A Two-Stage Algorithm for Multi-Scenario Dynamic Optimization Problem

Weijie Lin, Lorenz T Biegler, Annette M. Jacobson

March 8, 2011
EWO Annual Meeting
Outline

• Project review and problem introduction

• A Two-stage Algorithm
 – Parameter estimation from multiple data sets
 – Optimization under uncertainty with multi-scenario formulation

• An Illustrative example

• Current direction

• Summary
Strong & flexible

Low productivity & difficult to control

SIPN (Semi-Interpenetrating Polymer Network)

Monomer / Initiator

Suspension reactor
Aqueous media
Seed particle
Monomer droplet
Project Review (2)

<table>
<thead>
<tr>
<th>Process Stages</th>
<th>Features</th>
<th>Modeling</th>
<th>Control variables</th>
<th>Optimization Approach</th>
<th>Surrogate Model</th>
</tr>
</thead>
</table>
| | *Complex diffusion; single component reaction* | **Particle Growth model** | • Monomer feeding rate
 • Initiator feeding rate | **Dynamic Optimization** | **Semi-IPN kinetic model**
 • Initial polymer
 • Monomer concentration
 • Initiator concentration
 • Holding temperature
 • Holding duration |
Project Review (2)

<table>
<thead>
<tr>
<th>Process Stages</th>
<th>Swelling</th>
<th>Polymerization</th>
<th>Crosslinking</th>
</tr>
</thead>
</table>

Features

- Swelling
- Polymerization
- Crosslinking

Stage I

Modeling

- Semi-IPN kinetic model

Control variables

- Initial polymer
- Monomer concentration
- Initiator concentration
- Holding temperature
- Holding duration

Surrogate Model
Project Review (2)

Process Stages

<table>
<thead>
<tr>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling</td>
</tr>
<tr>
<td>Control variables</td>
</tr>
<tr>
<td>Optimization Approach</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Swelling</th>
<th>Polymerization</th>
<th>Crosslinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td></td>
<td>Stage II</td>
</tr>
</tbody>
</table>
Project Review (2)

<table>
<thead>
<tr>
<th>Process Stages</th>
<th>Integrated Model-based Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td></td>
</tr>
<tr>
<td>Modeling</td>
<td></td>
</tr>
<tr>
<td>Control variables</td>
<td></td>
</tr>
<tr>
<td>Optimization Approach</td>
<td></td>
</tr>
<tr>
<td>Stage I</td>
<td></td>
</tr>
<tr>
<td>Stage II</td>
<td></td>
</tr>
</tbody>
</table>
New Challenges

• Continuous effect for process improvement

• Improve model reliability
 Additional information acquisition
 – Update model / parameters

• Improve solution robustness
 Uncertainty consideration
 – Optimization under uncertainty
Multi-scenario Dynamic Optimization

- Parameter estimation from multiple data sets

\[
\min_{\theta} \sum_{i=1}^{NS} (y_i - y_i^m)^T \Sigma_i (y_i - y_i^m)
\]

\[
s.t. \quad y_i = f_i(x_i, \theta) \\
\quad h_i(x_i, \theta) = 0
\]

- Dynamic optimization under uncertainty

\[
\max_{u, v, \tau} E_\theta \{ \Phi(\dot{x}, x, y, u, \nu, \tau; \theta) \} = \max_{u, v, \tau} \int_{\theta \in \Theta} \Psi(\theta) \Phi(\dot{x}, x, y, u, \nu, \tau; \theta) d\theta
\]

\[
\text{S.t.} \quad J_0(\dot{x}(0), x(0), y, u(0), \nu, \tau; \theta) = 0 \\
\quad h((x), x, y, u, \nu, t; \theta) = 0, \\
\quad g((x), x, y, u, v, t; \theta) \leq 0,
\]
Current Researches (1)

• Sequential approaches

(Faver 2003):

[Anderson 1978], [Rod 1980], [Reilly 1981], [Dovi 1989], [Kim 1990],

Computationally expensive for derivative evaluation

[Diagram]

- Upper Stage
- Middle Stage
- Lower Stage

- NLP
- Sub-NLP 1
- Simulation 1
- Sub-NLP n
- Simulation n
Current Researches (2)

- Simultaneous approach

(Zavala and Biegler 2007)

\[
\begin{bmatrix}
W_1 & A_1 & \Delta v_1 \\
W_2 & A_2 & \Delta v_2 \\
W_3 & A_3 & \Delta v_3 \\
\vdots & \vdots & \vdots \\
A_1^T & A_2^T & A_3^T & \cdots & W_{NS} & A_{NS} & \Delta v_{NS} & \Delta d
\end{bmatrix}
=
\begin{bmatrix}
 r_1 \\
r_2 \\
r_3 \\
\vdots \\
r_{NS}
\end{bmatrix}
\]

\[
W_k =
\begin{bmatrix}
H_k^l + \delta_1 I & \nabla x_k c_k^l & D_k^T \\
(\nabla x_k c_k^l)^T & -\delta_2 I & 0 \\
D_k & 0 & -\delta_2 I
\end{bmatrix}
\]

where

\[
r_k^T = -[(\nabla x_k L_k^l)^T, (c_k^l)^T, (D_k x_k^l - \bar{D}_k d_k^l)^T] , \quad \Delta v_k^T = [\Delta x_k^T \Delta \lambda_k^T \Delta \sigma_k^T] , \quad A_k^T = [0 0 - \bar{D}_k^T] ,
\]

Schur complement

\[
\delta_1 I - \sum_{k=1}^{NS} A_k^T (W_k)^{-1} A_k] \Delta d = r_d - \sum_{k=1}^{NS} A_k^T (W_k)^{-1} r_k
\]

[Tjoa and Biegler 1991, 1992]
[Gondzio and Gothrey 2005, Gondzio and Sarkissian 2003]
A Two-Stage Algorithm

\[\min_{\theta^L} \mu S_1 f_1(\mu S_1, \mu L(k)) \text{ s.t. } M_1 \]

\[\min_{\theta^L} \mu S_2 f_2(\mu S_2, \mu L(k)) \text{ s.t. } M_2 \]

\[\min_{\theta^L} \mu S_n f_n(\mu S_n, \mu L(k)) \text{ s.t. } M_n \]

\[\min_{\theta^L} F(\theta^L) = \sum_{j=1}^{NS} f_j(\theta^L) \]

- Efficient algorithm for better behaved large inner problem
- Robust solver for well-conditioned small outer problem
• “As-NMPC”
 Features: NLP sensitivity evaluation

 - At the solution point, the primal-dual system satisfies
 \[\phi(s_*(\eta), \eta) = 0 \]

 - Applying the implicit function theorem
 \[\bar{K}_*(\eta_0) \frac{\partial s_*}{\partial \eta} = -\frac{\partial \phi(s_*(\eta_0), \eta_0)}{\partial \eta} \]

 Substitute the right hand size with “I” at the desired parameter constraints
 Exact gradient information is conveniently available at the optimal point.
Sensitivity from Inner Optimization Problem

- **Hessian evaluation**
 - When Hessian information is required, Hessian-vector product is computed
 - **Forward difference**
 \[
 H(x) \cdot v \approx \frac{G(x + \epsilon v) - G(x)}{\epsilon}
 \]
 - **Central difference**
 \[
 H(x) \cdot v \approx \frac{G(x + \epsilon v) - G(x - \epsilon v)}{2\epsilon}
 \]

 Exact Hessian-vector product (Pearlmutter, 1994)

Operator
\[
\mathcal{R}\{f(x)\} = \left. \frac{\partial f(x + \epsilon v)}{\partial \epsilon} \right|_{\epsilon=0}
\]
\[
\mathcal{R}\{f'(x)\} = Hv, \quad \mathcal{R}\{x\} = v \quad \text{Apply } \mathcal{R}\{\} \text{ to Gradient equation}
\]
Outer Optimization Problem

- **Solvers:**
 - Bound constrained optimization algorithms
 - L-BFGS-B
 - A limited-memory quasi-Newton code for bound-constrained optimization
 - TRON
 - Trust region Newton method for the solution of bound-constrained optimization problems.
 - ACO
 - Adaptive cubic overestimation
 - ...

An Illustrative Example

Parameter Estimation from Multiple data sets

First-order Irreversible Chain reaction

\[A \xrightarrow{k_1} B \xrightarrow{k_2} C \]

\[\frac{dy_A}{dt} = -k_1 y_A \]

\[\frac{dy_B}{dt} = k_1 y_A - k_2 y_B \]

Assume \(k_2 \) is a Linking parameter, \(k_1 \) is a separate parameter. 20 data sets were generated from model simulation.

Outer problem solved in TRON, converged in 3 iterations. Inner problem solved in As-NMPC converged in 6 iterations in average.

The same optimal solution is found at the optimal.
Current Direction

• Reduce kinetic parameter uncertainty by multi-scenario parameter estimation

• Optimization of operation condition under uncertainty

• Investigation of efficient algorithm for outer optimization problem

• Pilot plant study for optimal solution

• Extension of model application for broader products
Summary

• Multi-scenario optimization for dynamic system is often desired but challenging.
• Current sequential and simultaneous algorithms have limitations in terms of efficiency and robustness.
• A two-stage algorithm is proposed which takes advantage of efficient interior-point method and robust bound constraint algorithm.
• Small test problems are studied. Application to the process model is planned.
Thank You !