
1

Optimal Crane Scheduling

IonuŃ Aron
Iiro Harjunkoski

John Hooker
Latife Genç Kaya

March 2007

2

Problem

• Schedule 2 cranes to transfer material between
locations in a manufacturing plant.
– For example, copper processing.
– Cranes move on a common track.
– Cranes cannot move past each other.

• One crane can yield to another.

3

Problem

Cranes can move vertically and perhaps side to side.

We are concerned with longitudinal movements.

4

Problem

• Constraints:
– Some 300 jobs, each with a time window and priority.
– Precedence relations between jobs.
– A job may require several stops.

• Objective: minimize total penalty
– Penalties reflect deviation from desired release times

and/or earliest completion times.

5

Problem

• Three problems in one:
– Assign jobs to cranes.
– Find ordering of jobs on each crane.
– Find space-time trajectory of each crane.

• Crane scheduling problems are coupled since the cranes
must not pass one another.

6

Relation to EWO

• In practice, the cranes often can’t keep up with
what seems to be a reasonable production
schedule.
– Is this because a hand-created crane schedule is far

from optimal?
– Or because any feasible schedule forces the cranes

to lag behind?

• We would like to resolve this issue.
– We therefore use an exact method to seek a feasible

trajectory.

7

Relation to EWO

• Solution of crane problem can suggest a revised
production schedule.
– Spread out the release times.

• May also require revised time windows.
– Which ones?

8

Precedence Constraints

• The crane problem has more complex
precedence constraints than ordinarily occur in
scheduling problems.
– Hard precedence constraints apply to groups of jobs.
– Soft precedence constraints are enforced by

imposing penalties.

9

Precedence Constraints

• Hard constraint
– Let S, T be sets of jobs.
– S < T means that all jobs in S must run before any

job in T.
• Jobs within S may occur in any order, similarly for T.

• {cranes that perform the jobs in S }
= {cranes that perform the jobs in T }

• Jobs in neither S nor T can run between S and T.

– S ≤ T means that all jobs in S assigned to a given
crane must run before any job in T assigned to that
crane.

10

Precedence Constraints

• Soft constraint for consecutive jobs
– Suppose S < T and S, T should occur consecutively.
– To enforce this:

• Impose S < T.
• Give jobs in S very similar release times to jobs in T.

• Impose high penalties on jobs in S, T.

11

Two-phase Algorithm

• Phase 1: Local search
– Assign jobs to cranes
– Sequence jobs on each crane
– Solve simultaneously by local search.

• Phase 2: Dynamic programming (DP)
– Find optimal space-time trajectory for the cranes.
– Solve for the two cranes simultaneously.
– Would like to be able to find a feasible trajectory if

one exists, despite combinatorial nature of problem

12

Local Search

• Neighborhood is defined by two types of moves.
– Change assignment

• Move a job to the other crane

• Swap two jobs between cranes.

– Change sequence
• Swap two jobs.

• Lower bound on penalty
– Compute penalty if cranes could move directly from

one stop to the next.

13

Local Search

• Begin with a greedy solution.
– Build it by assigning jobs in the order of release time.
– Assign job with stops near the left (right) end of the

track to the left (right) crane.
– While maintaining balance between cranes.

14

Local Search

• In each round, explore a neighborhood of the
current solution until a feasible solution is found.
– Exclude neighbors that violate precedence,

assignment constraints.
– Exclude neighbors who penalty bound is worse than

best solution found so far.
– If DP finds solution infeasible, try other neighbors.

15

Local Search

• Next round looks at neighborhood of solution
obtained in previous round.
– Or at neighborhood of solution obtained by a swap of

the previous solution, if no feasible neighbor was
found.

16

Dynamic Programming

• Each job consists of one or more tasks.
– Order of tasks within a job is fixed.
– Each tasks requires that the crane stop to process the

task (load, unload, etc.).

• Given for each stop:
– Location.
– Processing time.

17

Dynamic Programming

• Find optimal trajectory for each crane.
– Sequence of jobs on each crane is given.
– Minimize sum of penalties, which depend on pickup

and delivery times.

• More difficult than finding an optimal space-time
path.
– Must allow for loading/unloading (processing) time.
– Processing time and location depend on which stop of

which job is being processed.
– Cranes are processing most of the time.

18

Dynamic Programming

• Space-time trajectory of a crane for two stops.

time

distance

Pickup
point

Delivery
point

Loading

Unloading

Constant speed
while moving

19

Dynamic Programming

• High resolution needed to track crane motion.
– Time horizon: several hours
– Granularity: 10-second intervals

• Thousands of discrete times

– Cranes are stationary most of the time
• While loading/unloading

• But motion is fast when it occurs (e.g. 1 meter/sec)

20

Dynamic Programming

• Main issue: size of state space.
• State variables:

– Position of each crane on track.
– How long each crane has been loading/unloading.
– Next (current) stop for each crane

21

Computes
penalty

()
















+
















=
















∑ +

⋅

⋅

⋅

















∈
















+⋅

+⋅

+⋅

+

+⋅

+⋅

+⋅

⋅

⋅

⋅ c
tcctct

t

t

t

t

s

u

x

S

s

u

x

t

t

t

t ssg

s

u

x

f

s

u

x

f

t

t

t

t

t

t
1,

1,

1,

1,

1 ,min

1,

1,

1,

Dynamic Programming

• DP recursion:

Transitions that satisfy constraints

Position

Loading/
unloading
time

Segment

22

Dynamic Programming

• State space reduction
– Canonical trajectory for the left crane:

Wait as
long as
possible

Move as
soon as
possible

Follow leftmost trajectory that
never moves backward
(away from destination)

23

Dynamic Programming

• State space reduction
– Minimal trajectory for left crane:

Depart from
canonical
trajectory

At each moment, follow
canonical trajectory or right

crane’s trajectory, whichever is
further to the left

Left crane Right crane

24

Dynamic Programming

• State space reduction
– Properties of the minimal trajectory:

• The left crane never stops
en route unless it is adjacent
to the right crane.

• The left crane never moves
backward unless it is adjacent
to the right crane.

Depart from
canonical
trajectory

Left crane Right crane

25

Dynamic Programming

• State space reduction
– Theorem: Some optimal pair of trajectories are

minimal with respect to each other.

26

Suppose these segments are
part of an optimal trajectory.

27

Suppose these segments are
part of an optimal trajectory.

Change left crane to a minimal
trajectory with respect to the
right crane

28

Suppose these segments are
part of an optimal trajectory.

Change left crane to a minimal
trajectory with respect to the
right crane.

This is still feasible, because

• there is no interference
from right crane

• pickup and delivery times
are unchanged.

29

Suppose these segments are
part of an optimal trajectory.

Change left crane to a minimal
trajectory with respect to the
right crane.

Change right crane to a
minimal trajectory wrt left
crane. Still feasible.

30

Suppose these segments are
part of an optimal trajectory.

Change left crane to a minimal
trajectory with respect to the
right crane.

Change right crane to a
minimal trajectory wrt left
crane.

Change left crane to a minimal
trajectory wrt right crane. Still
feasible.

31

Suppose these segments are
part of an optimal trajectory.

Change left crane to a minimal
trajectory with respect to the
right crane.

Change right crane to a
minimal trajectory wrt left
crane.

Change left crane to a minimal
trajectory wrt right crane. Still
feasible.

This solution is a fixed point.

32

Dynamic Programming

• State space reduction
– Corollary: When not

processing, the left crane is
never to the right of both the
previous and next stops.

Left crane

33

Dynamic Programming

– Corollary: When not
processing, the left crane
moves toward the next stop if it
is to the right of the previous or
next stop.

Left crane

34

Dynamic Programming

– Corollary: a crane never
moves in a direction away from
the next stop unless it is
adjacent to the other crane.

35

Dynamic Programming

– Corollary: When not
processing, the left crane is
stationary only if it is (a) at the
previous or next processing
location, whichever is further
to the left, or (b) adjacent to
the other crane.

36

Computational Results

• Problem characteristics.
– 10-60 jobs, 1 to 5 stops per job.
– 10 crane positions (realistic).
– Time windows.
– Objective function: Minimize sum over all jobs of

• Time lapse between release time and pickup.

• + time lapse between EFT and delivery.

– Theoretical maximum number of states in any given
stage is approximately 108 – 109.

37

Computational Results

Problem 1: 60 jobs
Fixed-width time windows.

1438*22,20432043530

82622,20432003520

158947732242510

Time for 10
rounds
(secs)

Peak # states
(optimal DP)

Avg # states
(optimal DP)

Time window
(mins)

Jobs

*Multiple DPs solved in some rounds.

38

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10

’output/solution-time-LEFT.out’
’output/solution-time-RIGHT.out’

Solution of 10-job problem

39

 0

 5000

 10000

 15000

 20000

 25000

 0 200 400 600 800 1000 1200 1400 1600

’output/statecount.out’
’output/reusedstatecount.out’
’output/prunedstatecount.out’

State space size for 10-job problem, for each time

40 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10

’output/solution-time-LEFT.out’
’output/solution-time-RIGHT.out’

Solution of 20-job problem

41

 0

 5000

 10000

 15000

 20000

 25000

 0 200 400 600 800 1000 1200

’output/statecount.out’
’output/reusedstatecount.out’
’output/prunedstatecount.out’

State space size for 20-job problem

42

Computational Results

Problem 1: 60 jobs
Start with minimum time windows that allow feasibility.

Width varies from 5 to 104 minutes.
Add 5, 10 minutes

105020,23244924760

265944919484260

4632533760

Time for 10
rounds

(seconds)

Peak # states
(optimal DP)

Avg # states
(optimal DP)

Avg time
window
(mins)

Jobs

43 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10

’output/solution-time-LEFT.out’
’output/solution-time-RIGHT.out’

Solution of
60-job problem

44

State space size vs. minutes added to windows.

Average Max

45

State space size vs. time period

Minimum windows Min windows + 10 mins

46

Computational Results

Problem 2: 258 jobs
Time windows specified by client.

?30+30

32*520

18010

Time for
one DP
(secs)

Minimum time window
padding to get feasible

solution (mins)

Jobs

*Multiple DPs solved in some rounds.

47

Solution of 10-job problem

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10

’output/solution-time-LEFT.out’
’output/solution-time-RIGHT.out’

48

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600

’output/statecount.out’
’output/reusedstatecount.out’
’output/prunedstatecount.out’

State space size for 10-job problem

49

Computational Results

Problem 2: 258 jobs
Adjusted release times.

Same time windows as before.

?30+30

21520

18010

Time for
one DP
(secs)

Minimum time window
padding to get feasible

solution (mins)

Jobs

*Multiple DPs solved in some rounds.

50

Conclusions

• It appears that, in many cases, cranes must lag
behind a reasonable production schedule.
– Exact algorithm finds no feasible trajectory.

• But it is not enough to spread out the release
times.
– Certain windows must be very large.
– It is hard to predict which ones.

• Due to combinatorial nature of problem.

– So all windows must be stretched.

51

Conclusions

• When all windows are wide, the state space
blows up.

• For speed, must solve problem sequentially, a
few jobs at a time (e.g., 10).

52

What Next?

• Speed up the DP.
– Exploit partial separability of state variables.
– Still an exact algorithm, but may not be fast enough.

• Sacrifice exactness for speed.
– Use a heuristic dispatching rule.
– Rely on same theorem to shape trajectories.
– May fail to find feasible solutions, but fast enough for

many assignment/sequencing iterations.

53

Speed Up the DP

• Avoid enumerating states that are identical
except for processing times.
– Cranes are processing most of the time.
– State variables are location and task.
– Results in many fewer states.

• Compromise the Markovian property.
– When a state has both cranes at stop locations for

their current task…
• store costs for different processing times in an array that

persists for several time periods.

54

Speed up the DP

c15c14c13c12c11

c21

c31

c41
Compute these costs
when a task pair for
which both tasks are at
their stop locations
appears in the state
space.

cij = cost-to-go when
the left crane has been
processing i time units
and the right crane has
been processing j time
units.

55

Speed Up the DP

c21c25c24c23c22

c31c32

c41c42

c11c15c14c13c12
Compute these costs in
the next period. No
need to update existing
costs.

Data structure is a
2-dimensional circular
queue.

cij = cost-to-go when
the left crane has been
processing i time units
and the right crane has
been processing j time
units.

56

Speed Up the DP

c32c31c35c34c33

c42c41c43

c12c11c15c14c13

c22c21c25c24c23
And similarly in the next
period.

cij = cost-to-go when
the left crane has been
processing i time units
and the right crane has
been processing j time
units.

57

Speed Up the DP

c43c42c41c45c44

c13c12c11c15c14

c23c22c21c25c24

c33c32c31c35c34
These costs do not
correspond to separate
states.

After this point the table
is no longer needed
and memory can be
released.

cij = cost-to-go when
the left crane has been
processing i time units
and the right crane has
been processing j time
units.

58

Heuristic Dispatching

• Rely on same theorem used by DP to shape the
trajectory.
– Resulting trajectories are simpler and easier to

implement.

• Use time windows differently.
– Time window refers to lapse between start of first task

in a job to completion of last task.
• This is impractical in DP because it requires a state variable.

– Production schedule can be revised to reflect
resulting job start times.

59

Heuristic Dispatching

• Yield to the other crane only if time still remains
to complete remaining tasks in the job.
– Allow limited backtracking.
– Dispatching rule fails if time runs out.

• Compare with DP on small problems.

