Energy Procurement Portfolios and Production Planning
EWO Spring Meeting ’11

by Çağrı Latifoğlu

Project Team: Jim Hutton AirProducts
Peter Connard AirProducts
Prof. Ted Ralphs ISE, Lehigh Uni.

March 9th, 2011
An Update to the Old Project

Figure: Total Production to Total Demand Ratio
New Project

Production Setting
- consider a single product, single plant
- manufacturing requires only energy
- deterministic demand
- stockouts are not allowed
- the plant has an energy storage system (ESS)

Contracts
- fixed price (FP or f)
- quantity-based tiered contracts (QB or q)
- time-based tiered contracts (TB or b)
- spot market access (SP or s)
Objective

- Minimize production costs
- Find a portfolio of contracts
- Find the optimal power import schedule

Contract Attributes

- enabled demand charge for all contracts
- modified TB contract to use a generic subset of hours
- enabled energy storage right from the start
- all of the contracts can be active simultaneously
Similar Models

Chan et al., 2006

Time zone (TZ) contract and loading curve (LC) contract

Conejo et al., 2006

- Spot market, bilateral contracts similar to TB contract and self-production. Uncertainty is related to electricity pool prices.
- Markovitz type
- Price volatility

Carrion et al. 2007-2010

- Same setting as above.
- Stochastic programming (price scenarios)
- CVaR: the expected cost of the procurement in the worst (greater cost) α% of the price scenarios
Model Notation

Sets

- \(A \) contract categories := \(\{f, q, b, s\} \)
- \(D \) set of days in planning horizon := \(\{1, \ldots, 7\} \)
- \(T \) set of hours per day := \(\{1, \ldots, 24\} \)
- \(T_1 \) set of peak hours := \(\{9, \ldots, 13\} \cup \{17, \ldots, 21\} \)
- \(T_2 \) set of off-peak hours := \(T \setminus T_1 \)

Hours

\(\mathcal{H} := D \times T \)

:= \(\{1, \ldots, 168\} \)

set of hours
Model Parameters

Contract Cost Parameters

- c_f: flat rate (\mathcal{c}/kWh)
- c_b^1, c_b^2: peak, off-peak rate (\mathcal{c}/kWh), requires T_1, T_2
- c_q^1, c_q^2: before-qlimit, after-qlimit rate (\mathcal{c}/kWh), requires $q\text{limit}$
- c_s: expected hourly spot market rate (\mathcal{c}/kWh), requires $[V^s]$
- $[V^s]$: sample price covariance matrix ($\mathcal{c}/\text{kWh})^2$
Data

<table>
<thead>
<tr>
<th>Demand Charge</th>
<th>Fixed Price</th>
<th>Time Based</th>
<th>Quantity Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>20 (peak) 35</td>
<td>(≤ 500 kW) 15</td>
<td>1000 $</td>
</tr>
<tr>
<td>Tier 2</td>
<td>20 (off-peak) 15</td>
<td>(> 500 kW) 35</td>
<td>1000 $</td>
</tr>
</tbody>
</table>

Table: Pricing Schemes
Data

Figure: Sample Covariance Matrix
Other Parameters

α risk aversion coefficient
dc_a demand charge imposed by contract a ($\$)
ub_a max power that can be procured from contract a (kW)
M big M

Production Parameters

η electricity to product conversion factor (unit/kWh)
dem_d demand for end product faced on day d
inv_0 initial inventory for end product

ESS Parameters

ξ_c, C_c ESS charging loss coefficient and capacity
ξ_s, C_s ESS storage loss coefficient and capacity
ξ_i, C_i ESS discharging loss coefficient and capacity
Variables

Continuous Variables

- $P_{h,a}$: power purchased from contract a at hour h
- P^u_h: power used for production at hour h
- P^e_h: power stored at ESS at hour h
- P^f_h: power discharged from ESS at hour h
- inv_d: inventory at the end of day d
- ess_h: ESS charge level at hour h
- K_h: auxiliary variable for modeling QB cost component

Binary Variables

- x_a: 1 if contract a is ever used in planning horizon
- y_h: auxiliary variable for modeling QB cost component
Model

\[
\begin{align*}
\text{min} & \quad \sum_{h \in \mathcal{H}} (c_f P_{h,f} + c_s P_{h,s} + K_h) + \\
& \quad \sum_{h \in \mathcal{H}_1} c_b^1 P_{h,b} + \sum_{h \in \mathcal{H}_2} c_b^2 P_{h,b} + \\
& \quad \alpha \sum_{h_1 \in \mathcal{H}} \sum_{h_2 \in \mathcal{H}} P_{h_1,s} [V^s]_{h_1,h_2} P_{h_2,s} + \sum_{a \in \mathcal{A}} x_{a d} c_a \\
\text{s.t.} & \quad \forall h \in \mathcal{H}, a \in \mathcal{A} \quad P_{h,a} \leq Mx_a \\
& \quad \forall h \in \mathcal{H} \quad \sum_{a \in \mathcal{A}} P_{h,a} = P^u_h + P^e_h \\
& \quad \forall d \in \mathcal{D} \quad inv_d = inv_{d-1} + \sum_{t \in \mathcal{T}} \eta(P^u_h + \xi_i P^f_h) - dem_d \\
& \quad \forall h \in \mathcal{H} \quad ess_h = \xi_s ess_{h-1} + \xi_c P^e_h - P^f_h
\end{align*}
\]
Model

\[K_h = \begin{cases}
 c_q^2 P^q_{h} & \text{if } y_h = 1 \\
 c_q^1 P^q_{h} & \text{o.w.}
\end{cases} \]

\[\forall h \in \mathcal{H} \quad \sum_{\hat{h} \in \mathcal{H}, \hat{h} \leq h} P_{\hat{h}, q} - q\text{limit} \leq M y_h \tag{8} \]

\[\forall h \in \mathcal{H} \quad M + K_h \geq c_q^2 P_{h, q} + M y_h \tag{9} \]

\[\forall h \in \mathcal{H} \quad M y_h + K_h \leq c_q^2 P_{h, q} + M \tag{10} \]

\[\forall h \in \mathcal{H} \quad M + K_h \geq c_q^1 P_{h, q} + M(1 - y_h) \tag{11} \]

\[\forall h \in \mathcal{H} \quad M(1 - y_h) + K_h \leq c_q^1 P_{h, q} + M \tag{12} \]

\[\forall h \in \mathcal{H} \quad y_h \geq y_{h-1} \tag{13} \]
Preliminary Results

![Graphs showing power imported spot market (kW), expected cost of importing power from spot market ($), and total cost of importing power ($).]
Preliminary Results

Figure: Objective Function Value for Different α Levels
Preliminary Results

Figure: Procurement Plan Avoids Peak Hours
Solution Techniques

Proposed Solution Techniques

- Improved Formulation by Symmetry Breaking Inequalities
- MIQP Branch and Bound with Warm Starting

Symmetry Breaking Inequalities

In some instances:

- Gurobi 4.0.0 and CPLEX 12.1 both reduced duality gap to 25% and stalled within the 2 hour limit
- Adding symmetry breaking constraints $y_h \geq y_{h-1} \quad \forall h \in \mathcal{H}$ reduced the solution time to 4 seconds
Proposed Solution Techniques

MIQP Branch and Bound with Warm Starting

- **A Good Initialization Heuristic**
 - Setting $x_s = 0$ and $x_b = 0$ reduces the problem to an LP.
 - Start from the optimal basis and the objective is an upper bound for B&B scheme.

- **A Relaxation Strategy**
 - Linear relaxation at each node is a QP. Efficiently solvable by using
 - Interior point methods (such as a predictor-corrector method)
 - Active-set methods
 - This provides us a lower bound for B&B scheme.

- **A Branching Rule**
 - First branch on all x variables
 - Reduces the size of the search tree
This research was supported in part by a grant from the Pennsylvania Infrastructure Technology Alliance (PITA).