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Jeff’s Theory of Teaching

“Children need
encouragement. So
when a kid gets an
answer right, tell
him it was a lucky
guess. That way,
the child develops a
good, lucky
feeling.”

-Jack Handey
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The Problem of the Day

(Linear) Mixed-Integer Programming Problem: (MIP)

max{cTx + hTy | Ax + Gy ≤ b, x ∈ Zn
+, y ∈ Rp

+}

Applications

Too numerous too mention
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Integer Programs and Modeling Standard Models

The Knapsack Problem

A burglar has a knapsack of size b. He breaks into a store that carries
a set of items N. Each item has profit cj and size aj.

What items should the burglar select in order to optimize his heist?

xj =

{
1 Item j goes in the knapsack
0 Otherwise

zHEIST = max{
∑
j∈N

cjxj :
∑
j∈N

ajxj ≤ b, xj ∈ {0, 1} ∀j ∈ N}.

Integer Knapsack Problem:

zHEIST = max{
∑
j∈N

cjxj :
∑
j∈N

ajxj ≤ b, xj ∈ Z+ ∀j ∈ N}.
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Integer Programs and Modeling Standard Models

Fall into the...

Given m machines and n jobs, find a least cost assignment of jobs to
machines not exceeding the machine capacities

Each job j requires aij units of machine i’s capacity bi

min z ≡
m∑

i=1

n∑
j=1

cijxij

s.t.
n∑

j=1

aijxij ≤ bi ∀i (Machine Capacity)

m∑
i=1

xij = 1 ∀j (Assign all jobs)

xij ∈ {0, 1} ∀i, j
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Integer Programs and Modeling Standard Models

Selecting from a Set

We can use constraints of the form
∑

j∈T xj ≥ 1 to represent that at
least one item should be chosen from a set T .

Similarly, we can also model that at most one or exactly one item
should be chosen.

Example: Set covering problem

If A in a 0-1 matrix, then a set covering problem is any problem of
the form

min cTx

s.t. Ax ≥ e1

xj ∈ {0, 1} ∀j

Set Packing: Ax ≤ e

Set Partitioning: Ax = e

1It is common to denote the vector of 1’s as e
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Integer Programs and Modeling Standard Models

Vehicle Routing

x1 x2 x3 . . .

Customer 1 : 1 0 0
... = 1

Customer 2 : 0 1 0
... = 1

Customer 3 : 0 1 1
... = 1

Customer 4 : 0 1 0
... = 1

Customer 5 : 1 0 1
... = 1

This is a very flexible modeling trick

You can list all feasible routes, allowing you to handle “weird” constraints
like time windows, strange precedence rules, nonlinear cost functions, etc.
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Integer Programs and Modeling Traveling Salesman

The Farmer’s Daughter

This is The Most Famous Problem in Combinatorial Optimization!

A traveling salesman must visit all his cities at minimum cost.

Given directed (complete) graph with node set N. (G = (N,N×N))

Given costs cij of traveling from city i to city j

Find a minimum cost Hamiltonian Cycle in G

Variables: xij = 1 if and only if salesman goes from city i to city j
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Integer Programs and Modeling Traveling Salesman

TSP (cont.)

min
∑
i∈N

∑
j∈N

cijxij

∑
i∈N

xij = 1 ∀j ∈ N Enter Each City∑
j∈N

xij = 1 ∀i ∈ N Leave Each City

xij ∈ {0, 1} ∀i ∈ N,∀j ∈ N

Subtour elimination constraint: (“No Beaming”)∑
i∈S

∑
j 6∈S

xij ≥ 1 ∀S ⊆ N, 2 ≤ |S| ≤ |N| − 2

Alternatively: (“No Beaming”)∑
i∈S

∑
j∈S

xij ≤ |S| − 1 ∀S ⊆ N, 2 ≤ |S| ≤ |N| − 2
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Integer Programs and Modeling Traveling Salesman

TSP Trivia Time!

What is This Number?

101851798816724304313422284420468908052573419683296
8125318070224677190649881668353091698688.

Is this...

a) The number of gifts that Jacob Linderoth’s grandparents bought him
for Christmas?

b) The number of subatomic particles in the universe?
c) The number of subtour elimination constraints when |N| = 299.
d) All of the above?
e) None of the above?
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Integer Programs and Modeling Traveling Salesman

Answer Time

The answer is (e). (a)–(c) are all too small (as far as I know) :-). (It
is (c), for |N| = 300).

“Exponential” is really big.

Yet people have solved TSP’s with |N| > 16, 000!

You will learn how to solve these problems too!

The “trick” is to only add the subset of constraints that are necessary
to prove optimality.

This is a trick known as branch-and-cut, where the inequalities are
added only as needed
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Integer Programs and Modeling SOS

Modeling a Restricted Set of Values

We may want variable x to only take on values in the set
{a1, . . . , am}.

We introduce m binary variables yj, j = 1, . . . ,m and the constraints

x =

m∑
j=1

ajyj,

m∑
j=1

yj = 1, yj ∈ {0, 1} ∀j = 1, 2, . . . ,m}

The set of variables {y1, y2, . . . ym} is called a special ordered set
(SOS) of variables.

The a1, a2, . . . , am defines the order. (The reference row).
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Integer Programs and Modeling SOS

Example—Building a warehouse

Suppose we are modeling a facility location problem in which we must
decide on the size of a warehouse to build.

The choices of sizes and their associated cost are shown below:

Size Cost

10 100
20 180
40 320
60 450
80 600

Warehouse sizes and costs
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Integer Programs and Modeling SOS

Warehouse Modeling

Using binary decision variables x1, x2, . . . , x5, we can model the cost
of building the warehouse as

COST ≡ 100x1 + 180x2 + 320x3 + 450x4 + 600x5.

The warehouse will have size

SIZE ≡ 10x1 + 20x2 + 40x3 + 60x4 + 80x5,

and we have the SOS constraint

x1 + x2 + x3 + x4 + x5 = 1.
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Integer Programs and Modeling SOS

Piecewise Linear Cost Functions

We can use binary
variables to model
arbitrary piecewise
linear functions.

The function is
specified by ordered
pairs (ai, f(ai))

x

f(x)

f(a1)

f(a2)

f(a3)

f(a5)

f(a5)

f(a6)

a1 a2 a3 a4 a5 a6
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Integer Programs and Modeling SOS

SOS2

This is typically modeled using special ordered sets of type 2

SOS2

A set of variables of which at most two can be positive. If two are
positive, they must be adjacent in the set.

min
k∑

i=1

λif(ai)

s.t.
k∑

i=1

λi = 1

λi ≥ 0

{λ1, λ2, . . . , λk} SOS2

The adjacency conditions of
SOS2 are enforced by the
solution algorithm

(All) commercial solvers allow
you to specify SOS2
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Integer Programs and Modeling SOS

The Impact of Formulation: UFL
Facilities: I

Customers: J
min

∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

fijyij

∑
j∈N

yij = 1 ∀i ∈ I

∑
i∈I

yij ≤ |I|xj ∀j ∈ J (1)

OR yij ≤ xj ∀i ∈ I, j ∈ J (2)

Which formulation is to be preferred?

I = J = 40. Costs random.

Formulation 1. 53,121 seconds, optimal solution.
Formulation 2. 2 seconds, optimal solution.
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Integer Programs and Modeling SOS

Preprocessing

Bound Tightening

Examine coefficient matrix and bounds on variables and “deduce”
if constraints are redundant or bounds on variables can be
tightened.

For example (if x binary, y continuous),

3x1 + x2 + y ≤ 10 ⇒ y ≤ 6.

Similar techniques to those used in linear programming

Brearley et al. [1975] is a good reference for this
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Integer Programs and Modeling SOS

More Preprocessing

Coefficient Reduction

If there is a binary knapsack row

n∑
j=1

aijxj ≤ bi

and by looking at variable bounds, one can establish that

n∑
j=1,j6=k

aijxj ≤ bi − δ,∀ feasible x,

then replace constraint with

n∑
j=1,j6=k

aijxj + (ak − δ)xk ≤ bi − δ
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Integer Programs and Modeling SOS

More Preprocessing

Probing

Tentatively fix a variable to 0 or 1, and then do “preprocessing”
again.

(Can be) expensive operation

Can learn logical implications between variables.

Used for inequalities and heuristics

Reduced Cost Fixing

Use duality information from LP solution to show that some
(non-basic) variables must remained fixed at their current (integer)
values in every optimal solution

See Savelsbergh [1994] for a good reference on preprocessing

Jeff Linderoth (Lehigh University) Computational Integer Programming EWO Tele-Seminar 20 / 85



Integer Programs and Modeling Algorithmic Modeling

The Bag of Tricks

There are lots of things you can model with binary variables:

Fixed-charge
Either-or
If-then
Limiting cardinality of positive variables
Economies of scale

But sometimes it’s hard to derive the models
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Integer Programs and Modeling Algorithmic Modeling

The Slide of Tricks. Indicator Variables...

δ = 1 ⇒ ∑
j∈N ajxj ≤ b∑

j∈N ajxj + Mδ ≤ M + b∑
j∈N ajxj ≤ b ⇒ δ = 1∑

j∈N ajxj − (m − ε)δ ≥ b + ε

δ = 1 ⇒ ∑
j∈N ajxj ≥ b∑

j∈N ajxj + mδ ≥ m + b∑
j∈N ajxj ≥ b ⇒ δ = 1∑

j∈N ajxj − (M + ε)δ ≤ b − ε

Definitions

δ: Indicator variable
(δ ∈ {0, 1}).

M: Upper bound on∑
j∈N ajxj − b

m: Lower bound on∑
j∈N ajxj − b

If aj ∈ Z, xj ∈ Z, then
we can take ε = 1, else
let ε = 0
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Integer Programs and Modeling Algorithmic Modeling

A More Realistic Example

PPP—Production Planning Problem. (A simple linear program).

An engineering plant can produce five types of products: p1, p2, . . . p5

by using two production processes: grinding and drilling. Each
product requires the following number of hours of each process, and
contributes the following amount (in hundreds of dollars) to the net
total profit.

p1 p2 p3 p4 p5

Grinding 12 20 0 25 15
Drilling 10 8 16 0 0
Profit 55 60 35 40 20
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Integer Programs and Modeling Algorithmic Modeling

PPP – More Info

Each unit of each product take 20 manhours for final assembly.

The factory has three grinding machines and two drilling machines.

The factory works a six day week with two shifts of 8 hours/day. Eight
workers are employed in assembly, each working one shift per day.
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Integer Programs and Modeling Algorithmic Modeling

PPP

maximize

55x1 + 60x2 + 35x3 + 40x4 + 20x5 (Profit/week)

subject to

12x1 + 20x2 + 0x3 + 25x4 + 15x5 ≤ 288 (Grinding)

10x1 + 8x2 + 16x3 + 0x4 + 0x5 ≤ 192 (Drilling)

20x1 + 20x2 + 20x3 + 20x4 + 20x5 ≤ 384 Final Assembly

xi ≥ 0 ∀i = 1, 2, . . . 5
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Integer Programs and Modeling Algorithmic Modeling

Another PPP Modeling Example

Let’s model the following situation.

If we manufacture P1 or P2 (or both), then at least one of P3, P4, P5

must also be manufactured.

We first need indicator variables zj that indicate when each of the
xj > 0.

How do we model xj > 0 ⇒ zj = 1?
Hint: This is equivalent to zj = 0 ⇒ xj = 0
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Integer Programs and Modeling Algorithmic Modeling

Modeling the Logic

Answer: xj ≤ Mzj

Given that we have included the constraints xj ≤ Mzj, we’d like to
model the following implication:

z1 + z2 ≥ 1 ⇒ z3 + z4 + z5 ≥ 1

Can you just “see” the answer?

I can’t. So let’s try the “formulaic” approach.

Important Trick: Think of it in two steps

z1 + z2 ≥ 1 ⇒ δ = 1

δ = 1 ⇒ z3 + z4 + z5 ≥ 1.
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Integer Programs and Modeling Algorithmic Modeling

Look up the Tricks

First we model the following:

z1 + z2 ≥ 1 ⇒ δ = 1

The formula from the bag o’ tricks∑
j∈N ajxj ≥ b ⇒ δ = 1 ⇔ ∑

j∈N ajxj − (M + ε)δ ≤ b − ε

M : Upper Bound on
∑

j∈N ajzj − b

M = 1 in this case. (z1 ≤ 1, z2 ≤ 1, b = 1).

ε = 1 in this case

Just plug in the formula
∑

j∈N ajxj − (M + ε)δ ≤ b − ε

z1 + z2 − 2δ ≤ 0
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Integer Programs and Modeling Algorithmic Modeling

Second Part

Want to model the following:

δ = 1 ⇒ z3 + z4 + z5 ≥ 1.

The formula from the bag o’ tricks

δ = 1 ⇒ ∑
j∈N ajxj ≥ b ⇔ ∑

j∈N ajxj + mδ ≥ m + b

m : lower bound on
∑

j∈N ajxj − b.

m = −1. (z1 ≥ 0, z2 ≥ 0, b = 1).

Plug in the formula:

z3 + z4 + z5 − δ ≥ 0

It works! (Check for δ = 0, δ = 1).
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Integer Programs and Modeling Algorithmic Modeling

Cool Things You Can Now Do

Either constraint 1 or constraint 2 must hold

Create indicators δ1, δ2, then δ1 + δ2 ≥ 1

At least one constraint of all the constraints in M should hold∑
i∈M δi ≥ 1

At least k of the constraints in M must hold∑
i∈M δi ≥ k

If x, then y

δy ≥ δx
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Branch and Bound The Algorithm

Relaxations

z(S)
def
= minx∈S f(x)

z(T)
def
= minx∈T f(x)

S

T

Independent of f, S, T : z(T) ≤ z(S)

If x∗T = arg minx∈T f(x)

And x∗T ∈ S, then

x∗T = arg minx∈S f(x)
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Branch and Bound The Algorithm

A Pure Integer Program

z(S) = min{cTx : x ∈ S}, S = {x ∈ Zn
+ : Ax ≤ b}

S = {(x1, x2) ∈ Z2
+ : 6x1 + x2 ≤ 15,

5x1 + 8x2 ≤ 20, x2 ≤ 2}

= {(0, 0), (0, 1), (0, 2), (1, 0),

(1, 1), (1, 2), (2, 0)}
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Branch and Bound The Algorithm

How to Solve Integer Programs?

Relaxations!

T ⊇ S ⇒ z(T) ≤ z(S)
People commonly use the linear programming relaxation:

z(LP(S)) = min{cTx : x ∈ LP(S)}

LP(S) = {x ∈ Rn
+ : Ax ≤ b}

If LP(S) = conv(S), we are done.

Minimum of any linear function over any
convex set occurs on the boundary

We need only know conv(S) in the direction of c.

The “closer” LP(S) is to conv(S) the better.
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Branch and Bound The Algorithm

Feeling Lucky?

What if we don’t get an integer solution to the relaxation?

Branch and Bound!

LP Sol’n
Lots of ways to divide search space.
People usually...

Partition the search space into two
pieces
Change bounds on the variables to do
this. The LP relaxations remain easy to
solve.
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Branch and Bound Branching

Choices in Branch-and-Bound: Branching

If our “relaxed” solution x̂ 6∈ S, we must decide how to partition the
search space into smaller subproblems

Our strategy for doing this is called a Branching Rule
Branching wisely is very important
It is most important at the top of the branch and bound tree

x̂ 6∈ S ⇒ ∃j ∈ N such that fj
def
= x̂j − bx̂jc > 0

So create two problems with additional constraints
1 xj ≤ bx̂jc on one branch
2 xj ≥ dx̂je on other branch
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Branch and Bound Branching

Some Branching Facts

1 An Example Branch
2 A bad branch.

The amount of work for this subtree
has doubled

3 Reducing upper bound vs. increasing
lower bound:

These are somewhat conflicting goals

zLP = 20

zLP = 20 zLP = 20
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Branch and Bound Branching

Proof By Picture

1 Improving Upper Bound: Make sure
that your branching decision has a big
impact on both children

Now our upper bound is 7

2 Improving Lower Bound: Make sure
that your branching decision has little
impact on at least one child

You still have “the same” amount of
work to do on the left branch

zLP = 20

zLP = 20

zLP = 10
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Branch and Bound Branching

A Natural Branching Idea

To make bound go down on both branches, choose to branch on the
“most fractional” variable

j ∈ arg min
I

{|f(x̂j) − 0.5|}.

f(z) : Fractional part of z

Nature Is Bad!

Most fractional branching is no better
than choosing a random fractional vari-
able to branch on!

Alex Martin, MIP’06
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Branch and Bound Branching

A Better Branching Idea: Pseudocosts

Keep track of the impact of branching on xj:

z
−
j

def
= max

x∈R(S) ∩ xj≤bx̂jc
{c

T
x + h

T
y} z

+
j

def
= max

x∈R(S) ∩ xj≥dx̂je
{c

T
x + h

T
y}

P−
j =

zLP − z−
j

f(x̂j)
P+

j =
zLP − z+

j

1 − f(x̂j)

When you choose to branch on xj (with value x′j) again, compute
estimated LP decreases as

D−
j = P−

j f(x′j) D+
j = P+

j (1 − f(x′j))

Problem!?

What do you use initially!
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Branch and Bound Branching

Just Do It

Initialize pseudocosts by explicity
computing them for all
yet-to-be-branched-on variables

With a little imagination, this is a
branching method in and of itself:
Strong Branching.
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Branch and Bound Branching

(Full) Strong Branching

1 At each node n at which a branching
decision must be made:

2 For each j ∈ Fn: Compute z−
j , z+

j

3 Branch on maxj∈Fn f(z−
j , z+

j )

xp ≤ bx̂pc
xp ≥ dx̂pe

zLP = 20

zLP = 8

zLP = 2How To Combine?

Try the weighting function W(zLP − z−
i , zLP − z+

i ) for

W(a, b)
def
= {α1 min(a, b) + α2 max(a, b)},

α1 = 3.7214541, α2 = 1 seems to work OK. :-)
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Branch and Bound Branching

Speeding up Strong Branching

Obvious Ideas

1 Limit number of pivots β

2 Limit Candidate Set |C|

Good Ideas!

1 Q−phase selection

C1 ⊇ C2 ⊇ C3 ⊇ . . . ⊇ CQ

β1 ≤ β2 ≤ β3 ≤ . . . ≤ βQ

2 Limit number of times that you perform strong branching on any
variable, then “switch” to pseudocosts.

Reliability branching (Achterberg, Koch, Martin)

Jeff Linderoth (Lehigh University) Computational Integer Programming EWO Tele-Seminar 42 / 85



Branch and Bound Branching

Priorities

How Much Do You Know?

You are smarter than integer programming!

If you have problem specific knowledge, use it to determine which
variable to branch on

Branch on the important variables first

First decide which warehouses to open, then decide the vehicle routing
Branch on earlier (time-based) decisions first.

There are mechanisms for giving the variables a priority order, so that
if two variables are fractional, the one with the high priority is
branched on first

Or, first branch on all these variables before you branch on the next
class, etc.
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Branch and Bound Branching

Branching Rules in Commercial Packages

CPLEX (CPX PARAM VARSEL)

Most fractional

Min Fractional: (Very bad idea if you want to prove optimality)

Pseudocosts

Strong Branching: CPX PARAM STRONGCANDLIM,
CPX PARAM STRONGITLIM

Pseudo-Reduced Costs

XPRESS

Pseudocosts

Strong Branching: SBBEST, SBITERLIMIT, SBESTIMATE

VARSELECTION: Controls how to combine up and down
degradation estimates
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Branch and Bound Node Selection

Choices in Branch and Bound Node Selection

We’ve talked about one choice in branch and bound: Which variable.

Another important choice in branch and bound is the strategy for
selecting the next subproblem to be processed.

That said, in general, the branching variable selection method has a
larger impact on solution time than the node selection method

Node selection is often called search strategy

In choosing a search strategy, we might consider two different goals:

Minimizing overall solution time.
Finding a good feasible solution quickly.
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Branch and Bound Node Selection

The Best First Approach

One way to minimize overall solution time is to try to minimize the
size of the search tree.

We can achieve this choose the subproblem with the best bound
(highest upper bound if we are maximizing).

A Proof. Gasp!

A candidate node is said to be critical if its bound exceeds the value of
an optimal solution solution to the IP.
Every critical node will be processed no matter what the search order
Best first is guaranteed to examine only critical nodes, thereby
minimizing the size of the search tree. Quite Enough Done
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Branch and Bound Node Selection

Drawbacks of Best First

1 Doesn’t necessarily find feasible solutions quickly

Feasible solutions are “more likely” to be found deep in the tree

2 Node setup costs are high

The linear program being solved may change quite a bit from one node
evalution to the next

3 Memory usage is high

It can require a lot of memory to store the candidate list, since the tree
can grow “broad”
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Branch and Bound Node Selection

The Depth First Approach

The depth first approach is to always choose the deepest node to process
next.

Just dive until you prune, then back up and go the other way

This avoids most of the problems with best first:

The number of candidate nodes is minimized (saving memory).
The node set-up costs are minimized

LPs change very little from one iteration to the next

Feasible solutions are usually found quickly

Unfortunately, if the initial lower bound is not very good, then we may end
up processing lots of non-critical nodes.

We want to avoid this extra expense if possible.
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Branch and Bound Node Selection

Hybrid Strategies

Go depth-first until you find a feasible solution, then do best-first
search

A Key Insight

If you knew the optimal solution value, the best thing to do would be to
go depth first

Go depth-first for a while, then make a best-first move.

What is “for a while”?

Estimate zE as the optimal solution value
Go depth-first until zLP ≤ zE

Then jump to a better node

This is what the commercial packages do!
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Branch and Bound Node Selection

Estimate-based Strategies

Let’s focus on a strategy for finding feasible solutions quickly.

One approach is to try to estimate the value of the optimal solution
to each subproblem and pick the best.

For any subproblem Si, let

si =
∑

j min(fj, 1 − fj) be the sum of the integer infeasibilities,

zi
U be the upper bound, and

zL the global lower bound.

Also, let S0 be the root subproblem.

The best projection criterion is Ei = zi
U +

(
zL−z0

U

s0

)
si

The best estimate criterion uses the pseudo-costs to obtain

Ei = zi
U +

∑
j min

(
P−

j fj, P
+
j (1 − fj)

)
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Branch and Bound Node Selection

Node Selection in Commercial Packages

CPLEX

CPX PARAM NODESEL: Best bound, two different best-estimates,
and (pure) depth-first.

CPX PARAM BTTOL: Controls liklihood of stopping dive

XPRESS

NODESELECT: Best, Pure Best, Deepest, Pure Best for k nodes,
then Best, Pure depth

BACKTRACK: Sets whether to jump/backtrack to “best bound” or
“best estimate” node.
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Branch and Cut Background

Cutting Planes

Sometimes we can get a better formulation by dynamically improving
it.

An inequality πTx ≤ π0 is a valid inequality for S if πTx ≤ π0 ∀x ∈ S

Alternatively: maxx∈S{πTx} ≤ π0

Thm: (Hahn-Banach). Let S ⊂ Rn be
a closed, convex set, and let x̂ 6∈ S.
Then there exists π ∈ Rn such that

πT x̂ > max
x∈S

{πTx} S

x̂πTx = π0
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Branch and Cut Background

Two Classes of Valid Inequalities

Structure-Specific

(Lifted) Knapsack Covers

(Lifted) GUB Covers

Flow Covers

Flow Path

Clique Inequalities

Implication Inequalities

Structure-Independent

Gomory Cuts

Lift and Project Cuts

Mixed Integer Rounding Cuts

Split Cuts
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Branch and Cut Background

Valid Inequalities From Relaxations

Idea: Inequalities valid for a relaxation are valid for original

Generating valid inequalities for a relaxation is often easier.

T

S
x̂

π
T
x

=
π

0 Separation Problem over T:
Given x̂, T find (π, π0) such that
πT x̂ > π0, πTx ≤ π0∀x ∈ T
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Branch and Cut Background

Simple Relaxations

Idea: Consider one row relaxations

If P = {x ∈ {0, 1}n | Ax ≤ b}, then for any row i,
Pi = {x ∈ {0, 1}n | aT

i x ≤ bi} is a relaxation of P.

If the intersection of the relaxations is a good approximation to the
true problem, then the inequalities will be quite useful.

Crowder et al. [1983] is the seminal paper that shows this to be true
for IP.

Jeff Linderoth (Lehigh University) Computational Integer Programming EWO Tele-Seminar 55 / 85



Branch and Cut Background

Knapsack Covers

K = {x ∈ {0, 1}n | aTx ≤ b}

A set C ⊆ N is a cover if
∑

j∈C aj > b

A cover C is a minimal cover if C \ j is not a cover ∀j ∈ C

If C ⊆ N is a cover, then the cover inequality∑
j∈C

xj ≤ |C| − 1

is a valid inequality for S

Sometimes (minimal) cover inequalities are facets of conv(K)
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Branch and Cut Background

Example

K = {x ∈ {0, 1}7 | 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19}

LP(K) = {x ∈ [0, 1]7 | 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19}

(1, 1, 1/3, 0, 0, 0, 0) ∈ LP(K)

CHOPPED OFF BY x1 + x2 + x3 ≤ 2

(0, 0, 1, 1, 1, 3/4, 0) ∈ LP(K)

CHOPPED OFF BY x3 + x4 + x5 + x6 ≤ 3
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Branch and Cut Background

Other Substructures

Single node flow: [Padberg et al., 1985]

S =

x ∈ R|N|
+ , y ∈ {0, 1}|N| |

∑
j∈N

xj ≤ b, xj ≤ ujyj ∀ j ∈ N


If you have this structure, you may wnat to employ flow covers and
flow-path inequalities

Set Packing: [Borndörfer and Weismantel, 2000]

S =
{

y ∈ {0, 1}|N| | Ay ≤ e
}

A ∈ {0, 1}|M|×|N|, e = (1, 1, . . . , 1)T . If you have this structure, you
may wish to employ clique inequalities or (maybe) lifted-odd-hole
inequalities
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Branch and Cut Background

The Chvátal-Gomory Procedure

A general procedure for generating valid inequalities for integer
programs

Let the columns of A ∈ Rm×n be denoted by {a1, a2, . . . an}

S = {y ∈ Zn
+ | Ay ≤ b}.

1 Choose nonnegative multipliers u ∈ Rm
+

2 uTAy ≤ uTb is a valid inequality (
∑

j∈N uTajyj ≤ uTb).
3

∑
j∈NbuTajcyj ≤ uTb (Since y ≥ 0).

4
∑

j∈NbuTajcyj ≤ buTbc is valid for S since buTajcyj is an integer

Simply Amazing: This simple procedure suffices to generate every
valid inequality for an integer program
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Branch and Cut Background

Mixed Integer Rounding—MIR

Almost everything comes from considering the following very simple set,
and observation.

X = {(x, y) ∈ R× Z | y ≤ b + x}

f = b − bbc: fractional

LP(X)

conv(X)

y ≤ bbc+ 1
1−fx is a valid inequality for

X

b

f

1−f

1−f

floor(b)

y <= floor(b) + x/(1−f)
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Branch and Cut Background

Extension of MIR

X2 =

(x+, x−, y) ∈ R2
+ × Z|N| |

∑
j∈N

ajyj + x+ ≤ b + x−


The inequality∑

j∈N

(
b(aj)c+

(fj − f)+

1 − f

)
yj ≤ bbc+

x−

1 − f

is valid for X2

fj
def
= aj − bajc, (t)+ def

= max(t, 0)

X2 is a one-row relaxation of a general mixed integer program

Continuous variables aggregated into two: x+, x−
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Branch and Cut Background

Gomory Mixed Integer Cut is a MIR Inequality

Consider the set

X
= =

{
(x+

, x
−

, y0, y) ∈ R2
+ × Z× Z|N|

+ | y0 +
∑
j∈N

ajyj + x
+ − x

− = b

}

which is essentially the row of an LP tableau

Relax the equality to an inequality and apply MIR

Gomory Mixed Integer Cut:∑
j∈N1

fjyj + x+ +
f

1 − f
x− +

∑
j∈N2

(fj −
fj − f

1 − f
)yj ≥ f
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Branch and Cut Background

Implied Bound (Implication) Cuts

Logical implications discovered during preprocessing are sometimes
between pairs of binary variables

xi = 1 ⇒ xj = 0 ⇔ xi + xj ≤ 1

Sometimes implication is found between binary variable x and
continuous variable y

x = 0 ⇒ y ≤ α ⇒ y ≤ α + (U − α)x

Lots of other sorts of inequalities can be derived, as discussed by
Savelsbergh [1994].
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Branch and Cut Background

Cuts in Commercial Software Systems

CPLEX

Cover Cuts (Knapsack Covers): CPX PARAM COVERS

Cover Cuts with GUB: CPX PARAM GUBCOVERS

Lift and project (type) CPX PARAM DISJCUTS

Flow Covers: CPX PARAM FLOWCOVERS

Flow Paths: CPX PARAM FLOWPATHS

Cliques: CPX PARAM CLIQUES

Gomory Cuts: CPX PARAM FRACCUTS

Implication Cuts: CPX PARAM IMPLBD

MIR Cuts: CPX PARAM MIRCUTS
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Branch and Cut Background

Cuts in Commercial Software Packages

XPRESS

“Cover” Cuts: COVERCUTS (TREECOVERCUTS)

Gomory Cuts: GOMCUTS (TREEGOMCUTS) LNPBest,
LNPIterLimit

“Cover” cuts – include knapsack covers, gub covers, and flow covers

“Gomory cuts” – are really lift and project cuts
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Branch and Cut Background

Too Many Parameters?

If you think there are too many parameters to control these
algorithms, you are right!

CPLEX and XPRESS agree with you.

In recent versions they have added “meta”-parameters, the effect of
which is to set many base parameters

Examples

CPLEX: CPX PARAM MIPEMPHASIS

XPRESS: CUTSTRATEGY, HEURSTRATEGY
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Branch and Cut Background

Heuristics

Sadly I didn’t have time to include much discussion, but all quality
MIP solvers also include (a variety) of heuristic procedures that work
to find feasible solutions.

This has been an area of recent emphasis.

Commercial vendors don’t like people to know exactly what they are
doing

Heuristics

Diving (CPLEX and XPRESS)

Feasibility Pump (XPRESS)

RINS (CPLEX)

Local Branching (Neither?)

Solution Polishing (CPLEX v 10)
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Branch and Cut Background

CallBacks

Sadly, I also didn’t have tmie to cover the callback mechanisms
through which users can

Customize the branching selection
Generate valid inequalities
Do heuristics to find feasible solutions

But both XPRESS and CPPLEX have these capabilities

(Perhaps) more open solver frameworks make algorithm custimization
easier
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Software for IP

ABACUS

ABACUS [Jünger and Thienel, 2001] is a pure solver framework
written in C++.

ABACUS was for some time a commercial code, but has recently
been released open source [Thienel, 2004] under the GNU Library
General Public License (LGPL).
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Software for IP

BCP

BCP is a pure solver framework developed by Ladányi. It is a close
relative of SYMPHONY, described below.

Released Open Sourse under the Common Public license
http://www.coin-or.org

Allows for the addition of both columns (branch-and-price) and rows
(branch-and-cut)

Can be instrumented to run in parallel
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Software for IP

BonsaiG

Black box MILP solver available at Hafer [2004], written by Lou Hafer
at Simon Fraser

Features:

Dynamic (agreesive) preprocessing
its own built-in LP Solver

Not actively maintained anymore
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Software for IP

CBC

CBC: Coin Branch and Cut

Written by John Forrest (author of most of OSL)

Available at COIN site Forrest [2004]

Actively developed with many recent improvements
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Software for IP

GLPK

GLPK is the GNU Linear Programming Kit, a set of subroutines
comprising a callable library and black box solver for solving linear
programming and MILP instances Makhorin [2004].

Released under LGPL

Developer: Andrew Makhorin

GLPK also comes equipped with GNU MathProg (GMPL), an
algebraic modeling language similar to AMPL.

Clean code – following GNU coding standards
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Software for IP

lp solve()

Lp solve is a black box solver and callable library for linear and
mixed-integer programming currently developed and maintained by
Kjell Eikland and Peter Notebaert

Distributed as open source under the GNU Library General Public
License (LGPL).

Has its own (relatively active) YAHOO Group: Berkelaar [2004].

Target Audience: Similar to that of GLPK—users who want a
lightweight, self-contained solver with a callable library API
implemented in a number of popular programming languages,
including C, VB and Java, as well as an AMPL interface.
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Software for IP

MINTO

MINTO (Mixed INTeger Optimizer) is a black box solver and solver
framework for MILP.

Chief architects of MINTO: George Nemhauser and Martin
Savelsbergh, and a majority of the software development was done by
Savelsbergh.

MINTO was developed at the Georgia Institute of Technology and is
available under terms of an agreement created by the Georgia Tech
Research Institute.

The current maintainer of MINTO is Jeff Linderoth of Lehigh
University.

MINTO is available only in library form for a number of platforms
Nemhauser and Savelsbergh [2004].

Advantages: Sophisticated preprocessing and cutting planes

Can be called from AMPL

Available on NEOS http://www-neos.mcs.anl.gov (as are a few
others)
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Software for IP

Symphony

SYMPHONY is a black box solver, callable library, and solver
framework for MILPs that evolved from the COMPSys framework of
Ralphs and Ladányi Ladányi [1996], Ralphs [1995].

The source code for packaged releases, with full documentation and
examples, is available for download Ralphs [2004] and is licensed
under the Common Public License (CPL).

Advantages:

Actively Maintained
Can solve for “efficient frontier” of “bi-criteria” MIPs

Jeff Linderoth (Lehigh University) Computational Integer Programming EWO Tele-Seminar 76 / 85



Software for IP

Separated at Birth?

MINTO

6=

SYMPHONY
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Software for IP

Noncommercial MIP Software

Version LP File Format Callable Framework User’s
Number Solver API API Manual

ABACUS 2.3 C/S/X no none C++ yes
BCP 11/1/04 OSI no none C++ yes
bonsaiG 2.8 DYLP MPS none none yes
CBC 0.70 OSI MPS C++/C C++ no
GLPK 4.2 GLPK MPS/GMPL OSI/C none yes
lp solve 5.1 lp solve MPS/LP/GMPL C/VB/Java none yes
MINTO 3.1 OSI MPS/AMPL none C yes
SYMPHONY 5.0 OSI MPS/GMPL OSI/C C yes

Table: List of solvers and main features
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Software for IP

MIP Feature Key

e: pseudo-cost branching
f: branching on the variables with the largest fractional part
h: branching on hyperplanes
g: GUB branching
i: branching on first or last fractional variable (by index)
p: penalty method
s: strong branching
x: SOS(2) branching and branching on semi-continuous variables

For the column denoting search strategies, the codes stand for the following:

b: best-first
d: depth-first
e: best-estimate
p: best-projection
r: breadth-first
h(x,z): a hybrid method switching from strategy ’x’ to strategy ’z’
2(x,z): a two-phase method switching from strategy ’x’ to strategy ’z’
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Software for IP

Noncommercial MIP Code Features

Preproc Built-in Cut Column Primal Branching Search
Generation Generation Heuristic Rules Strategy

ABACUS no no yes no f,h,s b,r,d,2(d,b)
BCP no no yes no f,h,s h(d,b)
bonsaiG no no no no p h(d,b)
CBC yes yes no yes e,f,g,h,s,x 2(d,p)
GLPK no no no no i,p b,d,p
lp solve no no no no e,f,i,x d,r,e,2(d,r)
MINTO yes yes yes yes e,f,g,p,s b,d,e,h(d,e)
SYMPHONY no yes yes no e,f,h,p,s b,r,d,h(d,b)

Table: Algorithmic features of solvers
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Software for IP

Inequality Classes in Noncommercial MIP Solvers

Name Knapsack GUB Flow Clique Implication Gomory MIR

CBC yes no yes yes yes yes yes

MINTO yes yes yes yes yes no no

SYMPHONY yes no yes yes yes yes yes

Table: Classes of valid inequalities generated by black box solvers
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Software for IP

Performance Profiles

A relative measure of the effectiveness of a solver s when compared
to a group of solvers S on a set of problem instances P.

γps: quality measure of solver s ∈ S when solving problem p ∈ P
rps = γps/(mins∈S γps)
ρs(τ) = |{p ∈ P | rps ≤ τ}| /|P |.

ρs(τ): fraction of instances for which the performance of solver s was
within a factor of τ of the best.

A performance profile for solver s is the graph of ρs(τ).

In general, the “higher” the graph of a solver, the better the relative
performance.
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Software for IP
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Software for IP
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Software for IP

Conclusions

Bad Idea to try and do an entire course in an hour

Integer Programming is the (commercially) “Most Important”
optimization problem

Amazing increases in efficiency of codes. Literally, instances can be
solved billions of times faster than they could ten years ago

Commercial codes are (by a wide margin) the state-of-the-art

Noncommercial codes are reasonable for many instances
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