

Dynamic Modeling and Recipe Optimization of Polyether Polyol Processes Fall 2012 EWO Meeting

Yisu Nie¹ Lorenz T. Biegler¹ Carlos M. Villa² John M. Wassick²

¹Center for Advanced Process Decision-making Department of Chemical Engineering Carnegie Mellon University

²The Dow Chemical Company

September 27, 2012

Introduction

Polyether polyol process description

Introduction

Polyether polyol process description

- Basic procedures
 - Starters are first mixed with catalyst in the liquid phase
 - Alkylene oxides in the liquid phase are fed in controlled rates
 - The reactor temperature is controlled by the heat exchanger
 - Allowed maximum reactor pressure guarded by the vent system control valve

Modeling reaction kinetics

۹	Reaction scheme: Polypropylene glycol				
	Hydrolysis:				
	$W + M \xrightarrow{k_h} D_0$				
	Initiation:				
		$G_0 + M \xrightarrow{k_i} G_1$			
		$Q_0 + M \xrightarrow{k_1} Q_1$			
	Propagation:				
		$G_n + M \xrightarrow{\kappa_p} G_{n+1} (n \ge 1)$			
		$Q_n + M \xrightarrow{k_p} Q_{n+1} (n \ge 1)$			
	Transfer:				
		$G_n + M \xrightarrow{k_t} D_n + Q_0 (n \ge 0)$			
		$Q_n + M \xrightarrow{k_t} R_n + Q_0 (n \ge 0)$			
	Exchange:				
		$G_n + D_m \xrightarrow{k_e} D_n + G_m (n, m \ge 0)$			
		$Q_n + R_m \xrightarrow{k_e} R_n + Q_m (n, m \ge 0)$			
		$G_n + R_m \underset{k_e}{\underbrace{\kappa_e}} D_n + Q_m (n, m \ge 0)$			

Materia	1			
Starter	Propylene glycol (PG)			
	Water			
Catalys	t KOH			
Monom	er PO			
Notatio	n			
Μ	monomers (PO)			
W	water			
Gn	growing product chains $(P_n C$			

- second product chains $(P_n O^- K^+)$ dormant product chains $(P_n OH)$ D_n
- growing unsat chains $(U_n O^- K^+)$ Q_n
- dormant unsat chains (UnOH) Rn

$$\begin{array}{ll} \mathrm{P}_n & \mathrm{CH}_3(\mathrm{PO})_n \\ \mathrm{U}_n & \mathrm{CH}_2 = \mathrm{CHCH}_2(\mathrm{PO})_n \end{array}$$

(日) (周) (三) (三)

Index

n, mrepeating units

3

A first-principle dynamic model

Model equations

Population balances

$$\frac{\mathrm{d}(V[\mathbf{G}_{\mathbf{n}}])}{\mathrm{d}t} = V(k_{p}([\mathbf{G}_{\mathbf{n}-1}] - [\mathbf{G}_{\mathbf{n}}])[\mathbf{M}] - k_{t}[\mathbf{G}_{\mathbf{n}}][\mathbf{M}] - k_{e}[\mathbf{G}_{\mathbf{n}}] \sum_{m=0}^{N} ([\mathbf{D}_{\mathbf{m}}] + [\mathbf{R}_{\mathbf{m}}]) + k_{e}[\mathbf{D}_{\mathbf{n}}] \sum_{m=0}^{N} ([\mathbf{G}_{\mathbf{m}}] + [\mathbf{Q}_{\mathbf{m}}]))$$

$$\frac{\mathrm{d}(V[\mathbf{D}_{\mathbf{n}}])}{\mathrm{d}t} = V(k_{h}[\mathbf{W}][\mathbf{M}] + k_{t}[\mathbf{G}_{\mathbf{n}}][\mathbf{M}] + k_{e}[\mathbf{G}_{\mathbf{n}}] \sum_{m=0}^{N} ([\mathbf{D}_{\mathbf{m}}] + [\mathbf{R}_{\mathbf{m}}]) - k_{e}[\mathbf{D}_{\mathbf{n}}] \sum_{m=0}^{N} ([\mathbf{G}_{\mathbf{m}}] + [\mathbf{Q}_{\mathbf{m}}]))$$

Similar balances for unsat populations (Q and $\rm R)$

< 回 > < 三 > < 三 >

- Monomer balance
- Total mass balance
- Volume determination
- Vapor-liquid equilibrium
 - Liquid phase activities: Flory-Huggins theory
 - Vapor pressures: Antoine equation

Reformulation of the first-principle model

Characteristics of the obtained model

- A large-scale differential-algebraic equation (DAE) system
- Synergistic fast and slow dynamic modes
 - Caused by fast exchange reactions
 - Stiff differential equations
 - Numerical difficulties in optimization
 - A reformulation procedure

Reformulation of the first-principle model

Characteristics of the obtained model

- A large-scale differential-algebraic equation (DAE) system
- Synergistic fast and slow dynamic modes
 - Caused by fast exchange reactions
 - Stiff differential equations
 - Numerical difficulties in optimization
 - A reformulation procedure

A nullspace projection method for equilibrium reactions

- Separating fast and slow dynamic components
- Modeling fast dynamics as algebraic equations
- + Systematic procedure based on linear algebra

- A TE N - A TE N

Reformulated propoxylation model

- $\bullet~$ Two pseudo-species introduced: ${\rm X}={\rm G}+{\rm D}~~{\rm Y}={\rm Q}+{\rm R}$
- Population balances

$$\frac{\mathrm{d}(\boldsymbol{V}[\mathbf{X}_{n}])}{\mathrm{d}t} = \boldsymbol{V}\boldsymbol{k}_{p}([\mathbf{G}_{n-1}] - [\mathbf{G}_{n}])[\mathbf{M}]$$
$$\frac{\mathrm{d}(\boldsymbol{V}[\mathbf{Y}_{n}])}{\mathrm{d}t} = \boldsymbol{V}\boldsymbol{k}_{p}([\mathbf{Q}_{n-1}] - [\mathbf{Q}_{n}])[\mathbf{M}]$$

• Quasi-steady states of the equilibrium reactions

$$X_n n_c = G_i (n_i + n_u)$$

$$Y_n n_c = Q_i (n_i + n_u)$$

- *n_c* total moles of catalyst
- *n_i* total moles of initiator
- n_u total moles of unsaturated chains

Important remarks

- Complete with additional equations: monomer balance, VLE, etc.
- An index-one DAE system
- + Fewer differential variables and equations
- + Less stiff differential equations

Process Recipe Optimization

Carnegie Mellon Dow

A dynamic optimization formulation

Objective function Minimizing the batch time of polymerization

- Constraints Reformulated process model
 - Product quality constraints
 - Target molecular weight
 - Requirement on the unsaturation value
 - Final time monomer concentration

Process safety constraints

- Heat removal duty
- Adiabatic end temperature due to loss of cooling

Control variables Reactor temperature and monomer feed rate

Yisu Nie (Carnegie	Mellon	University)	
	Carnegie		oniter stey j	

Production of polypropylene glycol

Process specifications

Initial charge condition
 M

PG and
KOH
PO

Water

Process constraints

- Product molecular weight \ge 950 g/mol
- $\,{\scriptstyle \triangleright}\,$ Product unsaturation value $\leqslant 0.032~{\rm mmol/g\,polyol}$
- Unreacted PO \leq 120 ppm
- ▶ Heat exchanger load $\leq H_{max}$ kW
- Adiabatic end temperature $T_{ad} T_b \leqslant 80^{\circ} \mathrm{C}$

(日本) (日本) (日本)

Production of polypropylene glycol

Process specifications

- Initial charge condition
- Initiator: PG and Water Catalyst: KOH Monomer: PO
- Process constraints
 - Product molecular weight \ge 950 g/mol
 - $\,\triangleright\,$ Product unsaturation value $\leqslant 0.032~{\rm mmol/g\,polyol}$
 - Unreacted PO ≤ 120 ppm
 - Heat exchanger load $\leq H_{max} \text{ kW}$
 - Adiabatic end temperature $T_{ad} T_b \leqslant 80^{\circ}\mathrm{C}$

Model validation on reactor pressure: model prediction vs. plant data

Yisu Nie (Carnegie Mellon University)

Fall 2012 EWO Meeting

Production of polypropylene glycol

Optimization results

• Optimization model statistics and solution

Opt. soln	MW (g/mol)	Unsat $(\rm mmol/g)$	PO(ppm)	# of var.	# of con.
0.575	950	0.028	120	10946	11043

- Batch time reduced by 42.5% (base case batch time is normalized to 1)
- Product quality constraints are satisfied at the end of the operation

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Production of polypropylene glycol

Optimization results

• Optimization model statistics and solution

Opt. soln	MW (g/mol)	Unsat $(\rm mmol/g)$	PO(ppm)	# of var.	# of con.
0.575	950	0.028	120	10946	11043

- Batch time reduced by 42.5% (base case batch time is normalized to 1)
- Product quality constraints are satisfied at the end of the operation

- Important remarks
 - Piecewise linear control profiles with continuity on finite element boundaries
 - U-shape temperature profile and higher average feed rates
 - Merging the feeding and digestion periods

- 4 同 ト - 4 三 ト - 4 三

Case Study Results

Optimal product molecular weight distributions (MWD)

• MWD of the product (top) and unsat (bottom) polymers

- Important remarks
 - Near Poisson distribution for the product polymers
 - Flat distribution for the unsat polymers

Yisu Nie (Carnegie Mellon University)

Fall 2012 EWO Meeting

Case Study Results

Optimal product polymer property profiles

• Unsat number, functionality, HEW, and OH number

- Important remarks
 - All widely used property indexes
 - All in proper ranges at final time

Yisu Nie (Carnegie Mellon University)

Fall 2012 EWO Meeting

- 一司

Conclusions and acknowledgments

Project timeline

- Nov. 2009 Dec. 2011
 - Proof-of-concept: integration of scheduling and dynamic optimization
- Jan. 2012 May. 2012
 - Application at Dow: polyether polyols
 - First-principle reactor model development
 - Optimization case study: 3000-MW product of PO and glycerol
- Jun. 2012 Aug. 2012
 - Polyol process: reactor model development con't
 - VLE model and reactor pressure calculations
 - 2 Model calibration against plant data
 - Opolymerization of EO and PO and multi-step products
 - Optimization case study: polypropylene glycol
 - * Recipe design pattern change
- Sep. 2012 Dec. 2013
 - Modeling and optimization of copolymers, multi-step products
 - Simultaneous scheduling and dynamic optimization
 - Multiple reactors and possible incorporation of finishing trains
 - Real-time constraints on shared resources
 - Methodology generalization and further extensions

・ 何 ト ・ ヨ ト ・ ヨ ト

Conclusions and acknowledgments

Project timeline

- Nov. 2009 Dec. 2011
 - Proof-of-concept: integration of scheduling and dynamic optimization
- Jan. 2012 May. 2012
 - Application at Dow: polyether polyols
 - First-principle reactor model development
 - Optimization case study: 3000-MW product of PO and glycerol
- Jun. 2012 Aug. 2012
 - Polyol process: reactor model development con't
 - VLE model and reactor pressure calculations
 - 2 Model calibration against plant data
 - Opolymerization of EO and PO and multi-step products
 - Optimization case study: polypropylene glycol
 - * Recipe design pattern change
- Sep. 2012 Dec. 2013
 - Modeling and optimization of copolymers, multi-step products
 - Simultaneous scheduling and dynamic optimization
 - Multiple reactors and possible incorporation of finishing trains
 - Real-time constraints on shared resources
 - Methodology generalization and further extensions

Thank you

I am glad to take any questions

Yisu Nie (Carnegie Mellon University)

The nullspace projection method

Method development

• A generic reaction system with irreversible and equilibrium reactions

$$\dot{x} = \begin{bmatrix} A_1 & A_2 \end{bmatrix} \begin{bmatrix} r_1(x) \\ \sigma r_2(x) \end{bmatrix} + g(t)$$

• Multiplying with a non-singular matrix $\begin{bmatrix} \mathcal{Y}^{\mathrm{T}} & \mathcal{Z}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}} (\mathcal{Z}^{\mathrm{T}} A_2 = 0)$

$$\begin{bmatrix} \mathcal{Y}_{a}^{\mathrm{T}} \\ \mathcal{Y}_{b}^{\mathrm{T}} \\ \mathcal{Z}^{\mathrm{T}} \end{bmatrix} \dot{x} = \begin{bmatrix} \mathcal{Y}_{a}^{\mathrm{T}} \\ \mathcal{Y}_{b}^{\mathrm{T}} \\ \mathcal{Z}^{\mathrm{T}} \end{bmatrix} A_{1} r_{1}(x) + \begin{bmatrix} 0 \\ \sigma f(x) \\ 0 \end{bmatrix} + \begin{bmatrix} \mathcal{Y}_{a}^{\mathrm{T}} \\ \mathcal{Y}_{b}^{\mathrm{T}} \\ \mathcal{Z}^{\mathrm{T}} \end{bmatrix} g(t)$$

• Stable solution needs f(x) = 0, when $\sigma \to \infty$

Reformulated system

$$\begin{aligned} \mathcal{Y}_{a}^{\mathrm{T}} \dot{x} &= \mathcal{Y}_{a}^{\mathrm{T}} A_{1} r_{1}(x) + \mathcal{Y}_{a}^{\mathrm{T}} g(t) \\ \mathbf{f}(\mathbf{x}) &= 0 \\ \mathcal{Z}^{\mathrm{T}} \dot{x} &= \mathcal{Z}^{\mathrm{T}} A_{1} r_{1}(x) + \mathcal{Z}^{\mathrm{T}} g(t) \end{aligned}$$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

The nullspace projection method

A toy example

- Reaction system $A \xrightarrow{k_1} B \xrightarrow{k_2}_{k_3} C$
- Mass balance equations

$$\dot{a} = -k_1 a$$
 $a(0) = a_0$
 $\dot{b} = k_1 a - k_2 b + k_3 c$ $b(0) = 0$
 $\dot{c} = k_2 b - k_3 c$ $c(0) = 0$

Analytical solution

The nullspace projection method

A toy example

- Reformulation matrix $\mathcal{Y}^{\mathrm{T}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad \mathcal{Z}^{\mathrm{T}} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$
- Reformulated system

$$\dot{a} = -k_1 a \qquad \qquad \dot{a} = -k_1 a \qquad a(0) = a_0$$

$$\dot{b} = k_1 a - k_2 b + k_3 c \implies \qquad \dot{s} = k_1 a \qquad s(0) = 0$$

$$\dot{c} = k_2 b - k_3 c \qquad \qquad s = b + c \qquad k_2 b = k_3 c$$

Analytical solution

The nullspace projection method

A toy example

- Reformulation matrix $\mathcal{Y}^{\mathrm{T}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad \mathcal{Z}^{\mathrm{T}} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$
- Reformulated system

$$\dot{a} = -k_1 a \qquad \qquad \dot{a} = -k_1 a \qquad a(0) = a_0$$

$$\dot{b} = k_1 a - k_2 b + k_3 c \implies \qquad \dot{s} = k_1 a \qquad s(0) = 0$$

$$\dot{c} = k_2 b - k_3 c \qquad \qquad s = b + c \qquad k_2 b = k_3 c$$

Analytical solution

Process constraint profiles

- Important remarks
 - Heat exchanger capacity is the main constraining factor
 - The adiabatic end temperature constraint is also limiting process performance

Yisu Nie (Carnegie Mellon University)