Optimal Model-Based Production Planning for Refinery Operation

Abdulrahman Alattas
Advisor: Ignacio Grossmann

Chemical Engineering Department
Carnegie Mellon University

EWO Meeting – March 2010
Outline

- Introduction
- Problem Statement
- Refinery Planning Model Development
 - LP Planning Models
 - NLP Planning Models
- Conclusion
Introduction

- Refinery production planning models
 - Optimizing refinery operation
 - Crude selection
 - Maximizing profit; minimizing cost
 - LP-based, linear process unit equations

- Current Project
 - Collaboration with BP Refining Technology
 - Goal: develop a refinery planning model with nonlinear process unit equations, and integrated scheduling elements
Problem Statement

Typical Refinery Configuration

(Adapted from Aronofsky, 1978)
Problem Statement

- **Information Given**
 - Refinery configuration: Process units
 - Feedstock & Final Product

- **Objective**
 - Select crude oils and quantities to process
 - Maximizing profit
 - Single period time horizon
Refinery Planning Model

LP Planning Models
- Fixed-yield Models
- Swing cuts Models

NLP Planning Models
- Aggregate Models
- Other Models
- Fractionation Index (FI) Models
LP Refinery Planning Models

- **Fixed yield models:**
 - Simplest planning models
 - Linear equation for calculating process unit yield
 \[F_{outlet} = a_{unit,feed,outlet} \times F_{feed} \]
 - Models are robust and simple
 - Do not represent the process non-linearity
 - Different coefficients for different operating modes and feedstock
LP Refinery Planning Model

- Swing cut models:
 - Improvement from the fixed-yield approach
 - Crude oil cuts are allowed to change
 - Front and back of each cut is optimized
 \[F_{\text{outlet}} = a_{\text{CDU}, \text{feed}} \times F_{\text{feed}} + b_{\text{CDU}, \text{outlet}, \text{front}} + b_{\text{CDU}, \text{outlet}, \text{back}} \]
 - Better representation for the operating modes
 - Uses existing LP tools
 - Different coefficients for different crude oils
 - Models do not represent the process non-linearity
LP Refinery Planning Model

Example

- Complex refinery configuration
 - Processing 2 crude oils & importing heavy naphtha

- Swing cut model
 - Offers lower net cost & different feed quantities
 - Shows benefits of better equations

<table>
<thead>
<tr>
<th>Crude Feedstock</th>
<th>Fixed yield</th>
<th>Swing cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude1 (lighter)</td>
<td>142</td>
<td>0</td>
</tr>
<tr>
<td>Crude2 (heavier)</td>
<td>289</td>
<td>469</td>
</tr>
<tr>
<td>Other Feedstock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy Naphtha</td>
<td>13</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refinery Production</th>
<th>Fixed yield</th>
<th>Swing cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Gas</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>LPG</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Light Naphtha</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Premium Gasoline</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Reg. Gasoline</td>
<td>80</td>
<td>92</td>
</tr>
<tr>
<td>Gas Oil</td>
<td>163</td>
<td>170</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>148</td>
<td>160</td>
</tr>
<tr>
<td>Net Cost</td>
<td>89663</td>
<td>85714</td>
</tr>
</tbody>
</table>
NLP Refinery Planning Models

- Focus on the front end of the refinery
 - Crude distillation unit (CDU)
- Types
 - Aggregate model
 - Fractionation index (FI) model
 - Other models
CDU & Cascaded Columns

Typical Crude Distillation Column
(Gadalla et al, 2003)

Cascaded Columns Representation of a Crude Distillation Column
(Gadalla et al, 2003)
NLP Refinery Planning Models

- **Aggregate model**
 - Conventional distillation
 - Based on work of Caballero & Grossmann, 1999
 - integrated heat and mass exchangers
 - sections around the feed location
 - Assuming equimolal flow in each section
 - Nonlinearity in equilibrium constant
 - Single & cascaded columns arrangements
 - Model is robust
 - Results in good agreement with rigorous calculation
NLP Refinery Planning Models

- **Aggregate model**
 - Conventional distillation example
 - 4 columns
 - Feed: 18 components (C3-C20)
 - Results: product temperature matching simulation results
NLP Refinery Planning Models

- Aggregate model
 - Steam distillation
 - Modified aggregate model
 - 3 Equilibrium stages
 - 2 multi-stage sections
 - Assuming non-equimolal flow in each section
 - Nonlinearity in equilibrium constant
 - Single & cascaded columns arrangements
 - Model is robust
 - Results show predicted temperature peak at the feed stage
NLP Refinery Planning Models

- **Aggregate model**
 - Steam distillation example
 - 2 columns, both with steam distillation
 - Feed: 4 components
 - Results: temperature trend successfully predicted for both columns
NLP Refinery Planning Models

- **Aggregate model**
 - Mixed-type distillation
 - Combines conventional and steam distillation
 - Can be solved for a limited number of cascaded columns
 - Initialization
NLP Refinery Planning Models

- **FI model**
 - CDU is a series of binary separations
 - Cut point temperature is the separation temperature
 - Based on Geddes’ fractionation index method (Geddes 1958)
 - FI replaces N_{min} in Fenske equation
 \[
 \left(\frac{\text{Dist}}{\text{Prod}} \right)_{i,j} = \left(\alpha_{i/\text{ref}} \right)_j^\text{FI} \left(\frac{\text{Dist}}{\text{Prod}} \right)_{\text{ref},j}^\text{ref}, \quad i \in \text{comp}, j \in \text{stage}
 \]
 - Model is crude-independent
NLP Refinery Planning Models

FI model

- FI model example
 - Venezuelan crude (Watkin 79)
 - 40 Pseudo-components, 4 cuts
 - 4 runs: Maximizing naphtha (N), heavy naphtha (HN), light distillate (LD), heavy distillate (HD)
- Cut-point temperature and product quantities reflect the different business objectives

Stats

- Equations: 562
- Variables: 568
- Solver: CONOPT

```
<table>
<thead>
<tr>
<th>Run</th>
<th>Gas OH</th>
<th>Naphtha</th>
<th>H Naphtha</th>
<th>L Dist.</th>
<th>H Dist.</th>
<th>B. Residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Naphtha</td>
<td>272.7</td>
<td>417.0</td>
<td>426.4</td>
<td>526.8</td>
<td>595.3</td>
<td></td>
</tr>
<tr>
<td>Max H Naph.</td>
<td>272.7</td>
<td>386.2</td>
<td>487.8</td>
<td>526.8</td>
<td>595.3</td>
<td></td>
</tr>
<tr>
<td>Max L Dist.</td>
<td>272.7</td>
<td>386.2</td>
<td>398.3</td>
<td>606.0</td>
<td>631.1</td>
<td></td>
</tr>
<tr>
<td>Max H Dist.</td>
<td>272.7</td>
<td>386.2</td>
<td>398.3</td>
<td>526.8</td>
<td>650.5</td>
<td></td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th>Product</th>
<th>Fee</th>
<th>Prod 1</th>
<th>Prod 3</th>
<th>Prod 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Naphtha</td>
<td>6.2</td>
<td>112.9</td>
<td>35.1</td>
<td>68.6</td>
</tr>
<tr>
<td>Max H Naph.</td>
<td>6.2</td>
<td>107.4</td>
<td>53.0</td>
<td>56.1</td>
</tr>
<tr>
<td>Max L Dist.</td>
<td>6.2</td>
<td>111.5</td>
<td>10.7</td>
<td>95.0</td>
</tr>
<tr>
<td>Max H Dist.</td>
<td>6.2</td>
<td>111.5</td>
<td>10.7</td>
<td>94.0</td>
</tr>
</tbody>
</table>
NLP Refinery Planning Models

FI Model

- *FI model in the planning model*
 - Venezuelan crude only (Watkin 79)
 - Model calculates feed quantity and final products for maximum profits at the given prices
 - Model also generates the cut point temperature settings
- Stats
 - Equations: 686
 - Variables: 707
 - Solver: CONOPT

<table>
<thead>
<tr>
<th>Feedstock</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude oil</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final product</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel gas</td>
<td>13.4</td>
</tr>
<tr>
<td>Prem. Gasoline</td>
<td>12.2</td>
</tr>
<tr>
<td>Reg. Gasoline</td>
<td>52.0</td>
</tr>
<tr>
<td>Distilate</td>
<td>0.0</td>
</tr>
<tr>
<td>Fuel oil</td>
<td>6.8</td>
</tr>
<tr>
<td>HT Residue</td>
<td>16.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Economics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>income</td>
<td>701</td>
</tr>
<tr>
<td>OpCost</td>
<td>30</td>
</tr>
<tr>
<td>purchases</td>
<td>651</td>
</tr>
<tr>
<td>Profit</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cut</th>
<th>Cut point Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphtha</td>
<td>287</td>
</tr>
<tr>
<td>H Naph.</td>
<td>398</td>
</tr>
<tr>
<td>L Dist.</td>
<td>462</td>
</tr>
<tr>
<td>H Dist.</td>
<td>552</td>
</tr>
<tr>
<td>B Residue</td>
<td>628</td>
</tr>
</tbody>
</table>
NLP Refinery Planning Models

- Other Models
 - All limited to empirical approaches
 - Alhajeri & Elkamel (2008):
 - Empirical correlation
 - Dua & Gueddar
 - Artificial neural networks
Future work

- NLP Aggregate model
 - Investigate better initialization scheme and additional constraints

- NLP FI model
 - More runs using the FI model
 - Additional FI parameters
 - Manage property blending for the intermediate streams

- NLP models
 - Assess the benefit of the different modeling approaches in terms of accuracy, robustness & simplicity
 - Upgrade process model for other important units

- Extend the model to multi-period
- Add scheduling elements