝑖𝐿𝑖 0.78

3.  𝜔𝑖𝑈𝑖 0.83

4. max
𝑖
𝐿𝑖 0.93

Total 0.88

8000 Instances (=2000×4) 
→ Training Data : 7200,     Test Data : 800

Transition of the accuracy with respect to episode Accuracy for each objective function
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Future works

1. Application to Parallel Machine Scheduling 
Problem

2. Improvement of the performance of the 
neural network

3. Identification of constraints or problem 
features
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