

TU

FMCG scheduling

Martijn van Elzakker

EWO meeting, March 2011

Process Systems Engineering

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

ρ

Outline

- Problem Overview
- Modeling Approach
- Results
- **Given Work**

Process Systems Engineering

Problem overview

Main Challenge

Large computational times

- Intermediate inventory
- Limited storage capacity → Many mixer switches
 →Many periods → Large models

- 2. Considerably more storage tanks than mixers and packers
 - Model size largely determined by storage stage

Dedicated time slots

- **1.** Limited Storage → Many Periods → Large Models
 - Observation: Almost never two consecutive mixing runs of the same product class (same packer)

Empty periods ensure flexibility

Technische Universiteit Eindhoven University of Technology

Process Systems Engineering

Related Period Model

Results: Small Example Problems

Horizon: 48 hours

Demand

_		Case 1	Case 2	Case 3	Case 4
Product _ Type 1	Product 1	40,000	40,000	32,000	-
	Product 2	24,000	16,000	32,000	16,000
	Product 3	-	-	-	16,000
	Product 4	-	-	-	16,000
Product _ Type 2	Product 5	40,000	40,000	48,000	-
	Product 6	24,000	20,000	20,000	-
	Product 7	-	-	-	40,000
	Product 8				32,000

Results

Required computational time

Results

Required computational time

Full scale example case

□ Same set up: 1 mixer, 6 storage tanks, 2 packers

120 hour horizon

4 hour cleaning period every 72 hours

Product	1	2	3	4	5	6	7	8
Demand [kg]	80,000	48,000	32,000	8,000	112,000	12,000	48,000	24,000

No solution within 36 hours

Heuristics

Bottleneck

- Minimum makespan 1st packer: 118.33 hr
- Minimum makespan 2nd packer: 109.44 hr

Products on the 1st packer in optimal order

• 4-3-2-1

Feasibility optimization: 28 hours

Process Systems Engineering

Algorithm

❑ Step 1: Order products on bottleneck stage
 ❑ Step 2: Relax horizon → feasibility optimization
 170s, 124.19hr makespan

Algorithm

□ Step 4: Fix 2^{nd} half allocation \rightarrow MS minimization

692s, 118.33hr makespan

For example case with algorithm

- 528s to first feasible solution
- 1220s to optimal solution

□ No guarantee of global optimality

Conclusions

RPM model more efficient than RTN models

- Dedicated time periods improve efficiency
- Indirectly modeling inventory improves efficiency

Algorithm

- Required for larger cases
- Cannot guarantee global optimality
- Gives good results within reasonable time

Process Systems Engineering

Future work

Tactical Planning model

- 1-1.5 year horizon
- Fast moving consumer goods
 - Large number of products

 - Large uncertainty in demand and supply
- Capacity Estimation
 - How to determine maximum capacity utilization?

