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AI in Chemical Engineering

• But AI in ChE in not new!
• Has a 35-year-old literature: >3000

papers

• Highlights of AI in ChE: 1980s to 
Present

• Identify current challenges and 
opportunities
• Conceptual, Implementation, 

Organizational

• Broad overview
• Not a detailed technical presentation

• More details in my paper
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The Promise of Artificial Intelligence in Process Systems Engineering:                      
Is it here, finally?
V. Venkatasubramanian, AIChE Perspective Paper, Feb 2019



What is AI?
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“Artificial Intelligence is the study of 
how to make computers do things 
at which, at the moment, people 
are better.”

E. Rich, Artificial Intelligence (1983)



Four Phases of 
AI in ChE
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AI in ChE: Phase I (~1983 – ~2000)

• Expert Systems Era: Era of Symbolic AI

5

MYCIN: Expert system for diagnosing 
infectious diseases (1972-82)
• Stanford Computer Science and        

Medical School Project
• Knowledge base: ~600 rules 
• Diagnosed better than the physicians

Image source: 
ttps://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_expert_systems.htm

Key ideas
• Separation of domain knowledge from inference
• Flexible execution order of program
• IF-THEN Rules for Procedural Knowledge
• Semantic networks for Taxonomies



AI in ChE: Phase I
Expert Systems (~1983 - ~2000)
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• CONPHYDE (1983) Westerberg: Thermodynamic Property Prediction
• DECADE (1985) Westerberg: Catalyst Design
• MODEX (1986) Venkatasubramanian: Fault Diagnosis
• DESIGN-KIT (1987) Stephanopoulos: Process Design
• DSPL (1988) Davis: Distillation Column Design

• First course on AI in ChE was taught at Columbia (1986-88, Columbia; 1989 –
2011 at Purdue)

• Venkatasubramanian, V., Artificial intelligence in process engineering: 
Experiences from a graduate course. Chem Eng Educ., 188-192, 1986.

• First conference on AI in ChE was held at Columbia (1987)
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Fore-runner to 
the Smart 

Manufacturing 
Initiative 

(2016)

Ohio State 
(Davis)

Purdue 
(Venkatasubramanian)

University of Toronto
(Kim Vicente)
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Hierarchical Models:
Multi-Scale Causal Modeling Using AI (1995)

UNIT LEVEL
Vaidhyanathan, R. and Venkatasubramanian, V., 
“Digraph-based Models for Automated HAZOP 
Analysis”, J. of Rel. Eng. and Sys. Safety, 50, 1995.
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Intelligent Control System: 
Diagnostic ToolKit (DKit, 1993-98)

Slide 9

• Implemented in G2, tested at Exxon (Baton Rouge)
• DKit successfully diagnosed failures even before the 

alarms went off  (~1/2 – 2 hours ahead)
• DKit was licensed to Honeywell in 1998
• Little impact beyond the prototype: Implementation

and Organizational difficulties
• We were about 20-30 years too early for practical 

impact!

Mylaraswamy, Dinkar, DKit: A Blackboard-based, Distributed, 
Multi-Expert Environment for Abnormal Situation Management, 
Purdue University, PhD Thesis, 1996. 



Inverse Design of Materials (1988-2000): 
Directed Evolution in silico

◼ Forward Problem
◼ Prediction of Performance

◼ First Principles + Neural Nets

◼ Inverse Problem
◼ Prediction of Structure or 

Composition

◼ Genetic Algorithm             
(Directed Evolution in silico)

Venkatasubramanian, V., Chan, K. and Caruthers, J.M.,                
“Computer-aided Molecular Design Using Genetic Algorithms”, 
Computers and Chemical Engineering, 18 (9), 1994.

• Frances Arnold (Caltech)
• Directed Evolution in vitro
• Awarded the Nobel Prize in 

Chemistry in 2018“Genetics cut and paste process can engineer new molecules”,              
The Dallas Morning News, October 23, 1995.
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• Fuel Additives (Lubrizol, 1995-99)
• Rubber Compounds (Caterpillar, 1998-2000)



Fuel Additive Design - Lubrizol (1995-2000)

• EPA Performance Measure
• BMW Test for Intake Valve Deposit (IVD)

• Stipulated to be <100 mg over a 10,000 
mile road test

• Fuel additives are added to 
gasoline to minimize IVD

• Expensive testing
• Around $10K  for a single datum

• Not a big data problem

Intake Valve and Manifold



Hybrid AI Model:
First-Principles + Data Science
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• Sundaram, A., Ghosh, P., and Venkatasubramanian, V., “GENESYS: A Framework for Designer Guided 
Evolutionary Search  for High Performance Products”, Comput. and Chem. Eng., 23, 1999.

• Sundaram, A., Ghosh, P., Caruthers, J.M. and Venkatasubramanian, V., “Design of  Fuel Additives Using     
Neural Networks and  Evolutionary Algorithms”, AICHE J., 47, 2001.



Component “length” directly

indicative of stability of additive

Breakage of this bond 

removes “dirt” carrying 

capacity totally

Chemical nature of this component 

(polar/non-polar) controls “dirt” removing

capacity

Breaking of these bonds control “length”

First-principles-based math model tracks the structural 

distribution of fuel-additive with time due to reactive 

degradation

First-Principles-based Math Model 
for Additive Degradation



Inverse Design of Materials: Hybrid AI Model 
Directed Evolution in silico (1995-2001)

• Sundaram, A., Ghosh, P., and Venkatasubramanian, V., “GENESYS: A Framework for Designer Guided 
Evolutionary Search  for High Performance Products”, Comput. and Chem. Eng., 23, 1999.

• Sundaram, A., Ghosh, P., Caruthers, J.M. and Venkatasubramanian, V., “Design of  Fuel Additives Using  Neural 
Networks and  Evolutionary Algorithms”, AICHE J., 47, 2001.
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Reaction Modeling Suite:  
AI-based Modeling Platform for Catalyst Development (2002-05)

ExxonMobil

Novel features
• Domain-specific language for reaction chemistry
• Domain-specific compiler
• Chemistry Ontology
• Active Learning
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Katare, S., Caruthers, J.M., Delgass, W.N., and Venkatasubramanian, V., “An Intelligent System for 
Reaction Kinetic Modeling and Catalyst Design”, Ind. Eng. Chem. Res. and Dev., 43(14), 2004. 



AI in PSE: Phase II

• Machine Learning I - Neural Networks (~1990 – ~2005)
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Expert Systems Drawbacks
• Too much time, effort, and specialized expertise
• Did not scale well for industrial applications
• Backpropagation algorithm (1986)
• Bottom-up strategy
• Automatically learned patterns between input 

and output vectors by adapting the weights

Nonlinear Function Approximation and Classification Problems

Source: 
https://medium.com/@curiousily/tensorflow-for-
hackers-part-iv-neural-network-from-scratch-
1a4f504dfa8
https://neustan.wordpress.com/2015/09/05/neural-
networks-vs-svm-where-when-and-above-all-why/
http://mccormickml.com/2015/08/26/rbfn-tutorial-
part-ii-function-approximation/

Most applications in ChE were in process control and fault diagnosis 
with some industrial applications

https://medium.com/@curiousily/tensorflow-for-hackers-part-iv-neural-network-from-scratch-1a4f504dfa8
https://neustan.wordpress.com/2015/09/05/neural-networks-vs-svm-where-when-and-above-all-why/
http://mccormickml.com/2015/08/26/rbfn-tutorial-part-ii-function-approximation/


AI Applications in ChE
(1983 – 2010)

• Process monitoring and fault diagnosis

• Process control

• Process design

• Process synthesis

• Process safety analysis

• Optimization

• Planning

• Scheduling

• Materials design
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• Prototypes 
demonstrated in all 
these areas

• Even some industrial 
applications fielded

• > 3000 Papers



So, why was AI not impactful 
in ChE during (1983- 2010)? 

• Researchers made great progress on conceptual issues
• Showed how to formulate and solve these challenging problems

• But we were greatly limited by implementational and organizational
difficulties for practical impact
• Lack of computational power and computational storage

• Lack of communication infrastructure – No Internet, Wireless

• Lack of convenient software environment

• Lack of specialized hardware – e.g., NVIDIA GPU for simulations

• Lack of data

• Lack of acceptance of computer generated advice

• Costs were prohibitive

• Took too much effort, time, and money to field industrial applications

• Doing AI was just too damn hard in those years!

• We were too early, by about 20-30 years!
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What is Different Now?

• Cray-2 Supercomputer (1985)
• 1.9 GFLOPS
• 244 MHz
• 150 KW!
• $32 Million! (2010 dollars)

• Apple Watch (2015)
• 3 GFLOPS
• 1 GHz
• 1 W!
• $300!

• Performance/unit cost Gain ~150,000x 

Source: Wiki                           19



How Did this Happen?

• Basically Moore’s Law happened over the 
last ~50 years!

• All these metrics improved by orders of 
magnitude!
• Computational power
• Computational storage
• Communication  infrastructure: Internet, 

Wireless
• Convenient software infrastructure – Python, 

Java, OWL, …
• Specialized hardware – graphics processors 

(GPUs)
• Big Data
• Trust & Acceptance – Google, Yelp, Trip 

Advisor, Tinder, …

• It has become a lot easier and cheaper to 
develop AI-based solutions

20

Source: Wiki

Gordon Moore



AI in ChE: 
Entered Phase III (2005-?)

• Phase III: Machine Learning II - Data Science (2005 – Present)

• Convolution or Deep Nets 

• Reinforcement Learning

• Statistical Machine Learning

• Hierarchical feature extraction

• Important ideas, but not really new!

• What really is new are Data, GPU, and Software

• Big impact on NLP, Robotics, Vision
• Watson, Siri, Alexa, AlphaGo, Self-driving cars

21

Source: https://cdn.edureka.co/blog/wp-content/uploads/2017/05/Deep-
Neural-Network-What-is-Deep-Learning-Edureka.png



Going Forward:

Challenges and Opportunties

22
©2019 Venkatasubramanian



Gartner Hype Cycle

23

Source: Wiki

Expert Systems: 1980s

Neural Nets: 1990s

Data Science & ML: Now



Data Science and Machine Learning:
Hype vs Reality

• First of all, there is a lot of reinventing the wheel going on

• Many of the “new” techniques are really old ideas from                                                
20-30 years back
• “Look, Ma, No Hands” self-driving car project at CMU

• Minivan steered itself for 2,800 of the 2,850 miles                                  
between Pittsburgh and San Diego in July 1995

• Convolutional neural networks are from 1990

• Autoencoder neural networks are from 1991

• Inverse design of materials using directed evolution is from 1992

• Causal models and Explicable AI date from the early 1990s

• Hybrid models combining  first-principles with data-driven techniques                
are from 1995

• It’s worth reading the old papers!

24

https://www.cmu.edu/news/stories/archives/20
15/july/look-ma-no-hands.html



Data Science and Machine Learning:
Hype vs Reality

• One doesn’t necessarily need convolutional networks, 
reinforcement learning, etc., for many problems in ChE
• Other simpler and more transparent AI techniques are often adequate

• ChE or Materials Science problems are often not Big Data!
• Our domain is different from game playing, vision, and speech

• How do we leverage the prior knowledge that we already have 
about our materials, processes, and systems?

25
©2019 Venkatasubramanian



Lack of Mechanistic Understanding

• Does a self-driving car “know” and “understand” the 
concepts of momentum, acceleration, force, and 
Newton’s laws, as we do?

• Its behavior is like that of a cheetah chasing an 
antelope in the wild

• Both display great mastery of the dynamics of the 
chase, but do they “understand” these concepts?

• Current AI systems have animal-like mastery of their 
tasks, but they have not gained deeper 
“understanding” as humans do

• Mechanistic causal understanding is important in many 
ChE applications such as diagnosis, control, and safety
to build credibility

• Cost of mistakes in ChE can be quite high compared to 
recommendation systems like Yelp, Rotten Tomatoes, …

26

Source: Wiki

©2019 Venkatasubramanian



Conceptual Challenges and Opportunities:
“Easy” Problems

• Large amounts of Data + Easy to use ML tools

• Many recent industrial applications in this category
• Oil-well performance

• Wind turbines monitoring

• Yield improvement, …

• Lots of recent industrial applications of this category

27
The Promise of Artificial Intelligence in Process Systems Engineering:  Is it here, finally?
V. Venkatasubramanian, AIChE Perspective Paper, Feb 2019

• Estimating physical properties from 
structures/compositions 

• Determination of structural features
• Nanoparticle packing, …



Conceptual Challenges and Opportunities:
“Hard” Problems

• Hybrid AI Models
• First-Principles + Data-driven

• Building Physics and Chemistry into Data-driven models

• Causal models
• Building cause-and-effect relationships for generating 

explanations and insights

• Signed Digraph (SDG) Models

• Combining Symbolic and Numeric AI

• Will take ~10 years to do easily, systematically, and 
correctly

28



Conceptual Challenges and Opportunities:
“Harder” Problems

• “Watson”-like systems

• Domain-specific
• Ontologies

• Languages

• Compilers …

• Will take ~10-20 years

29
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How about
Conceptually “Hardest” Problems?

• Phase I: Expert Systems (1983-2000)

• Phase II: Neural Nets (1990-2005)

• Phase III: Data Science (2005 - ?)

• Phase IV: Self-organizing Intelligent Systems (Present?)

30



AI: Phase IV (Present?)

• Most intellectually exciting and challenging problem!

• Science of Self-organizing Intelligent Systems

• Modeling, predicting, and controlling the behavior a large 
population of self-organizing intelligent agents
• Drone swarms, Robots, Self-assembling nanostructures, Neurons, ..

• Design, Control, and Optimization through Self-organization

• Brand new Science of Emergence

• Grand conceptual challenges here

31



Science of Self-organizing Systems

• 20th Century Science was largely Reductionist

• Quantum Mechanics and Elementary Particle Physics

• Molecular Biology, Double Helix, Sequencing Human 
Genome

32



Complex Self-organizing Systems

• But can reductionism answer the following question?

• Given the properties of a neuron, can we predict the 
behavior of a system of 100 billion neurons?

• From Neuron Brain Mind

• How do you go from Parts to System?

33

Reductionism cannot answer this!
There is nothing left to “reduce”!



Two Small Clouds at the Dawn of 20th Century

◼ Lord Kelvin’s lecture, Royal Society, London, in April 1900

◼ “Nineteenth Century Clouds Over the Dynamic Theory of Heat and Light”

◼ “Physics knowledge is almost complete, except for two small “clouds” that remain 
over the horizon”

◼ These small “clouds” Revolutionized 20th Century Physics
◼ Blackbody Radiation: Quantum Mechanics

◼ Michelson-Morley Null Experiment: Relativity

Max 
Planck

Albert 
Einstein Lord Kelvin

34

http://en.wikipedia.org/wiki/File:Lord_Kelvin_photograph.jpg


“Large Cloud” at the Dawn of 21st Century

◼ How do you go from Parts to Whole?

◼ Need an Constructionist Theory of Emergent Behavior

◼ Requires a new conceptual synthesis across AI, Systems 
Engineering, Statistical Mechanics, Game Theory, and Biology

◼ What might such a theory look like?
◼ I have been pursuing this since 1983

35



Theory of Parts-to-System

◼ Individual agent properties              Emergent properties of 
millions of agents

◼ Agents are “dumb” (molecules)               System (gas)
◼ Statistical Thermodynamics 

◼ What if the agents are “intelligent”?
◼ e.g., neurons, robots, or people

◼ Can we generalize statistical thermodynamics?

◼ Statistical  Thermodynamics             Statistical Teleodynamics
(“Dumb” agents) (“Intelligent” agents)

◼ Telos means goal in Greek

36

34 years
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• Mathematical and Conceptual 
Foundations of                     
Statistical Teleodynamics

• Theory of Parts-to-System in 
Economics

• Constructionist Theory of 
Emergence of Income Distribution

• 200-year-old open question

• Conceptual synthesis of
• Political Philosophy
• Economics
• Game Theory
• Statistical Mechanics
• Information Theory
• Systems Engineering

Columbia University Press
Economics Series

July 2017 



Mathematical Theory of Emergence

◼ How do you go from Neuron to Brain to Mind?
◼ How about Statistical Teleodynamics for the Brain?
◼ What is the Mathematical Theory of Consciousness? 
◼ Most important scientific question of the 21st Century

◼ Requires a new conceptual synthesis across 

38

“Dumb” agents: Molecules

Thermodynamics

“Intelligent” agents
“Perfectly Rational” people

Neoclassical Economics

Cognitive Neuroscience

“Semi-rational” agents: Neurons 

• AI
• Systems Engineering
• Information Theory

• Statistical Mechanics
• Game Theory
• Cognitive Neuroscience

V. Venkatasubramanian, “Statistical Teleodynamics: Toward a Theory of 
Emergence”, Langmuir, 33 (42), pp. 11703–11718, 2017. 



Challenges and Opportunities

• Theory of Emergence: Parts-to-Whole
• How do you Design, Control, and Optimize via Self-Organization?

• Revolutionize Economics, Neuroscience, Political Philosophy, 
Climate Change, …

• Key is Entropy

39

Jaynes

(1922-1998)

Carnot

(1796-1832)

Clausius

(1822-1888)

Gibbs

(1839-1903)
Boltzmann 

(1844-1906)

Shannon 

(1916-2001)

Thermodynamic 
System

Cognitive  
System

Socio-Economic  
System

Consciousness?

Inequality
Justice

Entropy is Disorder

Entropy is Fairness

Entropy??



Summary
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Knowledge Modeling in ChE:
Evolution of Three Paradigms

• Artificial Intelligence         
Westerberg,  Stephanopoulos, and 
others (1980s)

• Modeling Process Engineers & Data: 
Decision-making

• Modeling Symbolic Structures and 
Relationships

41

• Differential-Algebraic Equations (DAE): 
Amundson Era (1950s)

• Modeling Process Units

• Modeling First-principles

• Optimization (MILP, MINLP):       
Sargent Era (1970s)

• Modeling Process Engineers:     
Decision-making

• Modeling Constraints



Challenges and Opportunities

• We need progress on
• Hybrid AI Models: First-Principles + Data-driven Models

• Causal modeling

• Discovery Engines: Domain-specific Ontologies, 
Languages, Compilers

• How to combine Symbolic AI with Numeric AI?

• Need to be able to scale such systems quickly, easily,  
and reliably

• Science of the 21stCentury: Theory of Emergence -
From Parts-to-Whole

42
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Thank You for Your Attention!

Questions?
45


