Optimal Model-Based Production Planning for Refinery Operation

Abdulrahman Alattas
Advisor: Ignacio Grossmann

Chemical Engineering Department
Carnegie Mellon University

EWO Meeting – September 2009
Introduction

Refinery production planning models
- Optimizing refinery operation
 - Crude selection
- Maximizing profit; minimizing cost
- LP-based, linear process unit equations

Current Project
- Collaboration with BP Refining Technology
- Goal: develop a refinery planning model with nonlinear process unit equations, and integrated scheduling elements
Problem Statement

Typical Refinery Configuration

(Adapted from Aronofsky, 1978)
Problem Statement

- **Information Given**
 - Refinery configuration: Process units
 - Feedstock & Final Product

- **Objective**
 - Select crude oils and quantities to process
 - Maximizing profit
 - single period time horizon
CDU Models

- Initial Focus on CDU
 - Front end of the every refinery
 - LP models
 - Fixed-yield equation:
 \[F_{\text{outlet}} = a_{\text{unit,feed,outlet}} \times F_{\text{feed}} \]
 - Swing cut equation:
 \[F_{\text{outlet}} = a_{\text{CDU,feed}} \times F_{\text{feed}} + b_{\text{CDU,outlet,front}} + b_{\text{CDU,outlet,back}} \]
Complexity of CDU

- CDU depends on steam stripping for fractionation, not reboilers
 - Crude stability
- Multiple side streams
 - Single column configuration
- Side strippers with steam stripping and reboilers
- Side condensers

Typical Crude Distillation Column (Gadalla et al, 2003)
CDU & Cascaded Columns

Typical Crude Distillation Column
(Gadalla et al, 2003)

Cascaded Columns Representation
of a Crude Distillation Column
(Gadalla et al, 2003)
CDU Aggregate Model

- Original Aggregate Distillation Column Model
 - Based on work of Caballero & Grossmann, 1999
 - Principle
 - Top and bottom integrated heat and mass exchangers around the feed location
 - Constant flow in each section
 - Pinch location is at the feed section
 - Feasibility criteria
 - \[
 \frac{V_{j,i}}{V_{j,total}} \leq J_{j,i} \frac{L_{j,i}}{L_{j,total}} \quad \text{i} \in \text{comp}, \ i \leq \text{LK}, \ j \in \text{loc}
 \]
 - \[
 \frac{V_{j,i}}{V_{j,total}} \geq J_{j,i} \frac{L_{j,i}}{L_{j,total}} \quad \text{i} \in \text{comp}, \ i \geq \text{HK}, \ j \in \text{loc}
 \]
 - Temperature constraint
 - \[T_{\text{reb}} > T_{\text{bot}} > T_{\text{botfeed}} > T_{\text{topfeed}} > T_{\text{top}} > T_{\text{cond}} \]
Aggregate Model Example

- Conventional cascaded columns example
 - 4 columns
 - Indirect sequence
 - Feed
 - 18 components (C3-C20)
Aggregate Model – Steam Distillation Column

- Complexity of adding steam stripping
 - Lack of the reboiler and return to the column
 - Steam does not participate in the equilibrium calculations
 - Suitability of the section equimolal flowrate assumption
 - Temperature profile is different
 - Column pressure and equilibrium constant calculations
Aggregate Model – Steam Distillation Column

- New model
 - Column split into 5 sections
 - Condenser, stage #1, top section, feed stage, bottom section, stage #n
 - Equilibrium equations applied to stage #1, feed stage and stage #n, excluding steam
 - Mass & energy balances applied to all stages and sections
 - Top product at the bubble point
Modified Aggregate Model Example

- **Feed**
 - C08, C10, C12 & C14
 - Recovery
 - LK: C10, 74%
 - HK: C12, 80%

- **Results**
 - Correct temperature profile
 - Peak at the feed stage

- Temperature Profile

- Diagram:
 - Distillate
 - Water
 - Cond
 - Top
 - Feed
 - Bottom
 - Stage #1
 - Top
 - Feed Stage
 - Bottom
 - Stage #n
 - 350
 - 400
 - 450
 - Steam
 - Bottom
Steam distillation cascaded columns

- Extension of the previous example
 - Using 2 cascaded columns
 - Model predicted the feed-stage peak of the temperature profile
Steam distillation cascaded columns

- Further studies
 - Impact of adding steam to the equilibrium equation
 - Additional equilibrium constraints for the top and bottom sections
 - Compare the results against simulation runs
Multi-period Planning Model

- Next phase in the development & key to the project
- Utilize available models
 - Swing cuts, aggregate & FI models
- Preliminary development
 - Addition of weekly demand and scheduled crude availability
 - Handling refinery operation
 - Crude change-overs
 - Crude inventory & product inventory
 - Identifying time resolution
Summary

- Research aims to build a nonlinear refinery planning & scheduling model
 - Current focus on CDU
- CDU complexity
 - Requires decomposition into cascaded columns
 - Aggregate model approach
 - conventional distillation columns
 - steam-stripping distillation columns
 - CDU fractionation index (FI) model
- Multi-period planning model
 - Preliminary work started
 - Key to scheduling & planning integration