SCHEDULING CEMENT PLANTS WITH ENERGY CONSTRAINTS

Pedro M. Castro

Ignacio E. Grossmann

Iiro K. Harjunkoski
A FEW THINGS ABOUT INETI
INETI - A PORTUGUESE RESEARCH LAB

- Largest national institution of R&D dedicated to companies
 - Ministry of Economics & Innovation
- Currently undergoing major restructuring (LNEG)
 - Focus of energy related issues
- Key indicators
 - Budget = M€45
 - 800 employees
DMS - PROCESS MODELING AND SIMULATION

- Two main research areas
 + Optimization
 - Planning/scheduling flexible production facilities
 - Design & planning supply chains
 + Innovation
 - Corporate strategies for technology market

- Small department
 + 18 staff (8 researchers)
 + Strong cooperation with Universities (degree-granting institutions)
 - 7 guest researchers
 - 4 PhD students

- Key performance indicators (2002-2007)
 + Scientific publications
 - 1 book & 9 book chapters
 - 7 theses (4 PhD)
 - 27 journal & 66 conference papers
 + Advanced training
 - 8 PhD + 10 MSc
 - 17 R&D trainees (grant-holders)
Cement producers currently under pressure to produce at lowest possible cost
+ Must look at best operating practices and optimize

Grinding process particularly complex
+ Requires high level control for stability and optimal performance

Scheduling plays an important part
+ Currently done with heuristic rules
 ✗ Focus on feasibility
+ Due to inherent complexity, choices are far from optimal
- **Scheduling decisions**
 - When and where to produce a certain grade
 - How much to keep in storage

- **Objectives**
 - Meet customer demands in time
 - Incorporate energy constraints (pricing and availability)
Contracts agreed between electricity supplier and cement plants (planning level)

- Energy cost [$/kWh]
 - Varies significantly during the day
 - From weekdays to weekends
- Maximum power consumption [MW]
 - Harsh cost penalties if levels are exceeded
 - Underproduction costs the same

Scheduling tools that can cope with such constraints can have a large impact on energy bill
WHAT TYPE OF MODEL DO WE NEED?

- Must be able to handle shared resources
 - General multipurpose models
- Rely on generic entities
 - Resources
 - Tasks
- Convert real entities into virtual ones
 - Generate Resource-Task Network (RTN)
- Process representation
Focus on continuous-time

- ABB’s Expert Optimizer can address scheduling by solving a control problem (discrete-time)
 - Leading software for cement plant control

Main challenge

- Account for discrete events that occur at known points in time
 - Multiple due dates for each product
 - Change in electricity
 * Availability
 * Cost
- Use as few event points as possible
 - To reduce total computational effort
CONTINUOUS-TIME FORMULATION

- Important property of continuous tasks
 - Can be divided as many times as required (same rate)

- One task on each time interval

- If tasks span more than one energy level
 - Tasks will be split (as more time intervals are added)
WHY NOT DISCRETE-TIME?

Arguments in favor
+ Discrete-events handled much more naturally
 ✗ Provided that the time grid is sufficiently fine
 ★ For accurate consideration of problem data
 ✗ Time intervals of 1 hour length (δ)
 ✗ No additional modeling effort
 ★ Same process representation (RTN)
 ✗ Fewer and simpler constraints

Minor limitation
+ Can lead to suboptimal solutions
DISCRETE-TIME FORMULATION

- Simple and elegant
 - Few constraints
 - Resource balances
 - \(R_{r,t} = R_{r,t}^0 + R_{r,t-1}^{\text{end}} |_{t=1} + R_{r,t-1} |_{r \in R^{CT}} + R_{r,t-1} |_{r \in (R^{CT} \cup R^{TP})} + \sum_{i \in I} (\mu_{r,i} N_{i,t} |_{t \neq |T|} + \nu_{r,i} \xi_{i,t} + \bar{\mu}_{r,i} N_{i,t-1}) + \sum_{i \in I^{CT}} (\bar{\nu}_{r,i} \xi_{i,t} + \bar{\mu}_{r,i} N_{i,t-1}) + \Pi_{i \in I}^{\text{in}} |_{r \in R^{CT} \land |t| \neq |T|} - \Pi_{i \in I}^{\text{out}} |_{r \in R^{FP} \land |t| \neq |T|} \forall r \in R, t \in T \)
 - \(R_{r,t}^{\text{end}} = R_{r,t} + \sum_{i \in I^{CT}} (\bar{\nu}_{r,i} \xi_{i,t} + \bar{\mu}_{r,i} N_{i,t-1}) \forall r \in R^{CT}, t \in T, t \neq |T| \)
 - Capacity constraints
 - \(\xi_{i,t} + \xi_{i,t}^* \leq (U |_{i \in I^c} + \delta \cdot \rho_{i}^{\text{max}} |_{i \in I^c}) \cdot N_{i,t} \quad \forall i \in I^c \cup I^e, t \in T, t \neq |T| \)
 - Objective function (minimize total electricity cost)
 - \(\min \sum_{i \in I^c} \sum_{r \in R^{CT}} \sum_{t \in T \land |t| \neq |T|} c_{e,t} \cdot (\mu_{r,i}) \cdot \frac{\xi_{i,t}}{\rho_{i}^{\text{max}}} \)
- Complexity at the level of RTN structural parameters generation
 - \(\mu_{r,i}, \bar{\mu}_{r,i}, \nu_{r,i}, \bar{\nu}_{r,i}, \lambda_{r,i} \)
MAIN RESULTS

- Continuous-time model can effectively model all features
 - Major breakthrough
 - Not efficient computationally
 - Limited to toy problems

- Discrete-time very good approach
 - Effectively solve problems of industrial relevance
 - Fast to nearly optimal solutions (0.8% gap in 5 CPU minutes)
 - Has potential to be incorporated into decision-making tool used by industry
 - After post-processing procedure eliminates superfluous information
 - Caused by high solution degeneracy

September 2008 EWO Meeting
Very tight discrete-time formulation (DT)
 + Integrality gap=0 in some cases
 DT grid uses much more event points $|T|$
 Solution for CT highly dependent on $|T|$

| Problem | $(|P|, |M|, |S|)$ | Model | $|T|$ | binary variables | single variables | constraints | RMIP (€) | MIP (€) | CPU s | nodes |
|---------|----------------|-------|------|-----------------|-----------------|------------|----------|--------|-------|-------|
| EX5 | (3,2,2) | DT | 169 | 2016 | 10784 | 6739 | 26738 | 26780 | 3600a | 133242 |
| | | CT | 9 | 528 | 1089 | 562 | 25625 | 27222 | 7.18 | 3989 |
| | | CT | 10 | 594 | 1221 | 629 | 25625 | 27008 | 369 | 138426 |
| | | CT | 11 | 660 | 1353 | 696 | 25625 | 26911 | 4131 | 1295540 |
| EX6 | (3,2,3) | DT | 169 | 2520 | 13986 | 8423 | 43250 | 43259 | 3600b | 85900 |
| EX7 | (3,3,4) | DT | 169 | 3528 | 18365 | 10780 | 68282 | 68282 | 18.4 | 671 |
| EX8 | (3,3,5) | DT | 169 | 4032 | 21567 | 12464 | 101139 | 104622 | 3600c | 41252 |
| EX9 | (4,3,4) | DT | 169 | 4704 | 23923 | 13810 | 87817 | 87868 | 3600d | 24400 |
| EX10 | (5,3,4) | DT | 169 | 5880 | 29481 | 16840 | 86505 | 86581 | 3600e | 7500 |
POTENTIAL COST SAVINGS

- May be very substantial (≥20%)
 - When compared to scheduling based on feasibility

- Preliminary results function of a variety of factors
 - Electricity pricing policy
 - How far mills are operating below maximum capacity
 - How good are the heuristic rules in use at the plant

- Enough to motivate further research

<table>
<thead>
<tr>
<th></th>
<th>EX1</th>
<th>EX2</th>
<th>EX3</th>
<th>EX4</th>
<th>EX5</th>
<th>EX6</th>
<th>EX7</th>
<th>EX8</th>
<th>EX9</th>
<th>EX10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Savings (%)</td>
<td>27</td>
<td>23</td>
<td>39</td>
<td>29</td>
<td>40</td>
<td>33</td>
<td>39</td>
<td>20</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>Capacity (%)</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>47</td>
<td>33</td>
<td>46</td>
<td>40</td>
<td>55</td>
<td>51</td>
<td>56</td>
</tr>
</tbody>
</table>