A bi-level heuristic for steel plant scheduling under complex time-sensitive price structures
Challenges of Present and Future Grid
Interest in Active Load Management

- Renewables Expansion
 - Smart grid
 - Solar
 - Wind
 - Grid stability and reliability

- Demand & Supply
 - Need for peak load (1)
 - Environmental policies and investment costs

- Market Liberalization
 - Variable electricity prices (2)
 - New markets

Demand-Side Management

Sources:
(1) Pina et. Al, 2012
(2) EPEX SPOT France, 2012
Scheduling of Energy-Intensive Processes
Melt Shop of Stainless Steel Plant

Electric Arc Furnace (EAF)
Argon Oxygen Decarburization (AOD)
Ladle Furnace (LF)
Continuous Casting (CC)

scrap metal load → m_1 → heat p → m_2 → heat p → m_3 → heat p → m_4 → heat p → m_5 → heat p → m_6 → heat p → m_7 → heat p → m_8 → steel slab

power $[MW]$ vs. time $[min]$
Scheduling of Energy-Intensive Processes
Melt Shop of Stainless Steel Plant

- Batch process with semi-continuous stage st_4 (CC)
- Parallel, non-identical equipment m
- Equipment specific setup t_{m}^{setup} and transportation times $t_{m,m'}^{\text{min}}$
- Max hold-up times $t_{p,st}^{\text{max}}$ between stages

Scheduling of Energy-Intensive Processes

Energy Management Aspects

- Multiple contracts – time dependent price levels
- Pre-agreed load curve – penalties for deviation
- Demand from production process
- On-site generation – with special constraints
- Selling back to grid
Problem statement

Questions to be answered

- Problem complexity
 - Approach 1: Energy-aware scheduling with fixed assignment and sequencing
 - Approach 2: Scheduling decisions are also optimized

- Modeling challenges
 - Extending the continuous-time formulation with energy-awareness
 - Embedding the energy purchase optimization into the problem
 - Decomposing the problem for large scale instances

Note: time_slots due to electricity cost accounting
Solution Approach
Monolithic Model Structure

Production scheduling – general precedence model

Electricity consumption accounting – event binaries

Electricity purchase optimization – min cost flow network

Load deviation response – committed load problem

Obj. function

\[
\min \left(\text{weight} \cdot \text{makespan} \right) + \text{net consumption cost} + \text{deviation penalties}
\]
Each arc is defined by parameters and flow volume variable

\[\text{[TimeSlot, MinFlow, MaxFlow, Cost, Flow]} \]

\[\sum_{i \in \text{Sources}} \text{flow}_{i,j} = \sum_{k \in \text{Sinks}} \text{flow}_{j,k} \quad \forall j \in \text{Balance} \]
Energy Purchase Optimization
Electricity Flow Network

- Base load contract
 - Node i1

- Time-of-use contract
 - Node i2

- Day-ahead spot market
 - Node i3

- Onsite generation
 - Node i4

- Source of electricity

- Balancing area
 - Node i5

- Sink of electricity
 - Node i6
 - Node i7

- Sales to grid

Process demand – to be always satisfied
Problem statement

Questions to be answered

- **Problem complexity**
 - Approach 1: Energy-aware scheduling with fixed assignment and sequencing
 - Approach 2: Scheduling decisions are also optimized

- **Modeling challenges**
 - Extending the continuous-time formulation with energy-awareness
 - Embedding the energy purchase optimization into the problem
 - **Decomposing** the problem for large scale instances

Note: *time_slots* due to electricity cost accounting
Bi-level heuristic
General approach

- Approximation of the original monolithic problem
- Full problem with fixed difficult binary decisions

Upper level UL

$add\ cuts$

- Eliminate evaluated solutions, reduce the search space

Lower level LL

Stopping criteria met?

Fix decisions
Bi-level heuristic

Algorithm flow

start

Upper level $UL1$
(EAF-CC)
Find rough schedule

If $gap_{iter}^{LL1} > \beta$
cut previous solution;
else
cut previous solution
and
the range of time slots for
event start;

update assignment on EAF

no

CPUs limit reached?

Upper level $UL2$
(all stages)
Find better EAF assignment

fix assignment on AODs, LFs
fix all sequences (based on global sequence)
fix event start to particular time slot

yes

stop

Lower level LL
(all stages)
Find full schedule

fix assignment on EAFs
fix global sequence of products
constrain event start to occur
within a range of time slots

© ABB Group
March 5, 2015 | Slide 30
Approach 2: Scheduling Decisions to be Optimized– Industrial Case Study

Heuristic vs Monolithic (GAMS/CPLEX v23.7)

<table>
<thead>
<tr>
<th>Instance</th>
<th>Model type</th>
<th>Model statistics</th>
<th>Min objective 600s</th>
<th>Relative gap 600s</th>
<th>Heuristic Iterations (Best)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 h, 20 products, high prices spot</td>
<td>Monolithic 1</td>
<td>4 065</td>
<td>25 443</td>
<td>102 335</td>
<td>247 838</td>
</tr>
<tr>
<td></td>
<td>Heuristic 1</td>
<td>UL2: 1 458</td>
<td>UL2: 28 050</td>
<td>UL2: 102 335</td>
<td>193 845</td>
</tr>
<tr>
<td>24 h, 20 products, low prices spot</td>
<td>Monolithic 2</td>
<td>4 065</td>
<td>25 443</td>
<td>102 335</td>
<td>200 038</td>
</tr>
<tr>
<td></td>
<td>Heuristic 2</td>
<td>UL2: 1 458</td>
<td>UL2: 28 050</td>
<td>UL2: 102 335</td>
<td>165 196</td>
</tr>
<tr>
<td>24 h, 16 products, high prices spot</td>
<td>Monolithic 3</td>
<td>3 229</td>
<td>20 199</td>
<td>80 528</td>
<td>155 226</td>
</tr>
<tr>
<td></td>
<td>Heuristic 3</td>
<td>UL2: 1 276</td>
<td>UL2: 22 152</td>
<td>UL2: 80 528</td>
<td>134 588</td>
</tr>
</tbody>
</table>

- What if the plant over-commits expected electricity consumption?

| 24 h, 16 products, high prices spot, agreed load as for 20 products | Monolithic 4 | 3 229 | 20 199 | 80 528 | 204 173 | 22,50% | - |
| Heuristic 4 | UL2: 1 276 | UL2: 22 152 | UL2: 80 528 | 176 006 | 8,71% | 4(3) |
Model Results

Gantt Chart example

Makespan – driven schedule

Electricity price

Electricity cost – driven schedule
Summary Discussion
Conclusions and Further Work

- Benefits and limitations
 - Cost reduction realized by energy-aware scheduling
 - Very large instances still intractable, even with heuristic
 - No lower bound from upper level problem results in no convergence behavior

- Further work
 - One-sided Mean Value Cross-decomposition on monolithic formulation to functionally separate energy purchase from production scheduling
 - Application to pulp and paper industry

- Acknowledgment
 - We would like to acknowledge the Marie Curie FP7-ITN project "Energy savings from smart operation of electrical, process and mechanical equipment—ENERGY-SMARTOPS", Contract No: PITN-GA-2010-264940 for financial support
Power and productivity for a better world™