Risk Management for Chemical Supply Chain Planning under Uncertainty

Fengqi You and Ignacio E. Grossmann
Dept. of Chemical Engineering, Carnegie Mellon University

John M. Wassick
The Dow Chemical Company
Chemical Supply chain: an integrated network of business units for the supply, production, distribution and consumption of the products.
Motivation

• Chemical Supply Chain Planning
 - Costs **billions** of dollars annually
 - Always under various uncertainties and risks

• Objective: managing the risks in supply chain planning
Case Study

• Given
 • Minimum and initial inventory
 • Inventory holding cost and throughput cost
 • Transport times of all the transport links & modes
 • Uncertain customer demands and transport cost

• Determine
 • Transport amount, inventory and production levels

• Objective: Minimize Cost & Risks
Stochastic Programming

- **Scenario Planning**
 - A scenario is a *future possible outcome* of the uncertainty
 - Find a solution perform well for all the scenarios
- **Two-stage Decisions**
 - Here-and-now: Decisions (x) are taken **before** uncertainty ω resolute
 - Wait-and-see: Decisions (y_ω) are taken **after** uncertainty ω resolute as “corrective action” - recourse
Stochastic Programming for Case Study

- **First stage decisions**
 - Here-and-now: decisions for the first month (production, inventory, shipping)

- **Second stage decisions**
 - Wait-and-see: decisions for the remaining 11 months

\[
\text{Minimize } E \left[\text{cost} \right]
\]

Decision-making under Uncertainty
Objective Function

\[E[Cost] = Cost_1 + \sum_s P_s \cdot Cost_{2s} \]

First stage cost

Cost_1 =

\[\sum_k \sum_j \sum_t h_{k,j} I_{k,j,t} \]

Probability of each scenario

Inventory Costs

\[\sum_k \sum_j \sum_t \sum_k' \sum_j' \sum_t \gamma_{k,k',j} F_{k,k',j,t} \]

Freight Costs

\[\sum_k \sum_l \sum_j \sum_t \sum_l' \sum_j' \sum_t \gamma_{k,l,j} S_{k,l,j,t} \]

Throughput Costs

\[\sum_k \sum_j \sum_t \sum_k' \sum_j' \sum_t \delta_{k,j} F_{k,k',j,t} \]

Demand Unsatisfied

\[\sum_k \sum_l \sum_j \sum_t \sum_l' \sum_j' \sum_t \delta_{k,j} S_{k,l,j,t} \]

Second stage cost

Cost_{2s} =

\[\sum_k \sum_j \sum_t h_{k,j} I_{k,j,t,s} \]

\[+ \sum_k \sum_k' \sum_j \sum_t \sum_j' \sum_t \gamma_{k,k',j,s} F_{k,k',j,t,s} \]

\[+ \sum_k \sum_l \sum_j \sum_t \sum_j' \sum_t \gamma_{k,l,j,s} S_{k,l,j,t,s} \]

\[+ \sum_k \sum_j \sum_t \sum_k' \sum_j' \sum_t \delta_{k,j,s} F_{k,k',j,t,s} \]

\[+ \sum_k \sum_l \sum_j \sum_t \sum_j' \sum_t \delta_{k,j,s} S_{k,l,j,t,s} \]

\[+ \sum_l \sum_j \sum_t \sum_j' \sum_t \eta_{l,j} S_{F_{l,j,t,s}} \]
Multiperiod Planning Model (Case Study)

- **Objective Function:**
 - Min: **Total Expected Cost**

- **Constraints:**
 - Mass balance for **plants**
 - Mass balance for **DCs**
 - Mass balance for **customers**
 - Minimum **inventory** level constraint
 - **Capacity** constraints for plants
Result of Two-stage SP Model

\[E[\text{Cost}] = $182.32\text{MM} \]
Risk Management

• SP model: optimize expected cost (risk-neutral objective)
 ◆ Could not control variance, extreme values, etc.
 ◆ The following distributions have the same $E[\text{Cost}]=4.1$

• Use risk measures to control the possible outcome
 ◆ Variance (Mulvey et al., 1995)
 ◆ Upper partial mean (Ahmed and Sahinidis, 1998)
 ◆ Probabilistic financial risk (Barbaro et al., 2002)
 ◆ Downside risk (Eppen et al., 1988)
Risk Management using Variance

Objective: Managing the risks by reducing the variance (robust optimization)
Risk Management using Variance

• Goal Programming Formulation
 - New objective function: Minimize $E[\text{Cost}] + \rho \cdot V[\text{Cost}]$
 - Different ρ can lead to different solution

\[E[\text{Cost}] + \rho \cdot V[\text{Cost}] \]
\[= \text{Cost}_1 + \sum_s p_s \cdot \text{Cost}_2 s + \rho \cdot \sum_s p_s [\left(\sum_{s'} p_{s'} \cdot \text{Cost}_2 s' \right) - \text{Cost}_2 s]^2 \]

- Expected Cost
- Variance of all the scenarios
- Weighted coefficient
Case Study – Robustness vs. Cost

![Graph showing the relationship between cost, variance, and robustness.](image-url)
Case Study – Variance Reduction

Risk Management

E(Cost)=$182.24 MM, \rho=0
E(Cost)=$183.14 MM, \rho=1.5E-4
Risk Management via Variability Index

- **First Order Variability index**
 - Convert NLP to LP by replacing two norm to one norm

\[
\text{Min: } E[\text{Cost}] + \rho \cdot \sum_s p_s (E[\text{Cost}] - Cost_s)^2
\]

\[
\text{Min: } E[\text{Cost}] + \rho \cdot \sum_s p_s |E[\text{Cost}] - Cost_s|
\]
• Linearize the absolute value term
 • Introducing a first order non-negative variability index Δ

Min: $E[\text{Cost}] + \rho \cdot \sum_s p_s \cdot (E[\text{Cost}] - \text{Cost}_s + 2\Delta_s)$

s.t. $\Delta_s \geq \text{Cost}_s - E[\text{Cost}]$

$\Delta_s \geq 0$

Min: $E[\text{Cost}] + \rho \cdot \sum_s p_s |E[\text{Cost}] - \text{Cost}_s|$
Risk Management

Upper Partial Mean

- Reduce undesirable penalty
 - Using positive variability index Δ by goal programming

\[
\begin{align*}
\text{Min: } & E[\text{Cost}] + \rho \cdot V[\text{Cost}] \\
& \text{(Desirable + undesirable penalty)} \\
\text{Min: } & E[\text{Cost}] + \rho \cdot \sum_s p_s \cdot \Delta_s \\
\text{s.t. } & \Delta_s \geq Cost_s - E[\text{Cost}] \\
& \Delta_s \geq 0 \\
& \text{(Only undesirable penalty)}
\end{align*}
\]
Risk Management

Efficient Frontier – Robustness vs. Cost

- Cost ($MM)
- Variance ($MM^2)

Graph showing the trade-off between cost and variance for different values of ρ.
Results – Variability Index Reduction

Risk Management

E(Cost)=$182.24MM, ρ=0
E(Cost)=$185.87MM, ρ=2
Objective: modify the cost distribution in order to satisfy the preferences of the decision maker – manage the probabilistic financial risk

- OR...
- Increase these?
- Reduce these probability?
Financial Risk Management Model

- Probabilistic Financial Risk
 - Probability of exceeding certain target Ω
 \[
 \text{Risk}(x, \Omega) = \Pr[\text{Cost}(x) > \Omega] = \sum_s p_s Z_s(x, \Omega)
 \]

 - Binary variables
 \[
 Z_s(x, \Omega) = \begin{cases}
 1 & \text{if } \text{Cost}_s > \Omega \\
 0 & \text{otherwise}
 \end{cases}
 \]

 - Big-M constraints
 \[
 \begin{align*}
 \text{Cost}_s & \leq \Omega + M \cdot Z_s \\
 \text{Cost}_s & \geq \Omega - M \cdot (1 - Z_s)
 \end{align*}
 \]
Risk Management Model Formulation

Risk Objective → Min: \(\text{Risk}(x, \Omega) = \sum_s p_s Z_s \)

Economic Objective → Min: \(E[\text{Cost}] = \text{Cost1} + \sum_s P_s \cdot \text{Cost2}_s \)

s.t.

\[
\begin{align*}
\text{Cost1 + Cost2}_s & \leq \Omega + M \cdot Z_s \\
\text{Cost1 + Cost2}_s & \geq \Omega - M \cdot (1 - Z_s) \\
Ax &= b \\
W_s y_s &= h_s - T_s x \\
x &\geq 0, y_s \geq 0, z_s \in \{0, 1\}
\end{align*}
\]
Multi-objective Optimization Model

- An infinite set of alternative optimal solutions (Pareto curve)
- Pareto optimum: Impossible to improve both objective functions simultaneously

![Diagram of Pareto Curve](image)
Minimize: Cost + $\varepsilon \cdot \text{Risk}$

ε-constraint Method

$\varepsilon = 0.001$

Min Optimal Cost

Max Optimal Cost

Smallest Risk

Largest Risk
Pareto Curve: $E[\text{Cost}]$ vs. Risk

Note: Target at 188 MM
Results for Probabilistic Risk Management

Risk = 0.08 (Min [Cost])
Risk = 0.02

Cost ($MM)
Downside Risk

- Definition: Positive Deviation
 - Binary variables are not required, pure LP (MILP -> LP)

\[
D\text{Risk}(x, \Omega) = \sum_s p_s \delta_s(x, \Omega)
\]

\[
\delta_s(x, \Omega) \geq \text{Cost}_s - \Omega, \quad \forall s
\]

\[
\delta_s(x, \Omega) \geq 0, \forall s
\]
Risk Management

Downside Risk Model Formulation

Risk Objective → Min: \(D\text{Risk}(x, \Omega) = \sum_s p_s \delta_s \)

Economic Objective → Min: \(E[\text{Cost}] = \text{Cost}_1 + \sum_s P_s \cdot \text{Cost}_2_s \)

s.t.

\[
\begin{align*}
\delta_s(x, \Omega) & \geq \text{Cost}_1 + \text{Cost}_2_s - \Omega \\
\delta_s(x, \Omega) & \geq 0 \\
Ax & = b \\
W_sy_s & = h_s - T_sx \\
x & \geq 0, y_s \geq 0, \ z_s \in \{0, 1\}
\end{align*}
\]
Risk Management

Results for Downside Risk Management

![Bar chart showing cost and probability distribution for Downside Risk Management. The chart includes two sets of bars: DRisk=36.92 (Min E[Cost]) and DRsik=5.38. The x-axis represents cost in millions of dollars (MM), and the y-axis represents probability. The chart highlights the probabilities for costs ranging from $170MM to $194MM.]
Simulation Framework

- **Stochastic Planner**: Solve Stochastic model and execute decisions for period t.
- **Deterministic Planner**: Solve Deterministic model and execute decisions for period t.
- **Period $t-1$**: Randomly generate demand and freight rate.
- **Period t**: Update information on the uncertain parameters (mean and variance) for period t.
- **Period $t+1$**: Update information on the uncertain parameters (only mean value) for period $t+1$.
Simulation Flowchart

1. **Calculate the real cost, store data, Set iter = iter+1, t =1**

2. **Solve the S/D model and implement the decision for current time period**

3. **Randomly generate demand and freight rate information**

4. **Update information**

5. **Move to next time period t = t+1**

6. **t=12 ?**
 - No: Go back to 3.
 - Yes: Go to Next iteration

7. **Reach iteration limit?**
 - Yes: STOP
 - No: Go back to 1.
Case Study

Simulation

Average 5.70% cost saving

Cost ($MM) vs. Iterations

- Stochastic Soln
- Deterministic Soln

Average 5.70% cost saving
Problem Sizes

Toy Problem

<table>
<thead>
<tr>
<th></th>
<th>Deterministic Model</th>
<th>Two-stage Stochastic Programming Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10 scenarios</td>
</tr>
<tr>
<td># of Constraints</td>
<td>1,369</td>
<td>13,080</td>
</tr>
<tr>
<td># of Variables</td>
<td>3,937</td>
<td>37,248</td>
</tr>
<tr>
<td># of Non-zeros</td>
<td>8,910</td>
<td>85,451</td>
</tr>
</tbody>
</table>

Full Problem

<table>
<thead>
<tr>
<th></th>
<th>Deterministic Model</th>
<th>Two-stage Stochastic Programming Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10 scenarios</td>
</tr>
<tr>
<td># of Constraints</td>
<td>6,373</td>
<td>61,284</td>
</tr>
<tr>
<td># of Variables</td>
<td>19,225</td>
<td>182,496</td>
</tr>
<tr>
<td># of Non-zeros</td>
<td>41,899</td>
<td>402,267</td>
</tr>
</tbody>
</table>

Note: Problems with red statistical data are not able to be solved by DWS
Algorithm: Multi-cut L-shaped Method

Two-stage SP Model

\[
\text{Min} \quad c^T x + p_1 q_1^T y_1 + p_2 q_2^T y_2 + \cdots + p_s q_s^T y_s \\
\text{s.t.} \quad A x + T_1 x + W_1 y_1 + T_2 x + W_2 y_2 + \cdots + T_s x + W_s y_s = b \\
\quad x \geq 0, \quad y_1 \geq 0, \quad y_2 \geq 0, \cdots \quad y_s \geq 0
\]

Master problem

Scenario sub-problems
Algorithm: Multi-cut L-shaped Method

Standard L-shaped Method

- **Solve master problem to get a lower bound (LB)**
 - $\min c^T x + \theta$
 - s.t. $Ax = b$
 - $\theta \geq e_l x + d_l$
 - $x \geq 0$

- **Solve the subproblem to get an upper bound (UB)**
 - $\min q_s^T y$
 - s.t. $Wy = h_s - T_s x$
 - $y \geq 0$

- **Add cut**
 - $e_l = \sum_s p_s \pi_s^T T_s$
 - $d_l = \sum_s p_s \pi_s^T h_s$

- **UB - LB < Tol ?**

- **Yes**
 - **STOP**

- **No**
Expected Recourse Function

- The expected recourse function $Q(x)$ is convex and piecewise linear
- Each optimality cut supports $Q(x)$ from below
Algorithm: Multi-cut L-shaped Method

Multi-cut L-shaped Method

Solve master problem to get a lower bound (LB)

Add cut

Add cut

Solve the subproblem to get an upper bound (UB)

UB – LB < Tol ?

STOP

\[\min \quad c^Tx + \sum_s p_s \theta_s \]
\[\text{subject to} \quad Ax = b \]
\[\theta_s \geq e_{l,s} x + d_{l,s} \]
\[x \geq 0 \]

\[\min \quad q_s^T y \]
\[\text{subject to} \quad Wy = h_s - T_s x \]
\[y \geq 0 \]
Example

Algorithm: Multi-cut L-shaped Method

Cost ($MM)

Iterations

- Standard L-Shaped Upper_bound
- Standard L-Shaped Lower_bound
- Multi-cut L-Shaped Upper_bound
- Multi-cut L-Shaped Lower_bound
Conclusion

- **Current Work**
 - Develop a **two-stage stochastic programming** model for global supply chain planning under uncertainty. *Simulation* studies show that **5.70% cost saving** can be achieved in average.
 - Present four **risk management model**. Develop an **efficient solution algorithm** to solve the large scale stochastic programming problem.

- **Future Work**
 - **Capacity planning** under demand uncertainty.
Questions?