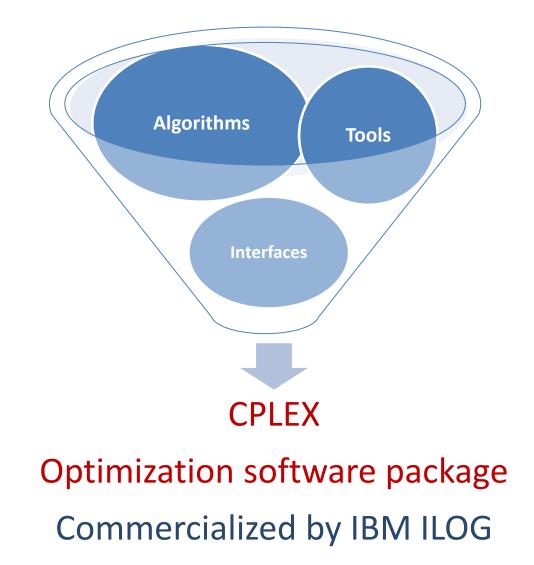


IBM ILOG CPLEX What is inside of the box?

Ricardo Lima rlima@andrew.cmu.edu

EWO Seminar Carnegie Mellon University

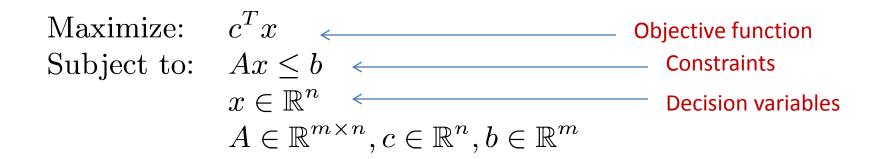


1. Introduction

- What is CPLEX? Types of problems. History.
- 2. Algorithms
 - Optimizers available. Heuristic based algorithms.
- 3. Parallelization
- 4. Tools
- 5. Final remarks

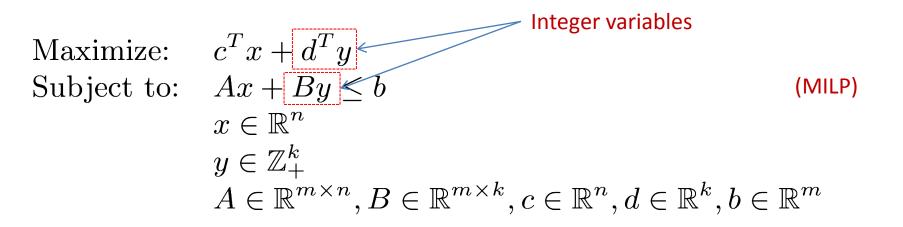
EWO seminar

ENGINEERING Types of problems CPLEX can solve



Mathematical programming problems:

- Linear programming
- Mixed integer programming
- Quadratic programs
- Mixed integer quadratic programs
- Quadratic constrained programs
- Mixed integer quadratic constrained programs
- It is used to solve other problems: MINLP



Remark: If matrix Q is positive semi-definite then the problem QP is convex.

Maximize: Subject to:

Carnegie Mellon ENGINEERING

$$c^{T}x + 1/2x^{T}Qx$$

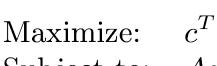
$$Ax \leq b$$

$$x \in \mathbb{R}^{n}$$

$$A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$$

$$Q \in \mathbb{R}^{n \times n}$$

Quadratic programs


Maximize: $c^T x + 1/2x^T Q x$ Subject to: $Ax \leq b$ $x_l \in \mathbb{Z}_+, l \in N_l$

 $Ax \leq b$ $x_{l} \in \mathbb{Z}_{+}, l \in N_{l}$ $x_{j} \in \mathbb{R}, j \in N_{j}$ $A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$ $Q \in \mathbb{R}^{n \times n}$

Remark: If matrix Q is positive semi-definite then the problem QP is convex.

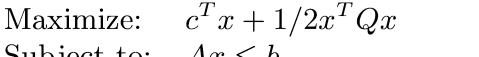
(MIQP)

Subject to:

$$c^{T}x + 1/2x^{T}Qx$$

$$Ax \leq b$$

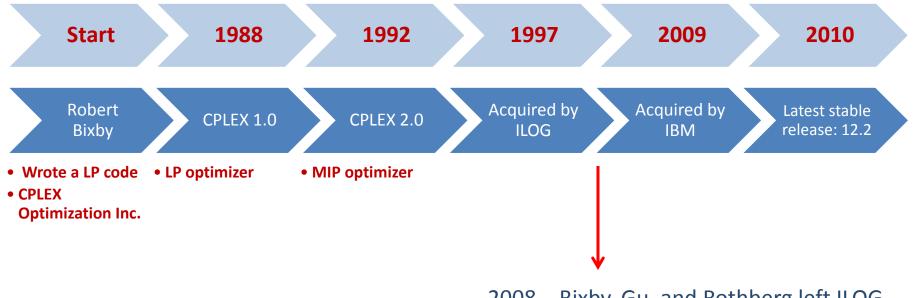
$$1/2x^{T}B_{i}x + a_{i}x \leq b_{i}, i = 1, ..., m_{1}$$


$$x \in \mathbb{R}^{n}$$

$$A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$$

$$B_{i} \in \mathbb{R}^{m \times n}, i = 1, ..., m_{1}$$

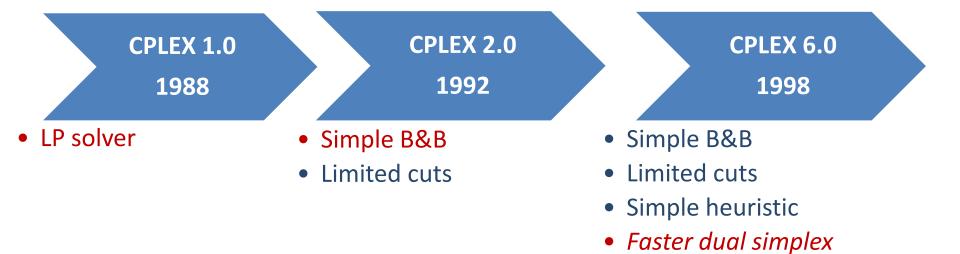
(QCP)



Subject to:
$$Ax \leq b$$

 $1/2x^T B_i x + a_i x \leq b_i, i = 1, ..., m_1$
 $x_l \in \mathbb{Z}_+, l \in N_l$
 $x_j \in \mathbb{R}, j \in N_j$
 $A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^n, b \in \mathbb{R}^m$
 $B_i \in \mathbb{R}^{m \times n}, i = 1, ..., m_1$

(MIQCP)



2008 – Bixby, Gu, and Rothberg left ILOG and found Gurobi Optimization.

CPLEX6.5 1999

- 5 different node heuristics
- 6 types of cutting planes
 Default LP method: dual
 - Knapsack covers
 - **GUB** covers
 - Flow covers
 - Cliques
 - Implied bounds
 - Gomory mixed integer cuts

CPLEX 7.0 2000

- Semi-Continuous and Semi-Integer Variables
- simplex.
- Preprocessing
- Cuts:
 - mixed integer rounding
 - disjunctive
 - flow path

CPLEX 8.0

2002

- New Methods for Solving LP Models: Sifting
- Concurrent optimization: 1) Dual Simplex; 2) Barrier method, 3) Primal Simplex, 4) Barrier method
- New QP Capabilities
- 9 types of cutting planes

CPLEX release history (cont.)

CPLEX 9.0	CPLEX 10.0	CPLEX 11.0	CPLEX 12.2
2003	2006	2007	2010
 QCP Relaxation Induced Neighborhood Search (RINS) 	 Improvements for MIQPs Changes in MIP start behavior Feasible Relaxation Indicators Solution Polishing 	 The solution pool Tuning tool Parallel mode 	 MIP is faster Multi-commodity flow cuts Enhanced heuristics Enhanced dynamic search

ENGINEERING Computational performance

The actual computational performance is the result of a combination of different types of improvements:

LP solvers	Cutting planes	Heuristics	Parallelization
 Pre-processing 	• From theory to	Node heuristicsRINS	 Search in B&B
 Algebra for sparse 	practice	Polishing	 Barrier method
systems			
• Methods: primal,			
dual, barrier			
• Techniques to avoid			
degeneracy and	Plus the machi		
numerical			
difficulties			

In the beginning

- 1952 (E48,V71) solved in 18 hours, 71 Simplex iterations. Orden (1952), Hoffman et al. (1953)
- 1963 (E99,V77) estimated 120 man days.

Stigler's (1945) diet problem

• 1990 - (E26, V71) solved in 8 hours. Orchard-Hays (1990)

Evolution reported by Bixby for solving LP problems (1984:2004):

- Algorithms: Primal vs best of Primal/Dual/Barrier 3300x
- Machines: (workstations -> PCs): 1600x
- Net: algorithm x machine 5 300 000x
 5 days/5 300 000 = 0.08 seconds

• Computational experiments:

Size of the LP model:

# Equations	60,390
# Variables	69,582
No advanced basis w	as used

	Results CPU (s)	
	CPLEX version	
	7.1	12.2
Primal Simplex	205	45
Dual Simplex	281	51
Network Simplex	174	91
Barrier	97	18
Sifting	_	420

Remarks:

- The barrier optimizer can explore the presence of multiple threads.
- The barrier optimizer cannot start from an advanced basis, and therefore it has limited application in Branch and Bound methods for MIPLs.
- Re-optimization with the simplex algorithms is faster, when starting from a

previous basis.

12/07/2010

EWO seminar

Mixed integer optimizers

- Branch & Cut
- Dynamic search
- MIP, MIQP, MIQCP

New algorithm to solve MIPs

- Branch & cut based
- Some user callbacks cannot be used
- IBM trade secret
- Methodology is proprietary

• **POUTIL** – MILP model from the GAMS library.

Examples

- RHS MILP continuous time slot based model for scheduling of continuous processes.
- RH12 MILP scheduling model with travelling salesman based constraints.

	POUTIL	RHS	RH12
Equations	2,178	16,886	10,421
Variables	1,260	12,156	19,134
0-1 variables	773	5,938	13,340

Computer: machine running Linux, with 8 threads Intel Xeon@ 2.66GHz

Carnegie Mellon

INEERING

ENGINEERING Branch and Bound (MILP)

• Main idea: solve MILP problems by solving a sequence of linear relaxations to provide bounds

MILP formulation

The relaxation is given by

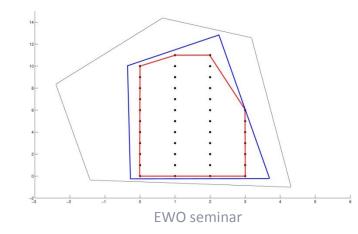
$$Z(X) = \min \{ cx + fy : (x, y) \in X \}$$

where
$$X = \{ (x, y) \in \mathbb{R}^{n}_{+} \times \{0, 1\}^{p} : Ax + By \ge b \}$$

$$Z(P_X) = \min \{ cx + fy : (x, y) \in X \}$$

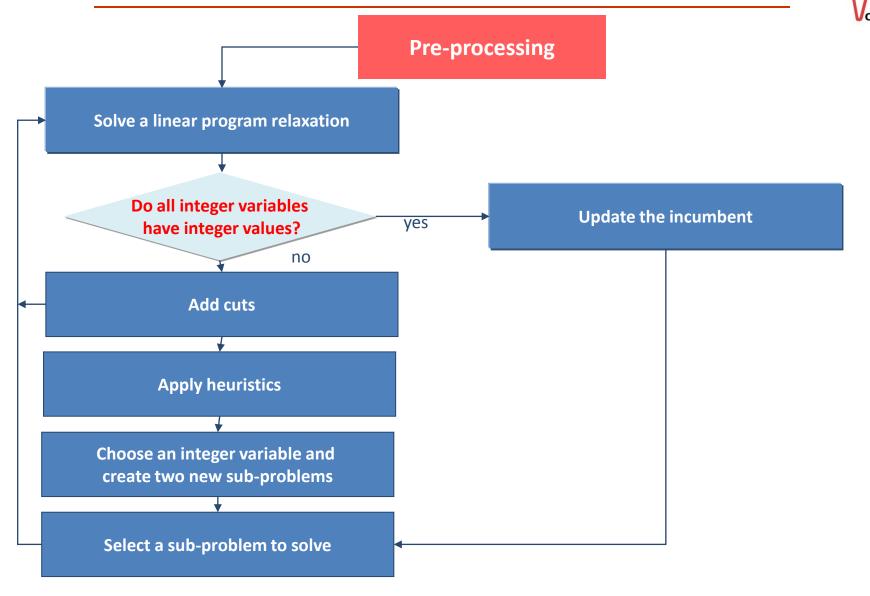
where
$$P_X = \{ (x, y) \in \mathbb{R}^n_+ \times [0, 1]^p : Ax + By \ge b \}$$

The linear relaxation provides a lower bound on the optimal objective value: $Z(P_X) \le Z(X)$

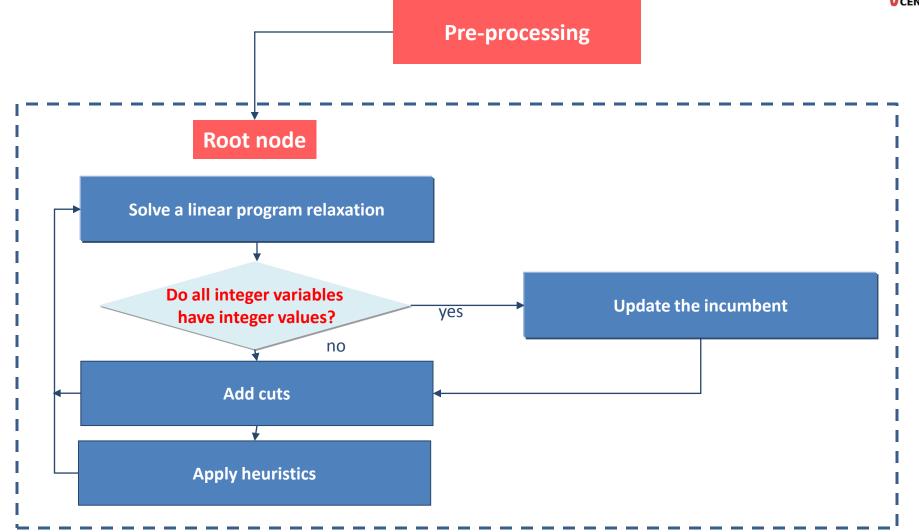


Remarks

- B&B is not suitable for large scale problems
- The number of iterations grows exponentially with the number of variables


CPLEX uses the branch and cut algorithm

- Based on BB
- It is applied to a reformulation of the set V using a preprocessing step and by the addition of cutting planes.


ENGINEERING Branch and cut algorithm in CPLEX

http://www-01.ibm.com/support/docview.wss?uid=swg21400064 EWO seminar

ENGINEERING Branch and cut algorithm in CPLEX

ENGINEERING Pre-processing and probing

• Goals

- Reduce the size of the problem
- Improve the formulation
 - A new model is defined
 - Tighter formulation without increasing the size of the problem
 - Independent of the relaxation solution
- Techniques used:
 - Pre-processing
 - Probing

ENGINEERING Pre-processing and probing

- Pre-processing techniques
 - Identification of infeasibility
 - Identification of redundancy
 - Improve bounds
 - Rounding (for MIP)
- **Probing techniques**: fix binary variables to either 0 or 1, and check the logical implications
 - Fixing variables
 - Improve coefficients
 - Logical implications
- Both formalized by Savelsbergh (1994) and Wolsey (1998)

ENGINEERING Pre-processing example

Initial LP formulation

e1.. z =e= 2*x1 + x2 - x3; e2.. 5*x1 -2*x2 + 8*x3 =l= 15; e3.. 8*x1 + 3*x2 - x3 =g= 9; e4.. x1+ x2 + x3 =l=6; x1.up =3; x2.up = 1; x3.lo = 1;

Final LP formulation

- --- Generating LP model P1
- --- wolsey_2.gms(25) 3 Mb
- --- 4 rows 4 columns 13 non-zeroes
- ---- Executing CPLEX: elapsed 0:00:00.017

Cplex 12.2.0.0, GAMS Link 34

Reading data... Starting Cplex... Tried aggregator 1 time. LP Presolve eliminated 4 rows and 4 columns. All rows and columns eliminated. Presolve time = 0.00 sec. LP status(1): optimal

Optimal solution found. Objective : 3.600000 **ENGINEERING** Heuristics at the root node (and afterwards)

Why heuristics?

- Can achieve solutions of *difficult* MILP problems by exploring parts of the tree that the solver will not.
- May provide good solutions quickly.
- May help to prove optimality
 - explicitly: prune nodes more efficiently
 - Implicitly: provide integer solutions

Types of heuristics:

- Node heuristics: diving
- Neighborhood exploration

Note: heuristic solutions are identified by a '+' in the CPLEX output

ENGINEERING Heuristics at the root node (cont).

- Diving heuristics
 - 1 Fix a set of integer infeasible variables
 - 2 Bound strengthening
 - 3 Solve LP relaxation
 - 4 Repeat
- Neighborhood
 - Local Branching (LB)
 - Relaxation Induced Neighborhood Search (RINS)
 - Guided Dives (GD)
 - Evolutionary algorithms for polishing MIP solutions

ENGINEERING Cuts and heuristics at the root node

• Example: MILP problem from Wolsey (1998), solved with B&C requiring 3 nodes

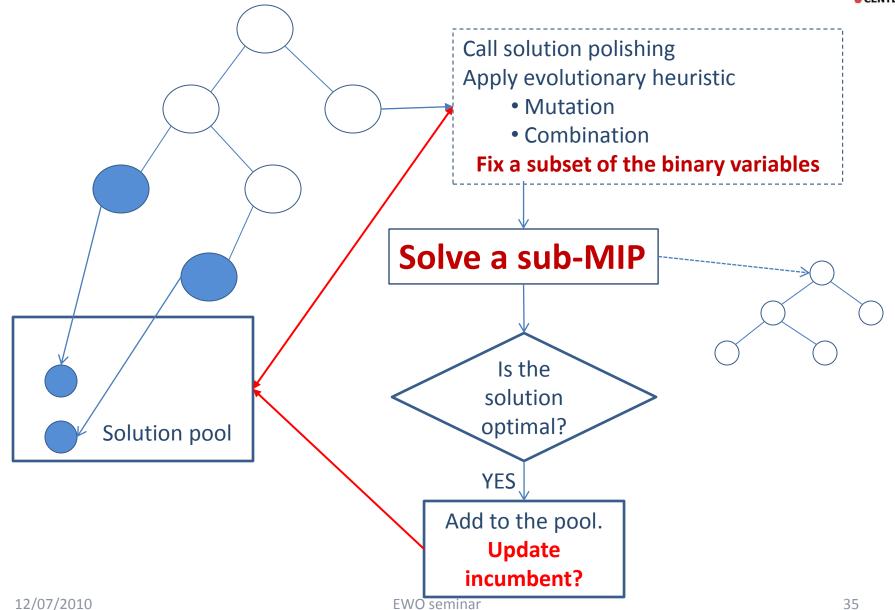
Nodes				Cuts/				
	Node	Left	Objective	IInf	Best Integer	Best Node	ItCnt	Gap
*	0+	0			0.0000		21	
	0	0	575.4371	9	0.0000	575.4371	21	
*	0+	0			518.0000	575.4371	21	11.09%
	0	0	557.1433	13	518.0000	Cuts: 9	27	7.56%
*	0+	0			525.0000	557.1433	27	6.12%
	0	0	547.8239	17	525.0000	Cuts: 9	37	4.35%
	0	0	546.4737	6	525.0000	Cuts: 8	39	4.09%
*	0+	0			527.0000	546.4737	39	3.70%
	0	0	546.0000	6	527.0000	Cuts: 3	40	3.61%
*	0	0	integral	0	545.0000	ZeroHalf: 1	42	0.00%
	0	0	cutoff		545.0000	545.0000	42	0.00%
Elapsed real time = 0.08 sec. (tree size = 0.00 MB, solutions = 5)								

```
Clique cuts applied: 1
Cover cuts applied: 7
Zero-half cuts applied: 8
Gomory fractional cuts applied: 1
MIP status(101): integer optimal solution
12/07/2010 EWO seminar
```

NEIGHBORHOOD HEURISTICS

- Idea: explore the neighborhood of the incumbent to find better solutions
- Algorithm:
 - Fix the binary variables with the same values in the continuous relaxation and in the incumbent.
 - Solve a sub-MIP on the remaining variables.
- Example:
 - Relaxation: x=(0.1, 0, 0, 1, 0.9)
 - Incumbent: x=(1, 0, 1, 1,0)
 - Fix $x_2 = 0$, $x_4 = 1$
 - Solve a sub-MIP

- Remarks:
 - It may greatly improve solutions of poor quality
 - Uses the relaxation to define neighborhoods
 - Poor relaxations may lead to large sub-MIP
 - The sub-MIP are not solved optimality
 - It is only invoked every f nodes



- Idea: explore the neighborhood of the incumbent by fixing some of the binary variables, and solving a sub-MIP.
- Polishing is based on the integration of an evolutionary algorithm *within* an MIP *branch and bound* framework.
- Can only be called when an incumbent is available.

Integration of EA and B&B

- 1. Mutation
 - a) Choose a seed from the pool (random)
 - b) Fix *f* variables (apply a random mask)
 - c) Solve sub-MIP
 - d) Add the solution found to the pool
- 2. Combination
 - a. Choose a pair of solutions from the pool (random)
 - b. Fix variables with the same value
 - c. Solve the sub-MIP
 - d. Add the best solution to the pool

```
New x=(?, 0, ?, 1, 0)
```

Seed 1 *x*=(1, 0, 0, 1, 0)

Seed 2 *x*=(0, 1, 0, 1, 0)

New *x*=(?, ?, **0**, **1**, **0**)

variables.

Seed *x*=(1, 0, 0, 1, 0)

Solve a sub-MIP with 2 binary variables.

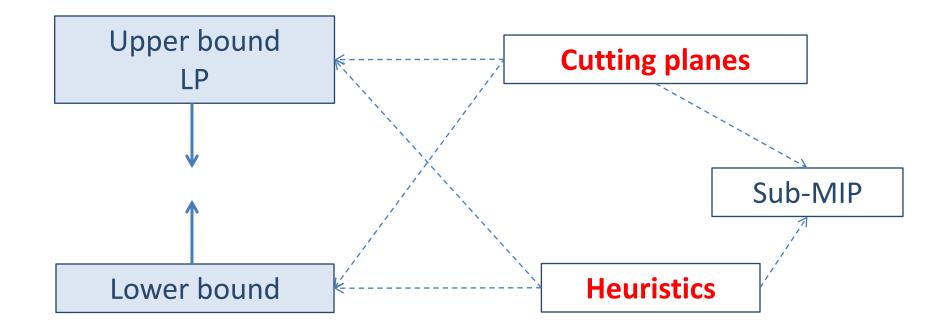
Solve a sub-MIP with 2 binary

Carnegie Mellon ENGINEERING Solution polishing results Rothberg, E. (2007)

Relative gap between solution found and best known solution. Bold means better solution.

		R	elative solution quali	ty (versus best known)	best known)			
		Initial 50K nodes		After 50% additional time				
	Instance	GD + LB + RINS	Defaults	GD + LB + RINS	Polishing			
	glass4	0.34722	0.34722	0.34722	0.34722			
	liu	0.09747	0.09747	0.09567	0.03430			
	mkc	0.00020	0.00020	0.00020	0.00000			
	protfold	0.12903	0.12903	0.12903	0.06452			
	sp97ar	0.00090	0.00090	0.00081	0.00056			
	swath	0.02517	0.02517	0.02517	0.02272			
	timtab2	0.07545	0.07545	0.07545	0.06772			
	bg512142	0.04287	0.04287	0.04287	0.00000			
	dg012142	0.26215	0.26215	0.26198	0.26137			
	B2C1S1	0.00707	0.00707	0.00707	0.00093			
	pharma1	0.00288	0.00288	0.00288	0.00129			
	sp97ic	0.00360	0.00360	0.00360	0.00000			
	sp98ar	0.00083	0.00083	0.00083	0.00079			
	sp98ic	0.00289	0.00289	0.00018	0.00234			
	UMTS	0.00107	0.00107	0.00107	0.00106			
	rococoB10-011001	0.02917	0.02328	0.00820	0.01965			
	rococoB11-110001	0.03058	0.03058	0.02938	0.02938			
	rococoB12-111111	0.02919	0.02919	0.00000	0.01369			
	rococoC10-100001	0.06025	0.06025	0.05911	0.06025			
	rococoC11-010100	0.04050	0.01249	0.00326	0.04050			
	rococoC12-100000	0.01349	0.01349	0.01349	0.01349			
	rococoC12-111100	0.01033	0.01033	0.01033	0.00994			
	ljb2	0.01574	0.01574	0.00435	0.00000			
	ljb7	0.24904	0.24904	0.24747	0.17195			
	ljb9	0.77430	0.53763	0.57458	0.32891			
12/07/2010	ljb10	0.03254	0.03254	0.03254	0.03196			
, - ,	ljb12	0.32932	0.32932	0.25586	0.18556			

37


ENGINEERING Solution polishing remarks

- Requires at least one solution
- Keeps the logic of the lower and upper bound used in B&B.
- Solution polishing can be activated after:
 - Node limit
 - Time limit
 - Within a gap %

ENGINEERING Impact of cutting planes and heuristics

ENGINEERING Parallel optimizers in CPLEX

- Parallelization available:
 - MIP solver
 - Barrier algorithm
 - Concurrent optimization
- Concurrent optimization for solving LP and QP
 - CPLEX launches several optimizers to solve the same problem, the process terminates when the first solver stops:
 - Thread 1 dual simplex
 - Thread 2 barrier.
 - Thread 3 primal simplex
 - Thread >3 barrier run.

ENGINEERING MIP parallel optimizer in CPLEX

- Parallelization in the B&B
 - Solution of the root node
 - Solution of nodes
 - Strong branching in parallel
- 2 modes are available:
 - Deterministic invariance and repeatability of the search path and results
 - Opportunistic each run may lead to a different search path and results – usually out-performs the deterministic

Which one should be used?

• Deterministic

Root node processi	ng (before b&c)	•
Real time	= 37.31	
Parallel b&c, 8 th	reads:	
Real time	= 3565.95	
Sync time (avera	age) = 93.98	
Wait time (avera	nge) = 216.70	

Total (root+branch&cut) = 3603.26 sec.

• Opportunistic

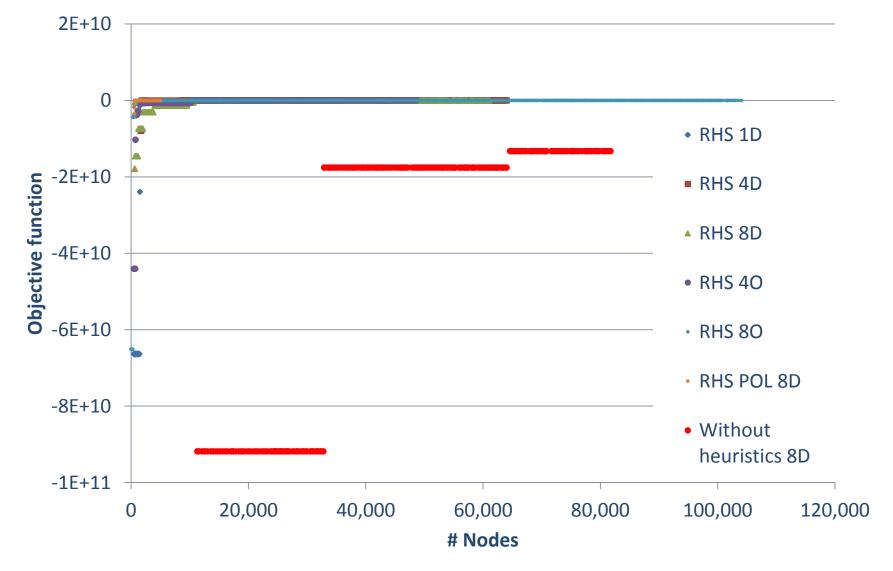
Root node processing (before b&c): Real time = 34.47 Parallel b&c, 8 threads: Real time = 3566.18 Sync time (average) = 5.97 Wait time (average) = 4.76

Total (root+branch&cut) = 3600.65 sec.

RMIP root 246,984.7

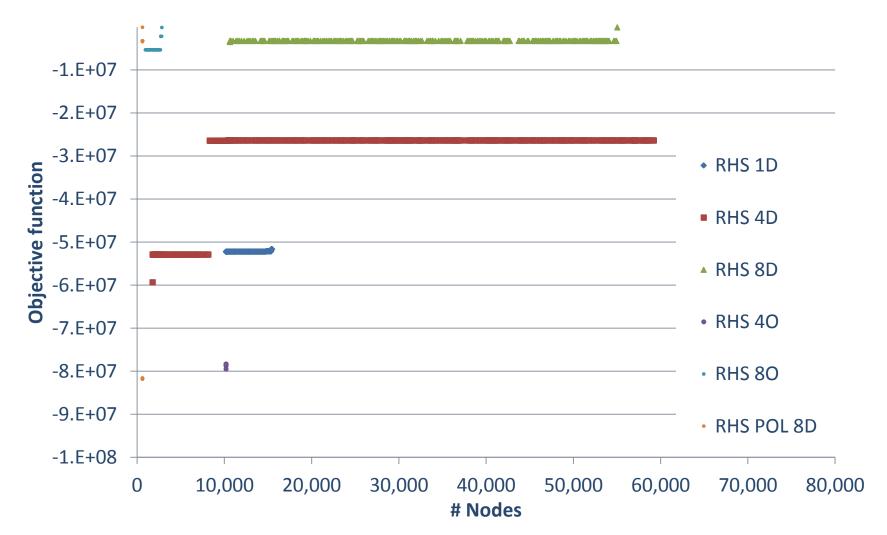
CPLEX 12.2

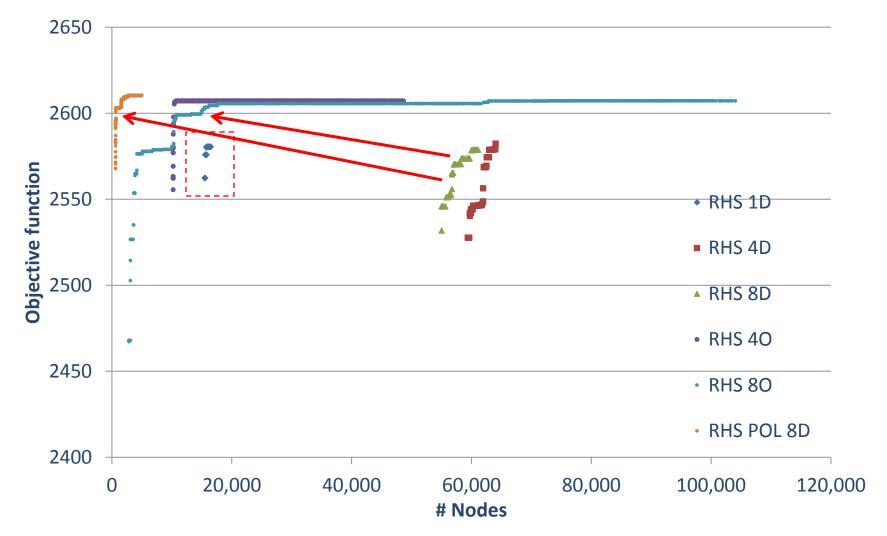
			Objective function			
Threads	CPU time (s)	Gap (%)	RMIP	MIP		
1	950	0.0	266,793.0	266,793.0		
4D	211	0.0	266,793.0	266,793.0		

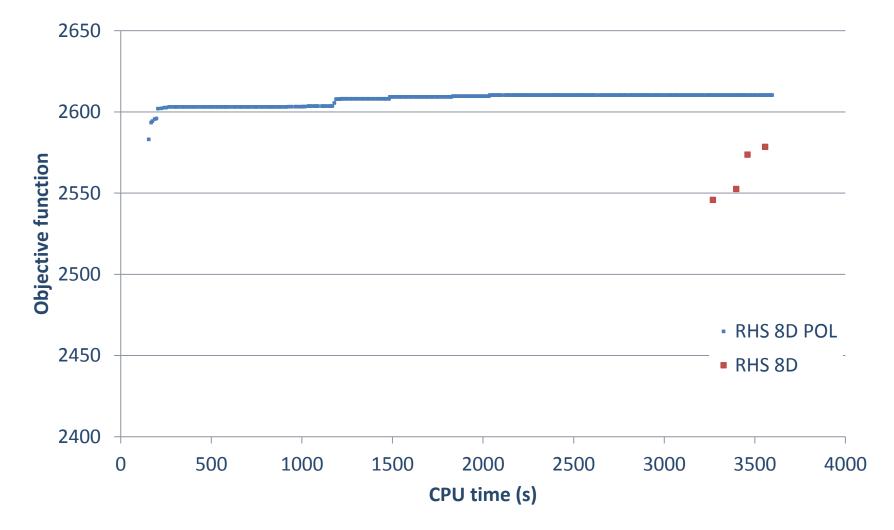

RMIP root 5,225,207

CPLEX 12.0

			Objective f	unction
Threads	CPU time (s)	Gap (%)	MIP	MIP
1	3,600	101.2	5,166,820	-444,529,600
4D	3,600	114.8	5,165,611	-34,831,279
40	3,600	10.5	5,166,242	4,674,076
8D	3,600	42	5,166,870	3,639,156
80 - 1st run	3,600	1124.5	5,165,035	-504,162
80 - 2nd run	3,600	17.1 EWO seminar	5,168,434	4,412,006


Engineering Effect of parallelization and polishing


Engineering Effect of parallelization and polishing

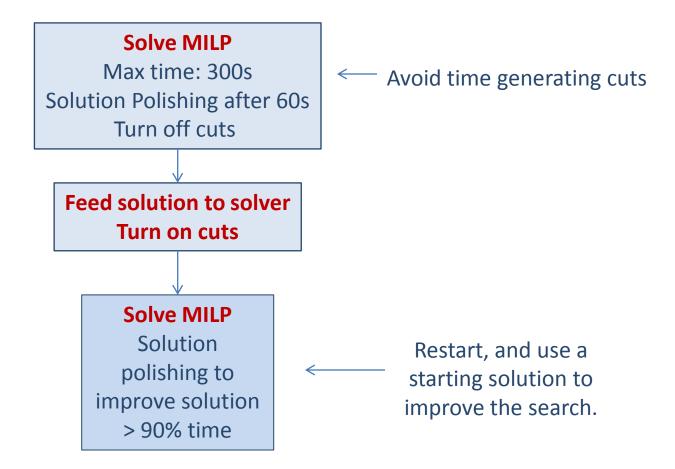

Engineeric Effect of parallelization and polishing

ENGINEERING Impact of the solution polish option

RMIP root 246,984.7

CPLEX 12.2

			Objective fur	nction
Threads	CPU time (s)	Gap (%)	RMIP	MIP
1	950	0.0	266,793.0	266,793.0
4D	211	0.0	266,793.0	266,793.0
40	206	0.0	266,793.0	266,793.0
8D	95	0.0	266,793.0	266,793.0
80	61	0.0	266,793.0	266,793.0
8D Polishing	1000	0.94 EWO seminar	264,291.7	266,793.0 49


- CPLEX has the option to start from a user-defined solution
 - The solution can be feasible or unfeasible
 - If the solution is not feasible, CPLEX uses a heuristic to try to repair the solution
 - Helps to find a feasible solution
 - If the solution is feasible, heuristics such as RINS or solution polishing can be used
 - Useful to debug a model

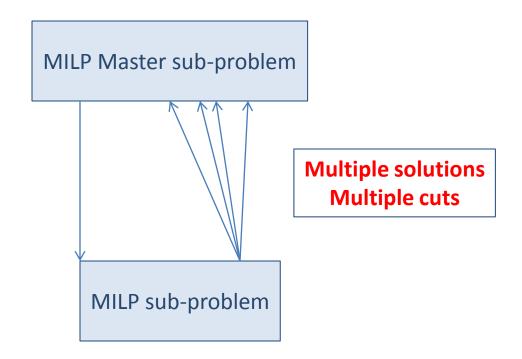
MIP start

Carnegie Mellon

ENGINEERING Integration of MIP start and polishing

CPLEX 12.2

		Objective function		
Threads	CPU time (s)	Gap (%)	RMIP	MIP
1	3600	3.4	2,669.0	2,580.5
4D	3600	3.3	2,667.5	2,582.4
40	3600	2.3	2,667.2	2,607.2
8D	3600	3.4	2,666.3	2,578.8
80	3600	2.3	2,665.9	2,607.2
8D P - 60s	3600	2.2	2,668.8	2,610.4
8D Start	3600	2.0	2,656.6	2,603.5
CPLEX 7.1	3600	-	2,687.9	



- Motivation:
 - Value on having more than one solution
 - Model does not capture the full essence of the process
 - Approximations on creating the model
 - Data is not accurate
- Goal: generate and keep multiple solution
 - MIP, MIQCP
- Options and tools:
 - Collect solutions with a given percentage of the optimal solution
 - Collect diverse solutions
 - Collect solutions with diverse properties
 - Difficult to implement with rolling horizon decompositions

• Example of application (Emilie Danna, CPLEX)

Remark: difficult to implement with rolling horizon decompositions

EWO seminar

- Motivation
 - MIP solvers have multiple algorithm parameters
 - The performance of the solver depends on these parameters
 - Default values in solvers are defined in order to work well for a large collection of problems
 - May not work for the user specific problem
- Goal: identify the solver parameters that improve the performance of the solver for a given set of problems.

CPLEX 12.2 Objective function Threads CPU time (s) Gap (%) RMIP MIP 1 949 0.0 266,793.0 266,793.0 8D 266,793.0 95 266,793.0 0.0 threads 8 cutpass=-1 heurfreq=-1 Apply the tuning tool itlim=10000000 Time = 327sparallelmode=1 probe=-1 varsel=4 **CPLEX 12.2 Objective function** Threads CPU time (s) Gap (%) **RMIP** MIP 1 67 0.0 266,793.0 266,793.0 **8**D 8 266,793.0 266,793.0 0.0

12/07/2010

Carnegie Mellon

CINFFRING

57

- If repeatability of the results is required the above options should not be used, ۲ mainly in the development phase.
- the maximum time set.
- **Remarks:** It seems particularly relevant when optimality cannot be guaranteed within

- - Computational time
 - Performance in terms of nodes, iterations

However, it is an opportunity to obtain better solutions.

- Quality of the solution
- Variability may occur on ۲

- **Variability** in the performance may occur in CPLEX 12.2 due to ٠
 - Opportunistic parallelization
 - Heuristics: polishing option (random seed)
 - Numerical reasons

Variability

- The increasing performance of CPLEX has been allowing us to solve more complex problems.
- The CPLEX default parameters may not be a good choice for all problems.
- The solution pool may be an important feature to implement some decompositions.
- Topics not discussed:
 - Infeasibility analysis tool
 - Interface of CPLEX with other applications and programming languages
 - Comparison of the CPLEX performance with other solvers
 - Use of callbacks

CPLEX performance tuning (by Ricardo Lima)

- Technical support from IBM ILOG: "CPLEX Performance Tuning for Mixed Integer Programs"
 - http://www-01.ibm.com/support/docview.wss?uid=swg21400023
- Approach to tune CPLEX for MILPs
 - 1. Use a good formulation.
 - 2. Solve with default values.
 - 3. Check the CPLEX log to evaluate:
 - a) if it is difficult to find the first integer solution.
 - b) the progress of the lower and upper bound, and determine if it is difficult to obtain integer solutions.
 - 4. Diversify or change the search path:
 - a) Set priorities for the variables.
 - b) Increase the frequency of the use of heuristics if it is difficult to find integer solutions.
 - c) Use the polishing option to improve the incumbent. When the polishing option is activated, CPLEX will spend more time solving sub-MIPs, and little progress is made on the relaxation.
 - d) Use the parallel mode with the opportunistic option.
 - e) Change the branching strategy
 - 5. Improve the linear relaxation solution
 - a) Increase the level of generation of cuts (increases the computational times)
 - b) Increase the level of probing (increases the computational times)
 - 6. If the goal is to decrease the computational time, turn off heuristics and turn off the generation of cutting planes, it may be faster.
 - 7. Use the tuning tool.

• CPLEX manuals

- IBM ILOG CPLEX Manual
 - http://publib.boulder.ibm.com/infocenter/cosinfoc/v12r2/topic/ilog.odms .cplex.help/Content/Optimization/Documentation/CPLEX/_pubskel/CPLEX .html
- Presolve and conflict analysis
 - Rothberg, E., ILOG, Inc. The CPLEX Library: Presolve and Cutting Planes
 - Linderoth, J. (2004). Preprocessing and Probing for integer programs, DIMACS Reconnect Conference on MIP.
 - Savelsbergh M.W.P. (1994). Preprocessing and probing techniques for Mixed Integer Programming problems. *ORSA Journal on Computing*, 6(4), p. 445-454.
 - Atamurk, A., Nemhauser, G., Savelsbergh, M.W.P., (2000). Conflict graphs in solving integer programming problems. *European Journal of Operational Research*, 121, p. 40-55.

ENGINEERING References (cont.)

• Branch and bound and LP

- Land A. H., Doig, A. G. (1960), an automatic method for solving discrete programming problems, *Econometrica*, 28, pp 497-520
- Rothberg E., ILOG, Inc. The CPLEX Library: Mixed Integer Programming
- Rothberg, E., ILOG, Inc. The CPLEX Library: Presolve and Cutting Planes
- Wolsey, L. A., (1998), Integer programming, Wiley-Intersience.
- Local search heuristics
 - Rothberg, E. ILOG, Inc. The CPLEX Library: MIP Heuristics
 - Danna, E., Rothberg, E., Le Pape, C., (2005). Exploring relaxation induced neighborhoods to improve MIP solutions, *Mathematical Programming*, 102(1), p. 71-91.
 - Rothberg, E. (2007). An evolutionary algorithm for polishing Mixed Integer Programming Solutions. *INFORMS Journal On Computing*, 19(4) p. 534-541.
 - Fischetti, M., Lodi, A. (2005). Local branching. Mathematical Programming, 98, p. 23-47.

ENGINEERING References (cont.)

• Local search heuristics (cont.)

- Chinneck, J. and Lodi, A., (2010). Heuristics for feasibility and optimality in mixed integer programming. CIRRELT Spring School on Logistics, Montreal.
- Dana E. (2008). Performance variability in mixed integer programming. MIP 2008
- Parallelization
 - Crainic, T. G., Cun, B., Roucairel, C., (2006). Parallel branch-and-bound algorithms, Parallel combinatorial optimization, Chap. 1. John Wiley and Sons, NJ.

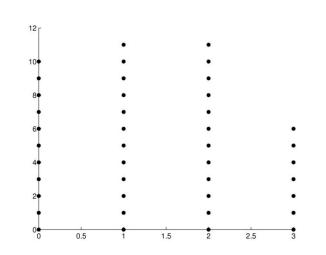
EXTRA SLIDES

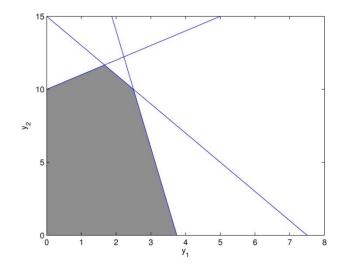
- Commercial
 - XPRESS, FICO
 - XA, Sunset Software Technology
 - MOSEK, MOSEK
 - GUROBI, GUROBI Optimization
- Non-commercial
 - SCIP, ZIB
 - MINTO,CORAL
 - GLPK, GNU
 - CBC, COIN-OR
 - SYMPHONY, COIN_OR
- Benchmark sites:
 - http://miplib.zib.de
 - http://plato.asu.edu/ftp/milpc.html

Example

Carnegie Mellon

GINEERING




• Consider the pure integer programming problem:

$$\min z = -5y_1 - 2y_2$$

st.
$$-y_1 + y_2 \le 10$$

$$2y_1 + y_2 \le 15$$

$$8y_1 + y_2 \le 30$$

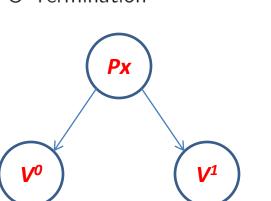
$$y_1, y_2 \in \mathbb{Z}_+$$

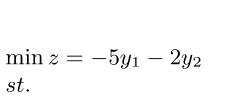
Feasible space

Relaxation of the feasible space

66

 $\min z = -5y_1 - 2y_2$

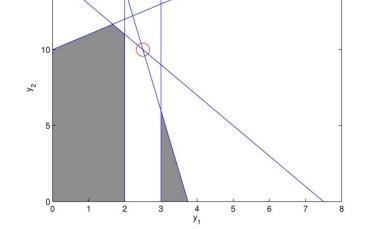

 $-y_1 + y_2 \le 10$


 $2y_1 + y_2 < 15$

 $8y_1 + y_2 \le 30$

 $y_1, y_2 \in \mathbb{Z}_+$

 $y_1 > 3$


 $-y_1 + y_2 \le 10$

 $2y_1 + y_2 < 15$

 $8y_1 + y_2 \le 30$

 $y_1, y_2 \in \mathbb{Z}_+$

 $y_1 < 2$

st.

Initialization

 $L = \{P_X\}$

Branching

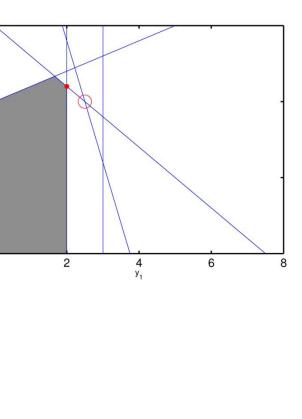
when $Z(V) \leq \overline{Z}$ and $y_i^V \notin \mathbb{Z}$ select branching variable $y_i^V \notin \mathbb{Z}$ set $L := L \cup \{V^0, V^1\}$ where $V^{0} = V \cap \{(x, y) \in \mathbb{R}^{n}_{+} \times \mathbb{R}^{p}_{+} : y_{j} \leq \lfloor y_{i}^{V} \rfloor\}$ $V^1 = V \cap \{ (x, y) \in \mathbb{R}^n_+ \times \mathbb{R}^p_+ : y_j \le \lceil y_i^V \rceil \}$ GO TO Termination

 $\overline{Z} := +\infty$

Carnegie Mellon Divide et impera ENGINEERING

Initialization

 $L = \{P_X\}$ $\overline{Z} := +\infty$


Node selection and solve

Select $V \in L$ and let $L := L \setminus \{V\}$ Compute Z(V), (x^V, y^V)

10 Y2 5 0 2 4 y₁ 6 8 *Z* = -27.0 Upper bound *Z* = -32.0 <u>*Z*</u> = -32.5 Lower bound

15

ENGINEERING Cuts and heuristics at the root node

- Given: is a vector of variables x ∈ {0,1}^p that by optimality can be treated as continuous, to x ∈ [0,1]^p.
- Question: what is the impact of relaxing the variables? (number of variables, relaxation, search)

Example

In the RHS model the binary variables $Z_{i,l,m,t}$ and $TRT_{i,k,m,t}$ can be relaxed to continuous variables

Reduction of the number of binary variables: 5581 to 1502.

ENGINEERING LP solution and relaxation

- LP solution is the same for both models
 Optimal solution found.
 Objective : 2692.510176
- However, the LP relaxation is different at the beginning of the root node iterations.

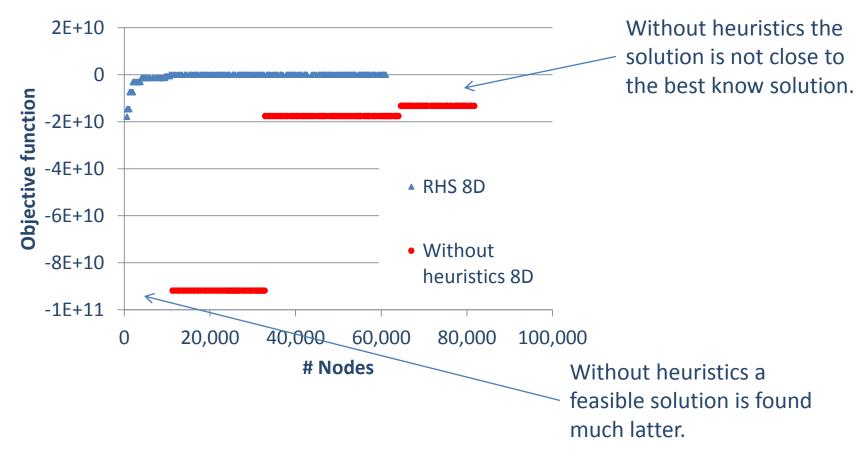
CPLEX log using Z and TRT as continuous variables

0	0	2690.3084	1001	2690.3	084	9175	
0	0	2688.2465	897	Cuts:	286	11483	
0	0	2687.0382	906	Cuts:	202	13859	
0	0	2686.7985	863	Cuts:	97	14924	
0	0	2686.6539	881	Cuts:	56	15602	
0	0	2686.5623	885	Cuts:	40	15957	
0	0	2686.5612	863	Flowcuts	: 9	16028	
0	0	2686.5612	866	Cuts:	17	16073	
Heuristic	still	looking.					
0	2	2686.5612	866	2686.5	612	16073	
Elapsed re	eal tir	me = 24.64 s	ec. (tr	cee size = 0.01 MB, sol	utio	ns = 0)	
75029 589	991	2652.7284	501	2595.3987 2680.43	22 2	4025154	3.28%
40/07/0040				51410			6.0

CPLEX log using Z and TRT as binary variables

0							
0	2692.1693	1661		2692.3	1693	11471	
0	2689.1996	1511		Cuts:	365	14327	
0	2684.7527	1567		Cuts:	378	16553	
0	2683.4370	1490		Cuts:	263	19210	
0	2682.3135	1484		Cuts:	169	20982	
0	2681.2411	1595		Cuts:	143	22425	
0	2680.6783	1510		Cuts:	134	24554	
0	2679 2076	1467		Cuts.	119	26157	
0						28551	
0		-	RIMIP I	root	RIVIIP	29187	
0						31526	
0		RMIP	Beginning	End	Final	32456	
0						32775	
0						33240	
0	BIN	2,693	2 <i>,</i> 692	2,676	2,666	34183	
2						34183	
real ti		2 6 9 2	2 6 9 9	2 6 9 9	;	= 0)	
47491	CONT	2,693	2,690	2,690	2,680)	510359	3.3
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 real ti	0 2684.7527 0 2683.4370 0 2682.3135 0 2681.2411 0 2680.6783 0 2679 2076 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2684.7527 1567 0 2683.4370 1490 0 2682.3135 1484 0 2681.2411 1595 0 2680.6783 1510 0 2679 2076 1467 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2684.7527 1567 0 2683.4370 1490 0 2682.3135 1484 0 2681.2411 1595 0 2680.6783 1510 0 2679 2076 1467 0 RMIP 0 RMIP Beginning 0 BIN 2,693 2,692 2 real tin	0 2684.7527 1567 Cuts: 0 2683.4370 1490 Cuts: 0 2682.3135 1484 Cuts: 0 2681.2411 1595 Cuts: 0 2680.6783 1510 Cuts: 0 2679 2076 1467 Cuts: 0 2679 2076 1467 Cuts: 0 2679 2076 1467 Cuts: 0 8IN 2,693 2,692 2,676 2 real tin	0 2684.7527 1567 Cuts: 378 0 2683.4370 1490 Cuts: 263 0 2682.3135 1484 Cuts: 169 0 2681.2411 1595 Cuts: 143 0 2680.6783 1510 Cuts: 134 0 2679 2076 1467 Cuts: 119 0 0 RMIP root RMIP 0 0 RMIP Beginning End Final 0 0 BIN 2,693 2,692 2,676 2,6666 2 real tin ; ; ; ; ;	0 2684.7527 1567 Cuts: 378 16553 0 2683.4370 1490 Cuts: 263 19210 0 2682.3135 1484 Cuts: 169 20982 0 2681.2411 1595 Cuts: 143 22425 0 2680.6783 1510 Cuts: 134 24554 0 2679 2076 1467 Cuts: 119 26157 0 2679 2076 1467 Cuts: 119 26157 0 2679 2076 1467 Cuts: 378 16553 0 2679 2076 1467 Cuts: 143 22425 0 2679 2076 1467 Cuts: 119 26157 0 8 8 8 32456 32775 0 8 8 2,693 2,692 2,676 2,666 3240 34183 34183 34183 34183 2 3240 34183 34183

• The initial LP relaxations at the root node are different


El

- The solutions at the end of the root node are different: 2686.5612 vs 2676.4693
- The final relaxation is better when using binary variables 12/07/2010 EWO seminar

39%

ENGINEERING Heuristics motivational example

• RHS problem optimized with heuristics and heuristics turned off.

ENGINEERING Heuristics motivational example (cont.) <u>C</u>

Heuristics automatic

49	99 38	5	2674.4232 12	98		2676.4137 5	11018	
Ela	apsed r	eal t	ime = 86.54 s	ec. (t	ree size = 3.	99 MB, solution	ns = 0)	
	544	428	infeasible			2676.4137	523630	
*	604+	321			-1.78665e+10	2672.4010	570690	100.00%
	604	322	2671.7797	1341	-1.78665e+10	2671.7797	577744	100.00%
	605	323	2671.5395	1410	-1.78665e+10	2671.7797	582540	100.00%
	608	324	2665.7742	1321	-1.78665e+10	2671.5025	589020	100.00%
	620	331	2670.9349	1440	-1.78665e+10	2671.2627	604374	100.00%
						Cuts: 50		
	640	339	2655.9561	1075	-1.78665e+10	2671.2627	653538	100.00%
						Cuts: 25		
*	656+	247			-1.46007e+10	2671.2627	662376	100.00%

Heuristics turned off

Elapsed real time = 401.82 sec. (tree size = 824.86 MB, solutions = 0)								