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Problem

• Schedule 2 cranes to transfer material between 
locations in a manufacturing plant.
– For example, copper processing.
– Cranes move on a common track.
– Cranes cannot move past each other.

• One crane can yield to another.
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Problem

Cranes can move vertically and perhaps side to side.

We are concerned with longitudinal movements.
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Problem

• Constraints:
– Some 300 jobs, each with a time window and priority.
– Precedence relations between jobs.
– A job may require several stops.

• Objective: minimize total penalty
– Penalties reflect deviation from desired release times 

and/or earliest completion times.
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Problem

• Three problems in one:
– Assign jobs to cranes.
– Find ordering of jobs on each crane.
– Find space-time trajectory of each crane.

• Crane scheduling problems are coupled since the cranes 
must not pass one another. 
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Relation to EWO

• In practice, the cranes often can’t keep up with 
what seems to be a reasonable production 
schedule.
– Is this because a hand-created crane schedule is far 

from optimal?
– Or because any feasible schedule forces the cranes 

to lag behind?

• We would like to resolve this issue.
– We therefore use an exact method to seek a feasible 

trajectory.
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Relation to EWO

• Solution of crane problem can suggest a revised 
production schedule.
– Spread out the release times.

• May also require revised time windows.
– Which ones?
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Precedence Constraints

• The crane problem has more complex 
precedence constraints than ordinarily occur in 
scheduling problems.
– Hard precedence constraints apply to groups of jobs.
– Soft precedence constraints are enforced by 

imposing penalties.
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Precedence Constraints

• Hard constraint
– Let S, T be sets of jobs.
– S < T means that all jobs in S must run before any 

job in T.
• Jobs within S may occur in any order, similarly for T.

• {cranes that perform the jobs in S } 
= {cranes that perform the jobs in T }

• Jobs in neither S nor T can run between S and T.

– S ≤ T means that all jobs in S assigned to a given 
crane must run before any job in T assigned to that 
crane.



10

Precedence Constraints

• Soft constraint for consecutive jobs
– Suppose S < T and S, T should occur consecutively.
– To enforce this:

• Impose  S < T.
• Give jobs in S very similar release times to jobs in T.

• Impose high penalties on jobs in S, T.
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Two-phase Algorithm

• Phase 1: Local search
– Assign jobs to cranes
– Sequence jobs on each crane
– Solve simultaneously by local search.

• Phase 2: Dynamic programming (DP)
– Find optimal space-time trajectory for the cranes.
– Solve for the two cranes simultaneously.
– Would like to be able to find a feasible trajectory if 

one exists, despite combinatorial nature of problem



12

Local Search

• Neighborhood is defined by two types of moves.
– Change assignment

• Move a job to the other crane

• Swap two jobs between cranes.

– Change sequence
• Swap two jobs.

• Lower bound on penalty
– Compute penalty if cranes could move directly from 

one stop to the next.
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Local Search

• Begin with a greedy solution.
– Build it by assigning jobs in the order of release time.
– Assign job with stops near the left (right) end of the 

track to the left (right) crane.
– While maintaining balance between cranes.
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Local Search

• In each round, explore a neighborhood of the 
current solution until a feasible solution is found.
– Exclude neighbors that violate precedence, 

assignment constraints.
– Exclude neighbors who penalty bound is worse than 

best solution found so far.
– If DP finds solution infeasible, try other neighbors.
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Local Search

• Next round looks at neighborhood of solution 
obtained in previous round.
– Or at neighborhood of solution obtained by a swap of 

the previous solution, if no feasible neighbor was 
found.
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Dynamic Programming

• Each job consists of one or more tasks.
– Order of tasks within a job is fixed.
– Each tasks requires that the crane stop to process the 

task (load, unload, etc.).

• Given for each stop:
– Location.
– Processing time.
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Dynamic Programming

• Find optimal trajectory for each crane.
– Sequence of jobs on each crane is given.
– Minimize sum of penalties, which depend on pickup 

and delivery times.

• More difficult than finding an optimal space-time 
path.
– Must allow for loading/unloading (processing) time.
– Processing time and location depend on which stop of 

which job is being processed.
– Cranes are processing most of the time.
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Dynamic Programming

• Space-time trajectory of a crane for two stops.

time

distance

Pickup 
point

Delivery 
point

Loading

Unloading

Constant speed 
while moving
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Dynamic Programming

• High resolution needed to track crane motion.
– Time horizon: several hours
– Granularity: 10-second intervals

• Thousands of discrete times

– Cranes are stationary most of the time
• While loading/unloading

• But motion is fast when it occurs (e.g. 1 meter/sec)
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Dynamic Programming

• Main issue: size of state space.
• State variables:

– Position of each crane on track.
– How long each crane has been loading/unloading.
– Next (current) stop for each crane
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• DP recursion:

Transitions that satisfy constraints

Position

Loading/
unloading 
time

Segment
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Dynamic Programming

• State space reduction
– Canonical trajectory for the left crane:

Wait as 
long as 
possible

Move as 
soon as 
possible

Follow leftmost trajectory that 
never moves backward 
(away from destination)
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Dynamic Programming

• State space reduction
– Minimal trajectory for left crane:

Depart from 
canonical 
trajectory

At each moment, follow 
canonical trajectory or right 

crane’s trajectory, whichever is 
further to the left

Left crane Right crane
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Dynamic Programming

• State space reduction
– Properties of the minimal trajectory:

• The left crane never stops 
en route unless it is adjacent 
to the right crane.

• The left crane never moves 
backward unless it is adjacent 
to the right crane.

Depart from 
canonical 
trajectory

Left crane Right crane
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Dynamic Programming

• State space reduction
– Theorem: Some optimal pair of trajectories are 

minimal with respect to each other.
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Suppose these segments are 
part of an optimal trajectory.
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Suppose these segments are 
part of an optimal trajectory.

Change left crane to a minimal 
trajectory with respect to the 
right crane
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Suppose these segments are 
part of an optimal trajectory.

Change left crane to a minimal 
trajectory with respect to the 
right crane.

This is still feasible, because

• there is no interference 
from right crane

• pickup and delivery times 
are unchanged.
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Suppose these segments are 
part of an optimal trajectory.

Change left crane to a minimal 
trajectory with respect to the 
right crane.

Change right crane to a 
minimal trajectory wrt left 
crane.  Still feasible.
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Suppose these segments are 
part of an optimal trajectory.

Change left crane to a minimal 
trajectory with respect to the 
right crane.

Change right crane to a 
minimal trajectory wrt left 
crane.

Change left crane to a minimal 
trajectory wrt right crane.  Still 
feasible.
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Suppose these segments are 
part of an optimal trajectory.

Change left crane to a minimal 
trajectory with respect to the 
right crane.

Change right crane to a 
minimal trajectory wrt left 
crane.

Change left crane to a minimal 
trajectory wrt right crane.  Still 
feasible.

This solution is a fixed point.
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Dynamic Programming

• State space reduction
– Corollary:  When not 

processing, the left crane is 
never to the right of both the 
previous and next stops.

Left crane



33

Dynamic Programming

– Corollary:  When not 
processing, the left crane 
moves toward the next stop if it 
is to the right of the previous or 
next stop.

Left crane
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Dynamic Programming

– Corollary:  a crane never 
moves in a direction away from 
the next stop unless it is 
adjacent to the other crane.
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Dynamic Programming

– Corollary:  When not 
processing, the left crane is 
stationary only if it is (a) at the 
previous or next processing 
location, whichever is further 
to the left, or (b) adjacent to 
the other crane.
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Computational Results

• Problem characteristics.
– 10-60 jobs, 1 to 5 stops per job.
– 10 crane positions (realistic).
– Time windows.
– Objective function:  Minimize sum over all jobs of

• Time lapse between release time and pickup.

• + time lapse between EFT and delivery.

– Theoretical maximum number of states in any given 
stage is approximately 108 – 109.
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Computational Results

Problem 1:  60 jobs
Fixed-width time windows.

1438*22,20432043530

82622,20432003520

158947732242510

Time for 10 
rounds 
(secs)

Peak # states 
(optimal DP)

Avg # states 
(optimal DP)

Time window 
(mins)

Jobs

*Multiple DPs solved in some rounds.
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Computational Results

Problem 1:  60 jobs
Start with minimum time windows that allow feasibility.

Width varies from 5 to 104 minutes.
Add 5, 10 minutes

105020,23244924760

265944919484260

4632533760

Time for 10 
rounds 

(seconds)

Peak # states 
(optimal DP)

Avg # states 
(optimal DP)

Avg time 
window 
(mins)

Jobs
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State space size vs. minutes added to windows.

Average Max
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State space size vs. time period

Minimum windows Min windows + 10 mins
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Computational Results

Problem 2:  258 jobs
Time windows specified by client.

?30+30

32*520

18010

Time for 
one DP 
(secs)

Minimum time window 
padding to get feasible 

solution (mins)

Jobs

*Multiple DPs solved in some rounds.
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Solution of 10-job problem
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Computational Results

Problem 2:  258 jobs
Adjusted release times.

Same time windows as  before.

?30+30
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Time for 
one DP 
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padding to get feasible 

solution (mins)
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*Multiple DPs solved in some rounds.
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Conclusions

• It appears that, in many cases, cranes must lag 
behind a reasonable production schedule.
– Exact algorithm finds no feasible trajectory.

• But it is not enough to spread out the release 
times.
– Certain windows must be very large.
– It is hard to predict which ones.

• Due to combinatorial nature of problem.

– So all windows must be stretched.
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Conclusions

• When all windows are wide, the state space 
blows up.

• For speed, must solve problem sequentially, a 
few jobs at a time (e.g., 10).
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What Next?

• Speed up the DP.
– Exploit partial separability of state variables.
– Still an exact algorithm, but may not be fast enough.

• Sacrifice exactness for speed.
– Use a heuristic dispatching rule.
– Rely on same theorem to shape trajectories.
– May fail to find feasible solutions, but fast enough for 

many assignment/sequencing iterations.
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Speed Up the DP

• Avoid enumerating states that are identical 
except for processing times.
– Cranes are processing most of the time.
– State variables are location and task.
– Results in many fewer states.

• Compromise the Markovian property.
– When a state has both cranes at stop locations for 

their current task…
• store costs for different processing times in an array that 

persists for several time periods.
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Speed up the DP

c15c14c13c12c11

c21

c31

c41
Compute these costs 
when a task pair for 
which both tasks are at 
their stop locations 
appears in the state 
space.

cij = cost-to-go when 
the left crane has been 
processing i time units 
and the right crane has 
been processing j time 
units.
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Speed Up the DP

c21c25c24c23c22

c31c32

c41c42

c11c15c14c13c12
Compute these costs in 
the next period.  No 
need to update existing 
costs.

Data structure is a 
2-dimensional circular 
queue.

cij = cost-to-go when 
the left crane has been 
processing i time units 
and the right crane has 
been processing j time 
units.
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Speed Up the DP

c32c31c35c34c33

c42c41c43

c12c11c15c14c13

c22c21c25c24c23
And similarly in the next 
period.

cij = cost-to-go when 
the left crane has been 
processing i time units 
and the right crane has 
been processing j time 
units.
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Speed Up the DP

c43c42c41c45c44

c13c12c11c15c14

c23c22c21c25c24

c33c32c31c35c34
These costs do not 
correspond to separate 
states.

After this point the table 
is no longer needed 
and memory can be 
released.

cij = cost-to-go when 
the left crane has been 
processing i time units 
and the right crane has 
been processing j time 
units.
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Heuristic Dispatching

• Rely on same theorem used by DP to shape the 
trajectory.
– Resulting trajectories are simpler and easier to 

implement.

• Use time windows differently.
– Time window refers to lapse between start of first task 

in a job to completion of last task.
• This is impractical in DP because it requires a state variable.

– Production schedule can be revised to reflect 
resulting job start times.
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Heuristic Dispatching

• Yield to the other crane only if time still remains 
to complete remaining tasks in the job.
– Allow limited backtracking.
– Dispatching rule fails if time runs out.

• Compare with DP on small problems.


