
1

Optimal Crane Scheduling

Ionu Aron
IBM Watson Lab

Latife Genç Kaya, John Hooker
Carnegie Mellon University

Iiro Harjunkoski, Marco Fahl
ABB Group

November 2006

2

Thanks to…

• PITA – Pennsylvania
Infrastructure Technology
Alliance.

• ABB Group

3

Problem

• Schedule 2 cranes to transfer material between
locations in a manufacturing plant, e.g. copper
processing.

4

Problem

– Cranes can move on a common track.

5

Problem

– Cranes cannot pass each other.

6

Problem

– Vertical movement.

7

Problem

– Vertical movement.
• Horizontal and vertical movement can be simultaneous.

8

Problem

• Constraints:
– As many as 300 jobs, each with a time window and

priority.
– Precedence relations between jobs.
– A job may require several stops.

• Objective: minimize total penalty
– Penalties reflect deviation from desired start times or

completion times.
– Main objective is to follow production schedule as

closely as possible.

9

Problem

• Three problems in one:
– Assign jobs to cranes.
– Find ordering of jobs on each crane.
– Find space-time trajectory of each crane.

• Crane scheduling problems are coupled since the cranes
must not pass one another.

10

Two-phase Algorithm

• Phase 1: Local search
– Assign jobs to cranes
– Sequence jobs on each crane
– Solve simultaneously by tabu-like local search.

• Phase 2: Dynamic programming (DP)
– Find optimal space-time trajectory for the cranes.
– Solve for the two cranes simultaneously.
– One crane can yield to another.

11

Local Search

• Neighborhood is defined by two types of moves.
– Change assignment
– Change sequence

• Evaluation of moves
– Use an approximate evaluation function to limit

neighborhood.
– Check best moves with DP (phase 2).

12

Dynamic Programming

• Find optimal space-time trajectory for each
crane.
– Sequence of jobs on each crane is given.
– Minimize sum of penalties, which depend on pickup

and delivery times.

13

Dynamic Programming

• Each job consists of one or more “segments.”
– Order of segments within a job is fixed.

• Each segment consists of loading, movement to
another position, unloading.

• Given for each segment:
– Loading and unloading positions.
– Time required to load, unload.
– Min time for crane movement.

14

Dynamic Programming

• Space-time trajectory of a crane for one
segment

time

distance

Pickup
point

Delivery
point

Loading

Unloading

Constant speed
while moving

15

Dynamic Programming

• High resolution needed to track crane motion.
– Time horizon: hours
– Granularity: 10-second intervals

• Thousands of discrete times

– Cranes are stationary most of the time
• While loading/unloading
• But motion is fast when it occurs (e.g. 1 meter/sec)

– Feasibility is main issue
• No obvious role for approximate DP

16

Dynamic Programming

• Main issue: size of state space.

• State variables:
– Position of each crane on track.
– How long each crane has been loading/unloading.
– Current segment in process for each crane

• Negative number if on the way to load the segment.
• Positive number if loading, unloading, or on the way to

unload.

17

Computes
penalty

()
















+
















=
















∑ +

⋅

⋅

⋅

















∈
















+⋅

+⋅

+⋅

+

+⋅

+⋅

+⋅

⋅

⋅

⋅ c
tcctct

t

t

t

t

s

u

x

S

s

u

x

t

t

t

t ssg

s

u

x

f

s

u

x

f

t

t

t

t

t

t
1,

1,

1,

1,

1 ,min

1,

1,

1,

Dynamic Programming

• DP recursion:

Transitions that satisfy constraints

Position

Loading/
unloading
time

Segment

18

Dynamic Programming

• State space reduction
– Canonical trajectory for the left crane:

Wait as
long as
possible

Move as
soon as
possible

Follow leftmost trajectory that
never moves backward
(away from destination)

19

Dynamic Programming

• State space reduction
– Minimal trajectory for left crane, given right crane

trajectory:

Depart from
canonical
trajectory

At each moment, follow
canonical trajectory or right

crane’s trajectory, whichever is
further to the left

Left crane Right crane

20

Dynamic Programming

• State space reduction
– Properties of the minimal trajectory:

• The left crane never stops
en route unless it is adjacent
to the right crane.

• The left crane never moves
backward unless it is adjacent
to the right crane.

Depart from
canonical
trajectory

Left crane Right crane

21

Dynamic Programming

• State space reduction
– Theorem: Given optimal trajectories for both cranes,

either crane’s trajectory in each segment can be
replaced by a minimal trajectory without sacrificing
optimality or feasibility.

22

Suppose these segments are
part of an optimal trajectory.

23

Suppose these segments are
part of an optimal trajectory.

Change left crane to its
minimal trajectory.

24

Suppose these segments are
part of an optimal trajectory.

Change left crane to its
minimal trajectory.

This is still feasible, because

• there is no interference
from right crane

• pickup and delivery times
are unchanged.

25

Suppose these segments are
part of an optimal trajectory.

Change left crane to its
minimal trajectory.

This is still feasible, because

• there is no interference
from right crane

• pickup and delivery times
are unchanged.

Cost is the same if it depends
only on pickup & delivery
times.

26

Dynamic Programming

• State space reduction
– Corollary: Exclude state transitions in which a crane

stops en route, or moves backward, unless it is
adjacent to the other crane.

27

Dynamic Programming

• State space reduction
– Since the main objective is to follow the production

schedule, fairly tight time windows can be used.
– This reduces the number of jobs in the state space at

any one time.
– If necessary, time horizon can be split into segments

to be solved separately.

28

Dynamic Programming

• Preliminary computational results.
– 10 crane positions (realistic).
– Penalize time lapse between release time and pickup.
– Minimize sum of penalties.
– Theoretical maximum number of states in any given

stage is approximately 108 – 109.

29

• Computational results --- to be added.

15 jobs, 30 segments

30

State space size

0
200
400
600
800

1000
1200
1400
1600

0 200 400 600 800

Iteration

S
ta

te
s

31

Precedence Constraints

• The crane problem has more complex
precedence constraints than ordinarily occur in
scheduling problems.
– Hard precedence constraints apply to groups of jobs.
– Soft precedence constraints are enforced by

imposing penalties.
– Some precedence constraints are enforced by

combinations of hard and soft constraints.

32

Precedence Constraints

• Hard constraint
– Let S, T be sets of jobs.
– S < T means that all jobs in S assigned to a given

crane must run before any job in T assigned to that
crane.

• Jobs within S may occur in any order, similarly for T.
• {cranes that perform the jobs in S }

= {cranes that perform the jobs in T }
• Jobs in neither S nor T can run between S and T.

33

Precedence Constraints

• Soft constraint
– Assign penalty to gap between release time and start

time of a job.
– If release time of job i precedes release time of job j,

we can impose a soft i < j by assigning high
penalties to both jobs.

34

Precedence Constraints

• Consecutive jobs
– Suppose S < T and S, T should occur consecutively.

• There should be no jobs i, j, k assigned to the same crane
such that i ∈ S, j ∉ S∪T, k ∈ T, and j runs between i and k.

– To enforce this:
• Impose S < T.
• Give jobs in S very similar release times to jobs in T.
• Impose high penalties on jobs in S, T.

35

Assignment and Sequencing

• Heuristic algorithm:
– Form initial assignment/sequencing with simple

nearest job heuristic.
– Call DP repeatedly with increasing time windows until

feasible solution is found or max time windows
reached.

– Move to random neighboring solution
• Consider neighbors with estimated penalty within

15-20% of best solution found so far.

36

Assignment and Sequencing

• Penalty estimate:
– Assume each job finishes at EFT + 10%.

• Local search
– Select randomly from the following:

• Move a random job from one crane to the other
• Swap cranes for a random pair of jobs
• Swap positions of a random pair of jobs on one crane

37

Combined Algorithm

3328

3324

1212

Time to
feasible
solution*

(sec)

Iterations to
first feasible

solution

Jobs

Preliminary Computational Results

*Only one feasible solution found.

38

Future Work

• Generate nogood constraints from DP solution.
– Identify a subsequence of jobs (assigned to the same

crane) that is responsible for infeasibility.
– Create a nogood constraint that prevents heuristic

phase from assigning this subsequence to the same
crane again.

