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Problem

• Schedule 2 cranes to transfer material between 
locations in a manufacturing plant, e.g. copper 
processing.



4

Problem

– Cranes can move on a common track.



5

Problem

– Cranes cannot pass each other.
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Problem

– Vertical movement.
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Problem

– Vertical movement.
• Horizontal and vertical movement can be simultaneous.



8

Problem

• Constraints:
– As many as 300 jobs, each with a time window and 

priority.
– Precedence relations between jobs.
– A job may require several stops.

• Objective: minimize total penalty
– Penalties reflect deviation from desired start times or 

completion times.
– Main objective is to follow production schedule as 

closely as possible.
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Problem

• Three problems in one:
– Assign jobs to cranes.
– Find ordering of jobs on each crane.
– Find space-time trajectory of each crane.

• Crane scheduling problems are coupled since the cranes 
must not pass one another. 
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Two-phase Algorithm

• Phase 1: Local search
– Assign jobs to cranes
– Sequence jobs on each crane
– Solve simultaneously by tabu-like local search.

• Phase 2: Dynamic programming (DP)
– Find optimal space-time trajectory for the cranes.
– Solve for the two cranes simultaneously.
– One crane can yield to another.
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Local Search

• Neighborhood is defined by two types of moves.
– Change assignment
– Change sequence

• Evaluation of moves
– Use an approximate evaluation function to limit 

neighborhood.
– Check best moves with DP (phase 2).
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Dynamic Programming

• Find optimal space-time trajectory for each 
crane.
– Sequence of jobs on each crane is given.
– Minimize sum of penalties, which depend on pickup 

and delivery times.
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Dynamic Programming

• Each job consists of one or more “segments.”
– Order of segments within a job is fixed.

• Each segment consists of loading, movement to 
another position, unloading.

• Given for each segment:
– Loading and unloading positions.
– Time required to load, unload.
– Min time for crane movement.
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Dynamic Programming

• Space-time trajectory of a crane for one 
segment

time

distance

Pickup 
point

Delivery 
point

Loading

Unloading

Constant speed 
while moving
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Dynamic Programming

• High resolution needed to track crane motion.
– Time horizon: hours
– Granularity: 10-second intervals

• Thousands of discrete times

– Cranes are stationary most of the time
• While loading/unloading
• But motion is fast when it occurs (e.g. 1 meter/sec)

– Feasibility is main issue
• No obvious role for approximate DP
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Dynamic Programming

• Main issue: size of state space.

• State variables:
– Position of each crane on track.
– How long each crane has been loading/unloading.
– Current segment in process for each crane

• Negative number if on the way to load the segment.
• Positive number if loading, unloading, or on the way to 

unload.
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Dynamic Programming

• DP recursion:

Transitions that satisfy constraints

Position

Loading/
unloading 
time

Segment
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Dynamic Programming

• State space reduction
– Canonical trajectory for the left crane:

Wait as 
long as 
possible

Move as 
soon as 
possible

Follow leftmost trajectory that 
never moves backward 
(away from destination)
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Dynamic Programming

• State space reduction
– Minimal trajectory for left crane, given right crane 

trajectory:

Depart from 
canonical 
trajectory

At each moment, follow 
canonical trajectory or right 

crane’s trajectory, whichever is 
further to the left

Left crane Right crane
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Dynamic Programming

• State space reduction
– Properties of the minimal trajectory:

• The left crane never stops 
en route unless it is adjacent 
to the right crane.

• The left crane never moves 
backward unless it is adjacent 
to the right crane.

Depart from 
canonical 
trajectory

Left crane Right crane
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Dynamic Programming

• State space reduction
– Theorem: Given optimal trajectories for both cranes, 

either crane’s trajectory in each segment can be 
replaced by a minimal trajectory without sacrificing 
optimality or feasibility.
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Suppose these segments are 
part of an optimal trajectory.
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Suppose these segments are 
part of an optimal trajectory.

Change left crane to its 
minimal trajectory.
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Suppose these segments are 
part of an optimal trajectory.

Change left crane to its 
minimal trajectory.

This is still feasible, because

• there is no interference 
from right crane

• pickup and delivery times 
are unchanged.
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Suppose these segments are 
part of an optimal trajectory.

Change left crane to its 
minimal trajectory.

This is still feasible, because

• there is no interference 
from right crane

• pickup and delivery times 
are unchanged.

Cost is the same if it depends 
only on pickup & delivery 
times.
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Dynamic Programming

• State space reduction
– Corollary:  Exclude state transitions in which a crane 

stops en route, or moves backward, unless it is 
adjacent to the other crane.
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Dynamic Programming

• State space reduction
– Since the main objective is to follow the production 

schedule, fairly tight time windows can be used.  
– This reduces the number of jobs in the state space at 

any one time.
– If necessary, time horizon can be split into segments 

to be solved separately.
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Dynamic Programming

• Preliminary computational results.
– 10 crane positions (realistic).
– Penalize time lapse between release time and pickup.
– Minimize sum of penalties.
– Theoretical maximum number of states in any given 

stage is approximately 108 – 109.
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• Computational results --- to be added.

15 jobs, 30 segments
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State space size
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Precedence Constraints

• The crane problem has more complex 
precedence constraints than ordinarily occur in 
scheduling problems.
– Hard precedence constraints apply to groups of jobs.
– Soft precedence constraints are enforced by 

imposing penalties.
– Some precedence constraints are enforced by 

combinations of hard and soft constraints.
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Precedence Constraints

• Hard constraint
– Let S, T be sets of jobs.
– S < T means that all jobs in S assigned to a given 

crane must run before any job in T assigned to that 
crane.

• Jobs within S may occur in any order, similarly for T.
• {cranes that perform the jobs in S } 

= {cranes that perform the jobs in T }
• Jobs in neither S nor T can run between S and T.
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Precedence Constraints

• Soft constraint
– Assign penalty to gap between release time and start 

time of a job.
– If release time of job i precedes release time of job j, 

we can impose a soft  i < j by assigning high 
penalties to both jobs.
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Precedence Constraints

• Consecutive jobs
– Suppose S < T and S, T should occur consecutively.

• There should be no jobs i, j, k assigned to the same crane 
such that i ∈ S, j ∉ S∪T, k ∈ T, and j runs between i and k.

– To enforce this:
• Impose  S < T.
• Give jobs in S very similar release times to jobs in T.
• Impose high penalties on jobs in S, T.
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Assignment and Sequencing

• Heuristic algorithm:
– Form initial assignment/sequencing with simple 

nearest job heuristic.
– Call DP repeatedly with increasing time windows until 

feasible solution is found or max time windows 
reached.

– Move to random neighboring solution 
• Consider neighbors with estimated penalty within 

15-20% of best solution found so far.
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Assignment and Sequencing

• Penalty estimate:
– Assume each job finishes at EFT + 10%.

• Local search
– Select randomly from the following:

• Move a random job from one crane to the other
• Swap cranes for a random pair of jobs
• Swap positions of a random pair of jobs on one crane
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Combined Algorithm
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Preliminary Computational Results

*Only one feasible solution found.
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Future Work

• Generate nogood constraints from DP solution.
– Identify a subsequence of jobs (assigned to the same 

crane) that is responsible for infeasibility.
– Create a nogood constraint that prevents heuristic 

phase from assigning this subsequence to the same 
crane again.


