Turnaround Optimization of Continuous Chemical Plants

Motivation

- Large companies spend millions on turnarounds annually
- Potential for significant savings
- Practical limitations on manpower
 - Maintenance personnel typically contract workers
 - Infrequent spikes in manpower utilization
- Most scheduling is done using scenario-based analyses

Scope of study

- Problem features
 - Continuous processes
 - Multi-year horizon
 - Planned maintenance
 - Intermediate inventory buffers
 - Site-wide scope
- Objective: Maximize NPV subject to
 - Network flow constraints
 - Inventory constraints
 - Manpower limits
 - Turnaround durations and frequencies

Turnaround optimization

- Maintenance is defined as
 “the combination of all technical and associated administrative actions intended to retain an item in, or restore it to a state in which it can perform its required function” [1]
- Turnaround optimization—Finding the optimal sequence of tasks in a turnaround envelope
- Involves consideration of:
 - Site-wide network structure
 - Flows and inventory levels
 - Turnaround resources

Example network

Challenges

- Combinatorics
 - Scheduling requires discrete decisions
 - Large number of units, and large time horizon \(\Rightarrow\) large number of binaries

- Uncertainty
 - Component failure rates, Lengths of turnarounds
 - Unit reliability, supply and demand variability within plant network
 - \(>\ 100\) uncertain parameters \(\Rightarrow\) potentially too large for stochastic programming

- How do we
 - Choose right level of network abstraction?
 - Choose right time discretization?
 - Capture uncertainties?

Approach

- MILP
 - Useful for finding solutions to large-scale combinatorial problems with constraints

- Discrete-event simulation
 - Useful for capturing rule-based logic, priorities, variability in operations

Use best features of both approaches

Results – Gantt chart
Results – Manpower utilization

Manpower Utilization

- Envelope turnarounds occur together
 - Intuitive, as they are adjacent in site network
- Red envelope decoupled
 - Possibly due to potential of market interaction for raw materials
- Staggering of turnarounds (Unit 17)
 - Due to manpower limitations
 - Manpower intensive unit coupled 2nd turnaround
- Separation of turnarounds across years
 - Spread helps short-term financial results
 - Balances use of manpower

Analysis of results

Summary and future work

- Demonstrated a hybrid optimization and simulation strategy to trade-off tractability and real-world practicality
- Provided general-purpose tool for analyzing sites for long-term turnaround planning
- Future work
 - Short-term scheduling to capture hourly/daily effects such as ramping, manpower allocation, etc.
 - Rolling horizon scheme as opposed to cyclic schedule