Data centric approach for supply chain optimization

Tatsushi Nishi Associate Professor Osaka University

Outline of this talk

Research Introduction

- Cell-based heuristic algorithm for Capacitated Multi-commodity Network Design Problem
- Simultaneous Optimization of Product Configuration and Supply Chain Planning Considering Customer's Participation in Product Design
- Machine Learning Approach Identification of objective function for Scheduling Problems

Introduction to Osaka University

Mathematical Science for Social Systems Department of Systems Innovation Graduate School of Engineering Science Osaka University

bachelor students: 15,358
master students : 4,691
doctor students : 3,165
Total students : 23,214
International students: 2,480

:	942
:	1014
:	1151
staf	ff : 3113
	:

Total staffs : 6,654

3 main campus

- Toyonaka campus
- •Suita campus
- Minoo campus

Introduction of Engineering Science

Toyonaka campus (450000m²)

School of Engineering School of Science School of Engineering Science More basic than Engineering

Mathematical Science Department

- Finance and Insurance
- Data Science
- Mathematical Model
 System Mathematics Research Group

Center for Mathematical Modeling And Data Science, Osaka University

Brief Introduction: Associate Prof. Tatsushi Nishi

PhD Degree in Kyoto University (Chemical Engineering)

 Assistant Professor of Okayama University (Electrical Engineering)
 Associate Professor of Osaka University from 2006 (Mathematical Science for Social Systems)
 March 2014-2017, Visiting Professor of Beijing University of Chemical Technology
 June-Sept 2015, Visiting Professor of University of Hamburg, Germany

 Research areas: system optimization, automation, supply chain planning and scheduling, combinatorial optimization, multi-robot control, public transport, process systems engineering

Courses taught: discrete optimization, graph theory operations research, intelligent mathematical programming

Associate Editor of IEEE Transactions on Automation Science and Engineering 2012-(Impact factor: 2.428 (2015), 2.162 (2014), 3.667 (2017)) Conference Editorial Board of IEEE ICRA (top robotics conference)

Our team

Scheduling

public transport, railway crew scheduling, airline scheduling transportation, routing, logistics, production scheduling

Supply chain optimization

production planning, supplier selection, revenue management, contract decision, quantity discounts or volume discounts

Discrete event systems

Petri nets, timed automata, modeling, optimization, automated guided vehicles, deadlock avoidance, Petri net decomposition technique

Collaboration with industries

Semiconductor factory automation

Control of automated guided vehicles for transportation Scheduling of cluster tool for silicon wafer production

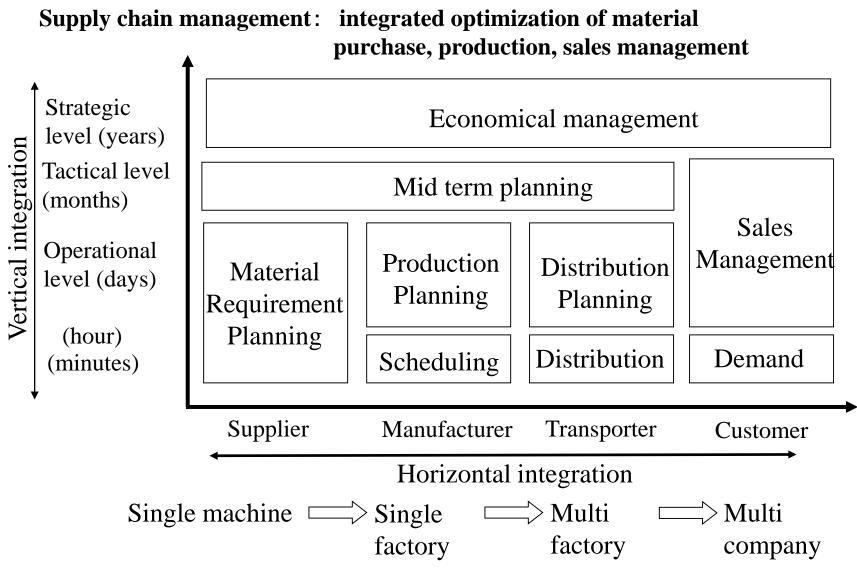
• Railway scheduling automation

railway crew scheduling in Japan Railway train-set scheduling with maintenance constraints shift scheduling

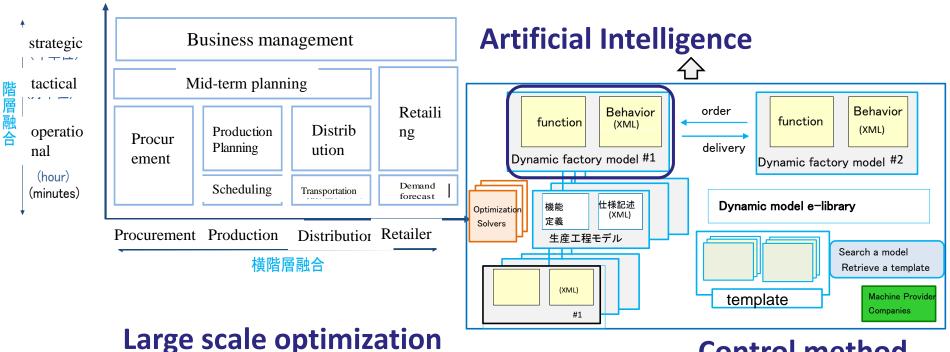
• Petroleum chemical industry automation

International ship scheduling for crude oil transportation Transportation network design

Supply chain optimization



Dynamic Model Construction Platform for Collaboration and **Optimization among Enterprises in Smart Supply Chains**



Control method

Research

Novelty

 Real time data extraction and analysis Visualization, cloud computing, manufacturing control loop Game theoretical approach for real time optimization of equilibrium solution Standardization of protocols (ISO), common resources for electrical-catalog

Lagrangian Relaxation and Cut Generation

Lagrangian relaxation for production scheduling

Relax machine capacity constraints

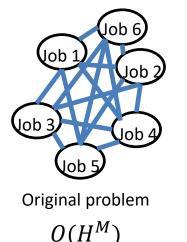
Decomposition into each single job-level subproblem (Luh et al. 1994)

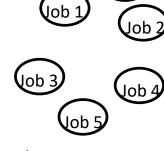
Lagrangian relaxation with cut generation

Additional constraints are imposed to the related problem to derive better lower bound

We developed a novel dynamic programming recursion with tree structure

T. Nishi et al. Lagrangian relaxation with cut generation for hybrid flowshop scheduling problems to minimize the total weighted tardiness (2010) Computers and Operations Research, IF:2.962 (cited in scopus 39 times)

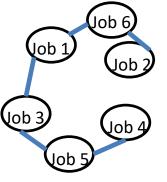




Ordinary Lagrangian Relaxation

ob 6

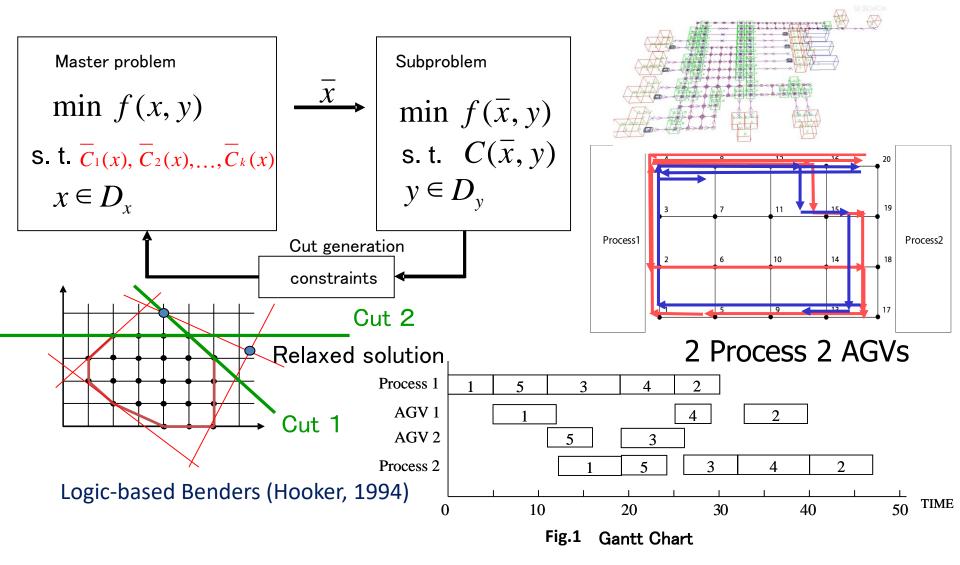
O(MH)



Cut generation with tree structure

 $O(MH + 2p_{max}|C_i|)$

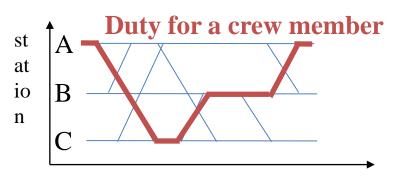
Logic-based Benders decomposition with CMU

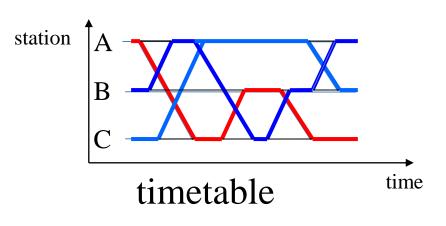


T. Nishi, Y. Hiranaka, I. Grossmann, A bilevel decomposition algorithm for simultaneous production scheduling and conflict-free routing for automated guided vehicles Computers and Operations Research, IF:2.962 (cited 42 times in scopus) 11

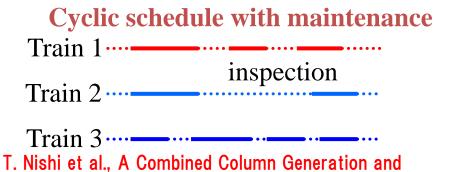
Optimization in Public Transport with Prof. Voss

Railway crew scheduling



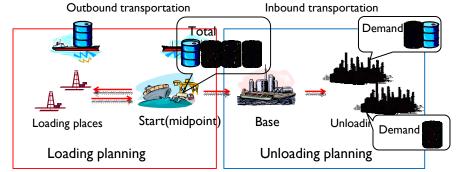


Railway rolling stock planning



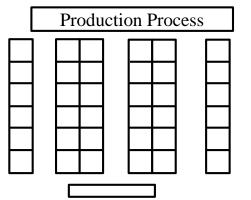
Heuristics for Mathematical Programming Based Railway Crew Scheduling, Awarded by Scheduling Society of Japan With Regular Inspection Constraints, Computers and Operations Research, IF:2.962 (2017) Research Talk, March 6, EWO seminar, Carnegie Mellon University 12

Matheuristic and Logistic Optimization



Split-delivery vehicle routing problem

T. Nishi, T. Izuno, Column generation approach to Ship scheduling problems for international crude oil Transportation Comp. Chem. Engng. (2014), IF: 3.113



Warehouse

Dynamic berth allocation

T. Nishi et al. , A dynamic programming-based Matheuristic for the dynamic berth allocation problem Annals of Operations Research (2018), IF 1.864

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	
Crew 1	Roster 1	Rost	ter 2	Holiday	Holiday	Roster 6	Holiday	
Crew 2	Roster 5			Roster 1	Holiday	Roster 2		
Crew 3	Roster 3	Roster 4	Rost	ter 2	Roster 6	Holiday	Holiday	
Crew4	Holiday		Roster 5		Holiday	Roster 3	Roster 1	
Crew 5	Roster 2		Holiday	Holiday	Roster 3	Roster 4	Roster 6	

Stock Yard Simultaneous Optimization of Production Planning Warehouse Layout

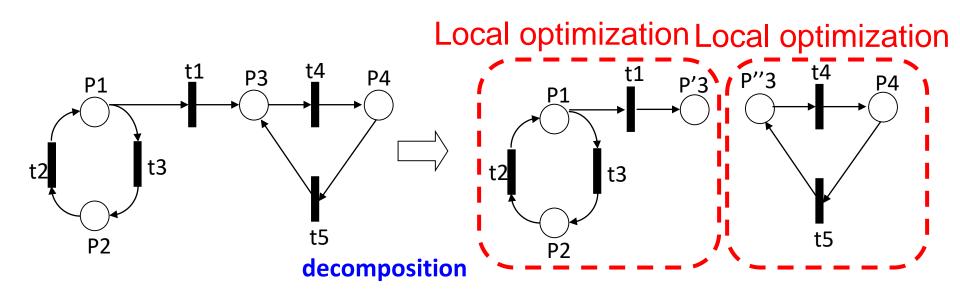
G. Zhang, T. Nishi, et al., Omega (2017)

IF: 4.311, Most Downloaded Omega Article (2017)

Airline Crew Rostering Optimization

T. Doi, T. Nishi, S. Voss, European Journal of Operational Research (2018), IF: 3.428 EJOR Editors' Choice Article, June 2018

Petri net decomposition approach

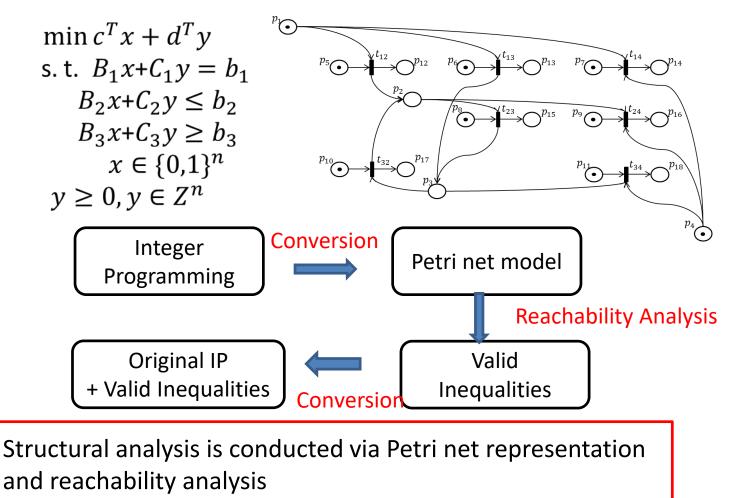


Decomposable condition

- The objective function J is represented by the summation for each of subnet.
- The final making is not specified for the duplicated places.

General Conversion of IP into Petri nets

New Approach for Discrete Optimization



T. Nishi, A. Kodama, Petri net representation of 0-1 integer linear programming problems, Information Sciences (2017) (IF: 4.305)

Cell-based Heuristic Algorithm for Capacitated Multi-commodity Network Design Problem

Graduate School of Engineering Science Osaka University E-mail: nishi@sys.es.osaka-u.ac.jp

Outline

- 1. Introduction
- 2. Dynamic Multi-commodity Network Design Problem
- 3. Cell-based Heuristic Algorithm
- 4. Improvement of Performance
- 5. Computational experiments
- 6. Summary and conclusion

Networked System

Connectivity is important for social systems

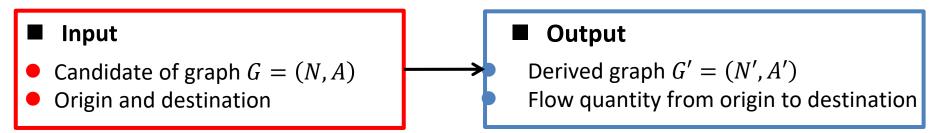
Layout design in warehousing Transportation systems Communication systems

Society 5.0 promotes connection between people and physical world via Internet of Things. Network design is a significant issue.

Conventional Network Design Problem

Network design problem

• Determine a network structure (graph and flow) to minimize total costs

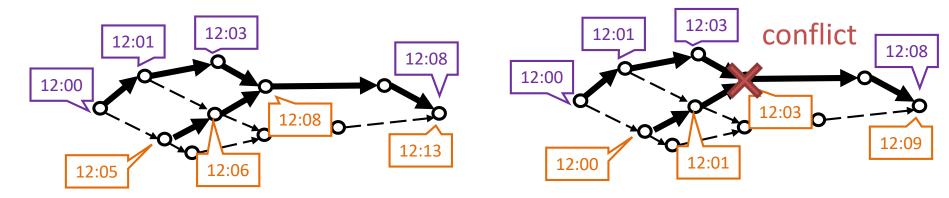


Multi-commodity Network Design Problem (Magnanti, 1984)

• To determine the selection of arcs and flow of commodities. Commodities are routed from its origin to destination satisfying total capacity constraints.

Dynamic Multi-Commodity Network Design Problem (DMCND)

Commodities are routed over a time horizon.



• Dynamics of commodities (conflicts and jams) are represented.

 \rightarrow More exact network design can be achieved.

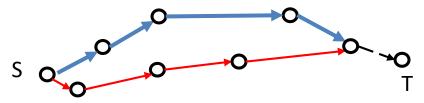
Connectivity

 Most of real-world network has connectivity between their origin and destination -> Connectivity of the selected arcs is important

Conventional works on DMCND

Few works have been developed for DMCND.

- Hall et al. (2007) developed a greedy algorithm for S-T path which has conflicts in dynamic commodities when the distance is equal.
 - \rightarrow Problem is not general



- Conversion of DMCMD into time-space network
- \rightarrow Network size issues

Our objective

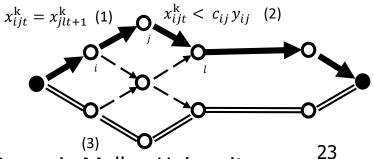
- Formulation of dynamic multi-commodity network design problem
- Effective local search algorithm

Performance indices

- Quickest flow : Minimize the sum of total time to reach destination
- Maximum flow : Maximize the total flow quantity Minium cost flow : Minimize the total costs
 - fixed costs + transportation costs

Input Output G = (N, A, K)Designed network G' = (N', A')(demand q^k , origin o_k , destination d_k) Capacity of arc $c_{i,j}$ Selection of arcs $y_{i,i} \in \{0,1\}$ Fixed costs $m_{i,i}$, transportation cost $l_{i,i}$ Flow quantity $x^{k}_{i,i,t} \in \mathbb{R}$ Time periods $T = \{0, 1, ...\}$

- Flow conservation constraints 1.
- Arc capacity constraints 2.
- 3. Connectivity constraint of the selected arcs



Two-stage heuristic algorithm

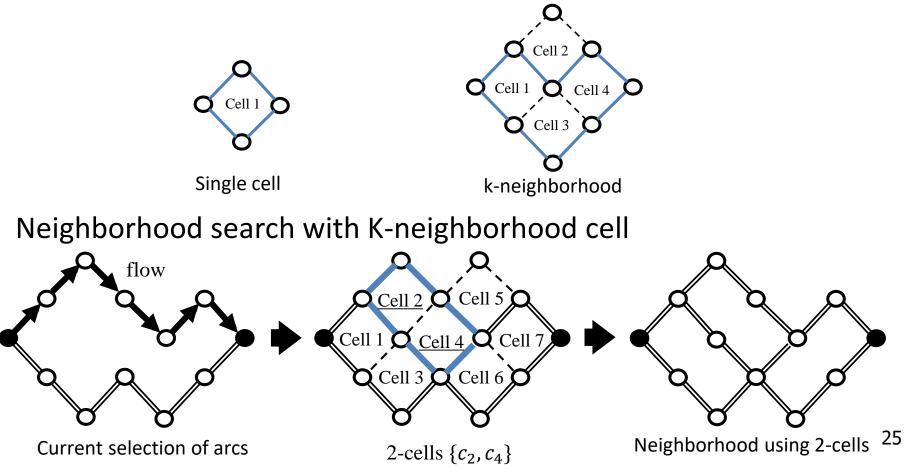
Four dimensions of x_{ijt}^k and binary $y_{i,j} \in \{0,1\}$ are too huge for computations. For only $x_{ijt}^k \rightarrow$ Dynamic multi-commodity flow is an LP problem.



Cell-based heuristics

Introduction of concept of cells

Search space for the selection of arcs is too huge ⇒Cell is defined as minimal set of arcs which constitutes a loop.



Cell-based heuristic algorithm

Properties of K-neighborhood cells

Proposition 1. All selection of arcs can be represented by cells.

 \rightarrow An optimal solution can be represented by cell-based neighborhood.

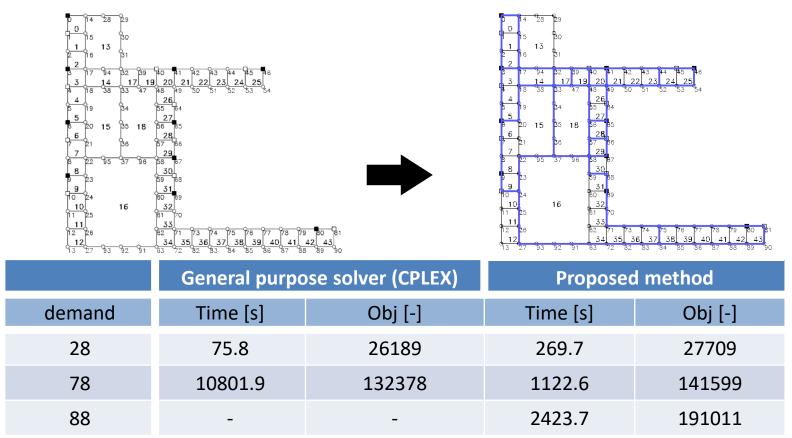
Proposition 2. Cell-based neighborhood solutions always satisfy connectivity.

The proposed algorithm can be strengthened by the following components.

- 1. Intensification of search using flow information.
- 2. Redundant arc elimination
- 3. Subtour elimination
- 4. Network size reduction
- 5. Variable neighborhood search

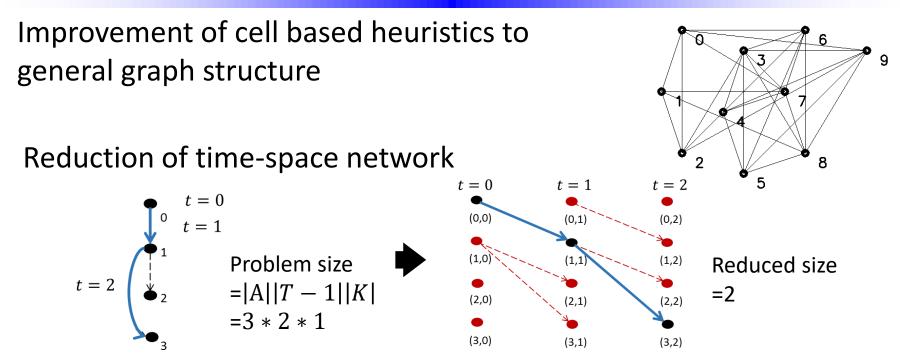
Application to guide path layout design of Automated Guided Vehicles

The layout design of AGV systems |N|=101, |A|=371

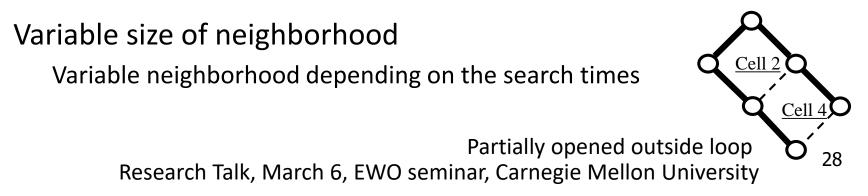


- CPLEX requires more than 10000 sec.
- The proposed method derive a solution with 1000 sec with 7% gap

Application to general graph structure



Some unreachable arcs for each time period are eliminated by backward and forward calculations



Computational experiments

Benchmark instance for capacitated fixed cost multi-commodity network design problem (Gendron and Crainic, 1994)

			General purpose solver (CPLEX)		Proposed method		Ant Colony Optimization		Slope Scaling and Lagrangean Perturbation	
M	N	A	Time [s]	Objective value	Time [s]	Objective value	Time [s]	Objective value	Time [s]	Objective value
10	10	90	2.44	1014	40.9	1227	65.1	1014	316.6	1113
10	10	56	0.95	1213	37.9	1325	68.4	1213	226.9	1213
25	10	90	3.78	2922	91.9	3140	200.9	2927	497.4	2927
100	20	204	-	-	381	17892	-	-	-	_

We have proposed a cell-based heuristic for dynamic multicommodity network design problem.

The proposed heuristic utilizes the cell-based arc selection and multi-commodity flow problem repeatedly. The performance is strengthened by variable neighborhood search and intensification of search.

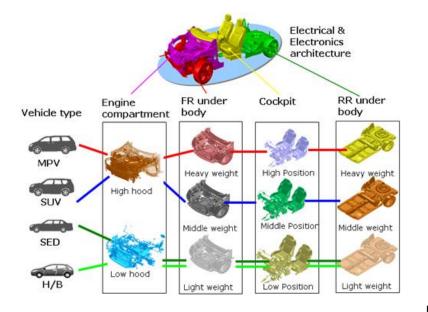
The effectiveness of the proposed method is confirmed from computational experiments.

Simultaneous Optimization of Product Configuration and Supply Chain Planning Considering Customer's Participation in Product Design

> Takuya Tsuboi and Tatsushi Nishi Graduate School of Engineering Science Osaka University, Japan

Mass Customization = Mass Production + Customization

- Modular Production: Produce a large number of modules and manufacture a variety of products by assembling them
 - → Electric appliance, Computer, Car, Bike , Shoes, Clothes...



Ex: Nissan Common Module Family

- ✓ There are main four modules: Engine compartment, Cockpit, Front underbody and Rear underbody
- ✓ Each module has appropriate variations
- A variety of vehicles can be designed by assembling these modules

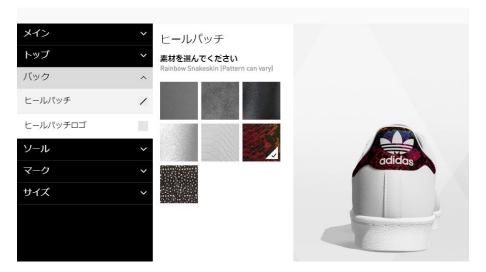
http://www.Nissanglobal.com/EN/NEWS/2012/_STORY/120227-01-e.html

Customer's participation in product design

Conventional : Product configuration is determined by manufacturer

Introduction online self-customization service

Now: Customer can determine product configuration



Shoes customization on "miadidas" (adidas) "https://shop.adidas.jp/miadidas/"

Bike customization on "Built Own Your Bike" (HARLEY DAVIDSON)

"https://www.harley-davidson.com/us/en/tools/bike-builder/index.html"

Challenges in Mass Customization

- Product configuration : Selection of products and modules Configurations of products
- Supply chain planning : Operation of facilities, Selection of suppliers Production products, Inventory, Distribution

Simultaneous optimization of product configuration and supply chain planning

□ Customer's participation in product design (e.g. Online self-customization)

Optimization model considering customer's preferences and purchasing behavior

Fluctuated costs and demands

Dynamic(multi-period) optimization model

Conventional works

- Product configuration (PC) problem
 - ✓ Maximization customer utility model (Frutos et al, 2004)
 - ✓ Consumer choice rule (Cao et al. 2012)
 Consider customer purchasing behavior
- Supply chain planning (SCP) problem

Facility location, Supplier selection ...

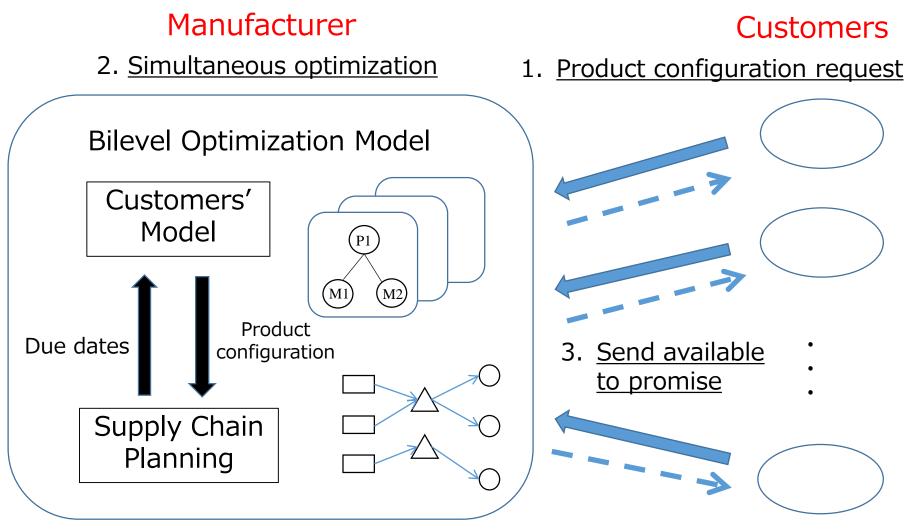
- Simultaneous optimization of PC and SCP
 - ✓ Comparison two-phase model and integrated model (Khalf et al. 2010)
 Single period, Cost minimization only
 - ✓ Stackelberg model (Yang et al. 2015)

Customer utility maximization and Cost minimization Single period, Not consider customer purchasing behavior integrated

Our research

- We formulate new multi-period model for mass customization
 - Simultaneous optimization of PC and SCP
 - Customer model based on customer purchasing behavior
 - Delayed demand satisfaction
- We optimize both customer satisfaction and total profit by Game theoretical approach
 - Leader : Manufacturer, Follower: Customers
 - Leader : Customer, Follower: Manufacturer
- We reformulate Bilevel problem into single-level problem and obtain an exact Stackelberg equilibrium

Production system and interaction between manufacturer and customers

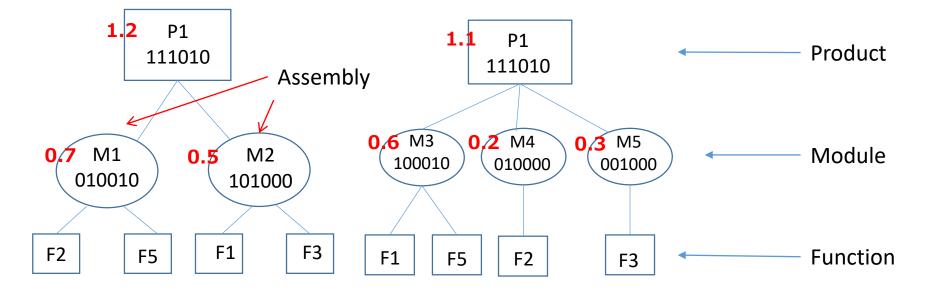


4. Customer satisfaction evaluation

Problem definition

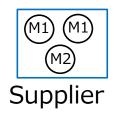
- Product and module definition
- \checkmark The module is a part of product and it has several functions
- Each product can be manufactured by assembling some modules selected from candidate modules

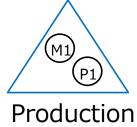
Ex: Alternative two configurations for product 1



Problem definition

- Supply chain planning is to determine the production volume of the products and the procurement volume of modules , the operation of production sites and the selection of suppliers
 - ✓ Modules are supplied by suppliers and transported to production sites
 - ✓ Products are manufactured by assembling some modules at production site
 - ✓ Products are directly sold to customers
 - ✓ Modules are stocked as inventories





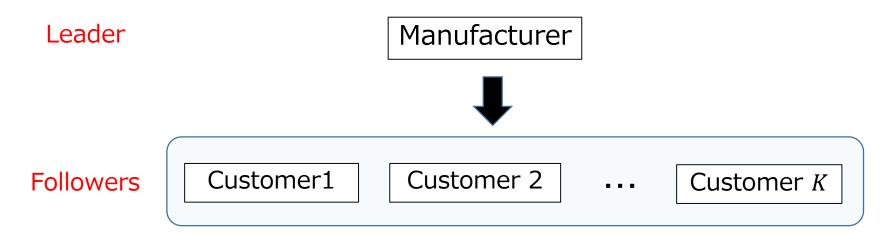
Stackelberg model between customers and manufacturer

Customers: to maximize own satisfaction Manufacturer: to maximize total profit

Different decision makers

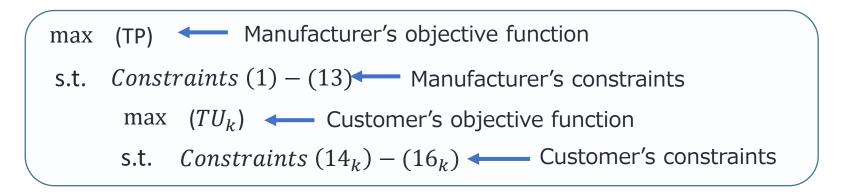
> Derive the equilibrium solution by Game theoretical approach

- We propose Bilevel optimization model that the manufacturer predicts customers' purchasing behavior and maximize total profit
 - Stackelberg model



Formulation of Bilevel problem

Bilevel programming problem between customers and manufacturer (BP)



Bilevel programming problem can not be solved directly



- Single-level reformulation
- Nested evolutionally algorithm …

 \cdot In this model, the follower's optimization problem is a LP

Reformulate BP into a single-level programming problem

Reformulation method

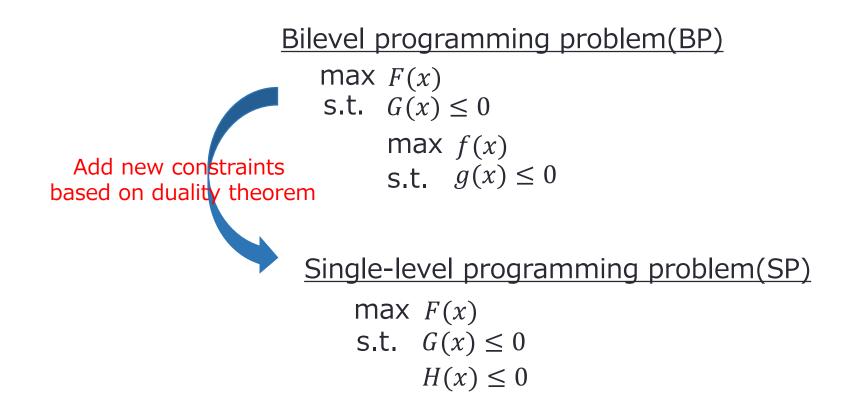
Duality Theorem [:]	In LP, if either P or D has a finite optimal value, then so does the other, the optimal values coincide, and optimal solutions to both P and D exist.
---------------------------------	---

- Transform the followers' optimization problems to some constraints based on duality theorem
- •Remove the objective functions of followers from BP and add two kinds of constraint to BP
- 1. Dual optimality condition (\rightarrow the optimality of lower-level problem)
- 2. Dual feasibility condition (\rightarrow the feasibility of lower-level problem)

Proposition : Reformulated SP is equivalent to original BP

Reformulation

• Reformulation Bilevel programming problem to Single-level programming problem



The reformulated single-level problem can be solved by general-purpose solver

Computational results

•Stackelberg equilibrium between the manufacturer and multiple customers

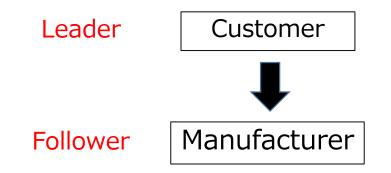
	Ins 1(T=3)	Ins 2(T=3)	Ins 3(T=4)	Ins 4(T=3)	Ins 5(T=4)
Total profit	1197.75	2681.13	5315.89	6240.17	9184.77
Cus. 1 satisfaction	331.64	338.21	603.85	541.51	563.54
Cus. 2 satisfaction	343.59	335.51	510.51	632.25	515.40
Cus. 3 satisfaction	-	381.25	527.46	540.81	525.71
Cus. 4 satisfaction	-	-	-	502.43	599.56
Cus. 5 satisfaction	-	-	-	-	467.88
Computation time(s)	25.13	119.61	1619.60	4857.80	(36346.15)

(Problem size : |P| = 4, |M| = 9, |I| = 3, |J| = 1, $\rho = 1$ or 2)

Stackelberg model between customer and manufacturer

Proposal: Bilevel optimization model that prioritize customer's requests and maximize customer satisfaction

Stackelberg model (Restriction: single customer)



Bilevel programming problem between customers and manufacturer (BP)

Computational results

■ The influence of delivery delay to supply chain

The coefficient related to product configuration (A) : 1

The coefficient related to delivery delay (B) : 0, 1, 10 ← change

SP(•)	SP(0)	SP(1)	SP(10)
Customer Satisfaction	95.49	91.77	88.53
Product configuration utility	95.49	95.49	88.53
Delivery delay penalty	0	3.72	0
Total profit	-124.69	-129.07	-172.20
Computational time[s]	3.67	6.24	5.28

(Problem size : |T| = 3, |P| = 3, |M| = 8, |I| = 2, |J| = 1, $\rho = 1$)

Customer purchasing behavior affects product configuration and supply chain planning

Conclusion and Future work

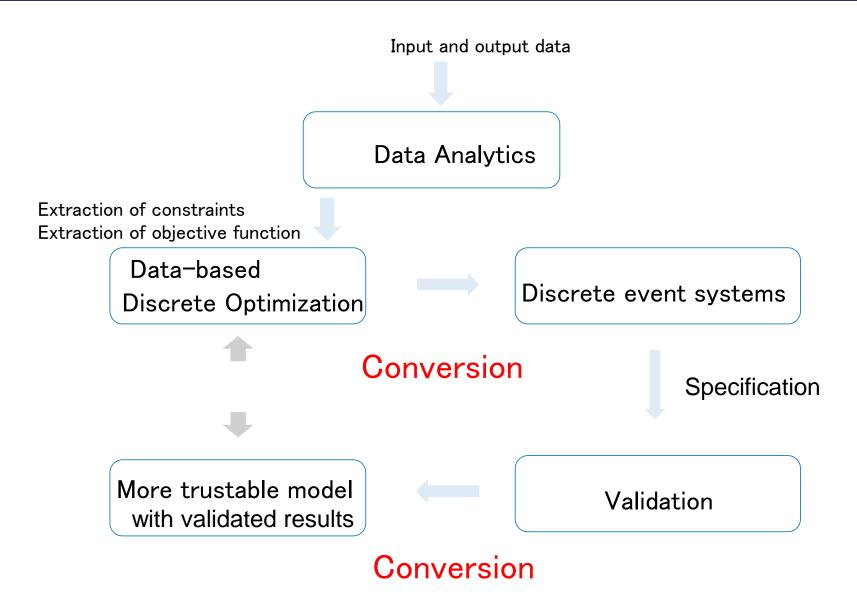
Conclusion

- We propose new multi-period model for Simultaneous optimization
 - Formulate two Bilevel programming problems
- Reformulation based on duality theorem
 - The effectiveness of the proposed model is confirmed from computational experiment

Future work

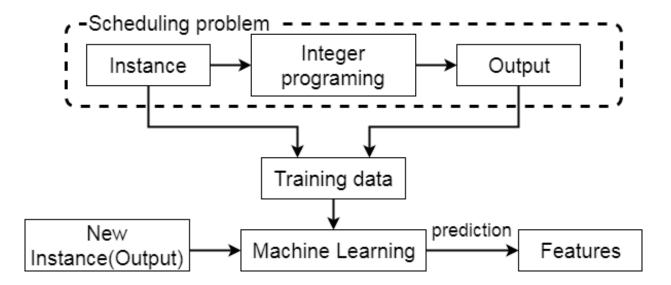
- We will develop an effective solution approach
- We will extend supply chain model
 - > Multiple customers are leader, manufacturer is follower

Integration of Data Science, AI and Optimization



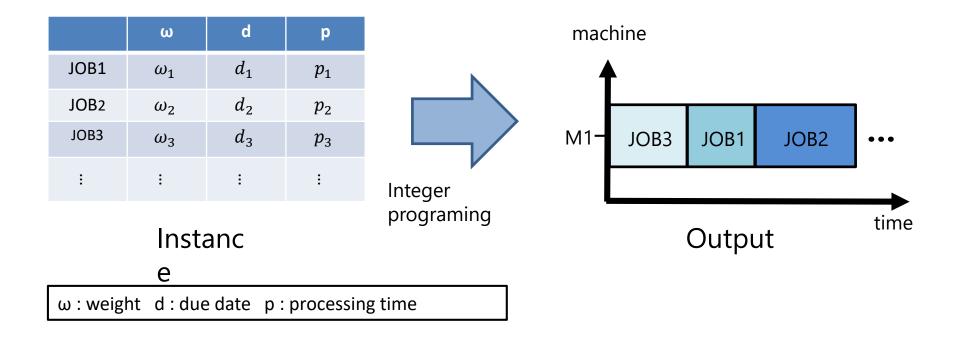
Objective

Extract objective function from input and output data of scheduling problems



Scheduling Problem

• Single Machine Scheduling Problem



Construction of scheduling problems

Variant of objective functions
 Objective Function : min z

① Weighted Completion Time

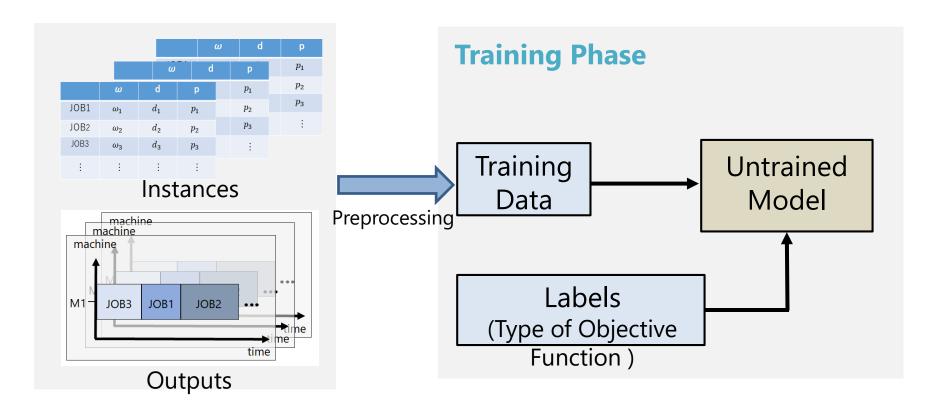
 $z = \sum \omega_i C_i$

(2) Weighted Lateness $z = \sum \omega_i L_i$

③ Weighted Number of Tardy Jobs $z = \sum \omega_i U_i$

(4) Maximum Lateness $z = \max_{i} L_i$

Neural Network



Learning Process for NN

• Preprocessing

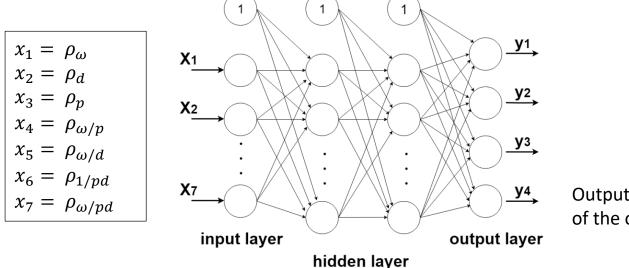
JOB1	JOB2	JOB3	
ω_1	ω2	ω ₃	 \longrightarrow Ranking τ_{ω}
d_1	d_2	d_3	 \rightarrow τ_d
p_1	p_2	p_3	
$rac{\omega_1}{p_1}$	$\frac{\omega_2}{\omega_2}$	$\frac{\omega_3}{\omega_3}$	 $\xrightarrow{\tau_p} \\ \tau_{\omega/p}$
p_1	p_2	p_3	ωγρ
$\frac{\omega_1}{d_1}$	$\frac{\omega_2}{d_2}$	$\frac{\omega_3}{d_3}$	 $\rightarrow au_{\omega/d}$
1	1	1	
$\overline{p_1d_1}$	$\overline{p_2d_2}$	$\overline{p_3d_3}$	$ \rightarrow $
ω_1	ω2	ω ₃	 \rightarrow $\tau_{\omega/pd}$ to start time
$\overline{p_1d_1}$	p_2d_2	p_3d_3	t . start time
t_1	t_2	t_3	 $ \rightarrow $

Learning Process for NN

 (2)(preprocessing) Spearman's rank correlation coefficient $\frac{6\sum_{i=1}^{N}\left(\tau_{x}(i)-\tau_{y}(i)\right)^{2}}{N^{3}-N}$ $\rho = 1$ $\tau_t \succeq \tau_p \qquad \Rightarrow \quad \rho_p$ $\begin{array}{ccc} \Rightarrow & \rho_{\omega/p} \\ \Rightarrow & \rho_{\omega/d} \\ \Rightarrow & \rho_{1/pd} \end{array}$ $\tau_t \succeq \tau_{\omega/p}$ $\tau_t \succeq \tau_{\omega/d}$ $\tau_t \geq \tau_{1/pd}$ $\tau_t \succeq \tau_{\omega/pd}$ \Rightarrow $\rho_{\omega/pd}$

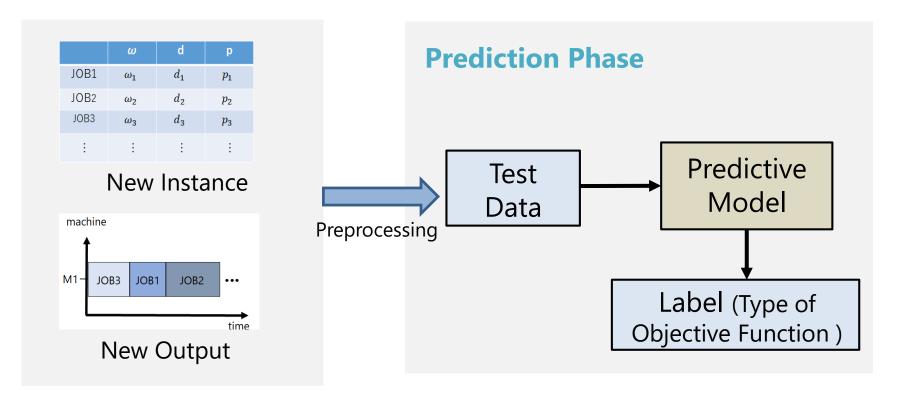
Learning Neural Network

Three layers Neural Network



Output value is the percentage of the objective function

Identification of the objective function

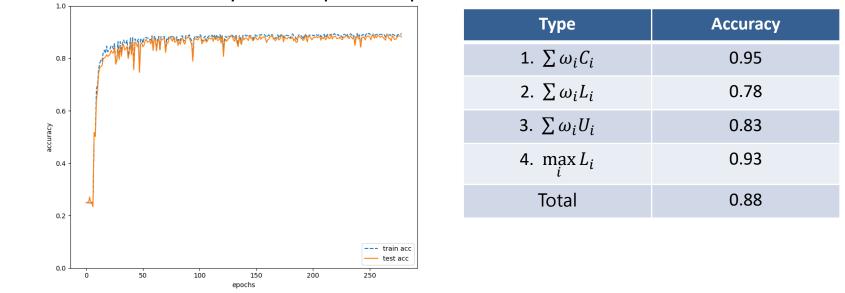


Computational Results

8000 Instances (=2000 × 4)

 \rightarrow Training Data : 7200, Test Data : 800

Transition of the accuracy with respect to episode Accuracy for each objective function



Future works

- 1. Application to Parallel Machine Scheduling Problem
- 2. Improvement of the performance of the neural network
- 3. Identification of constraints or problem features