Operational Model for C3 Feedstock Optimization on a Polypropylene Production Facility

Pablo A. Marchetti, Ignacio E. Grossmann
Department of Chemical Engineering
Carnegie Mellon University
marchet@andrew.cmu.edu

Wiley A. Bucey, Rita A. Majewski
Braskem America

Center for Advanced Process Decision-making
Enterprise-Wide Optimization (EWO) Meeting – March 13-14, 2012
Project Overview

Polypropylene production facility

- Chemical and refinery grade feedstocks with different prices and propylene purities.
- Best operation will balance production rate with costs of feedstocks, maximizing plant throughput.
Project Overview

Polypropylene production facility

- Chemical and refinery grade feedstocks with different prices and propylene purities.
- Best operation will balance production rate with costs of feedstocks, maximizing plant throughput.

Objectives:

- Development of a Non-linear Programming (NLP) model to maximize benefits by obtaining a better balance of RG and CG feedstocks for single or multiple production orders.
- Determine operation rates for a schedule of multiple production orders within a 3-month timeframe.
- Implement user-friendly interface (GAMS model / MS-Excel)
Process and Problem Description

Chemical Grade (CG)

~95% propylene

Refinery Grade (RG)

~79% propylene

Propylene (91%)

Distillation

Propane return

Catalyst

Polymerization

Polypropylene

Reactor effluent

Feed Tank
Chemical Grade (CG)

~95% propylene

Refrinery Grade (RG)

~79% propylene

Propylene (91%)

Distillation

Propane return

Catalyst

Polymerization

Polypropylene

Reactor effluent

Maximizing the amount of RG may not be the best economic option
Mathematical Model (NLP)

• Maximize Profit

• Constraints on each time interval:
 ◦ Material balances
 ◦ Min/Max flow rates
 ◦ Constraints on composition of Propane Return, Distillation Overhead & Reactor Feed
 ◦ Limits on catalyst yield and flow
 ◦ Availability of Chemical Grade
 ◦ Specifications on splitter feed and recycle rate

• Decision variables:
 ◦ Production rate of polypropylene
 ◦ RG and CG feedrates
 ◦ Distillation overhead flow and composition
 ◦ Reactor feed and catalyst flow
Single/Multiple Product Models

- **Single Product Model** (one time interval)
 - Maximize profit in terms of $/hr
 - Best production rate with minimum cost of feedstocks.
 - Model size: 31 variables, 40 constraints
 - Solved with CONOPT and BARON in less than 1 CPU s.
 - Improved hourly profit by ~1.5% (compared with previous Excel-based model)
Single/Multiple Product Models

- **Single Product Model** (one time interval)
 - Maximize profit in terms of $/hr
 - Best production rate with minimum cost of feedstocks.
 - Model size: 31 variables, 40 constraints
 - Solved with CONOPT and BARON in less than 1 CPU s.
 - Improved hourly profit by ~1.5% (compared with previous Excel-based model)

- **Multiple Product Model**
 - Multiple orders of different products
 - Production sequence given beforehand
 - Profit ($) = selling prices – feedstock costs
 + propane return – others
 - Solution gives best production rates with minimum costs for each product
 - Mid-size example (20 products, 5 families)
 - Model size: 727 variables, 986 constraints
 - Solved by CONOPT in ~9 seconds.
 - Preliminary results show realistic tradeoff on feedstocks costs vs production rates (depending on available time).
Single/Multiple Product Models

- **Single Product Model** (one time interval)
 - Maximize profit in terms of $/hr
 - Best production rate with minimum cost of feedstocks.
 - Model size: 31 variables, 40 constraints
 - Solved with CONOPT and BARON in less than 1 CPU s.
 - Improved hourly profit by ~1.5% (compared with previous Excel-based model)

- **Multiple Product Model**
 - Multiple orders of different products
 - Production sequence given beforehand
 - Profit ($) = selling prices – feedstock costs
 + propane return – others
 - Solution gives best production rates with minimum costs for each product
 - Mid-size example (20 products, 5 families)
 - Model size: 727 variables, 986 constraints
 - Solved by CONOPT in ~9 seconds.
 - Preliminary results show realistic tradeoff on feedstocks costs vs production rates (depending on available time).

Models Implemented with GAMS
Improvements on Distillation Model

Current model is based on a **linear correlation** obtained from plant data, relating the overhead composition of propane with flowrate of propane feed to the splitter.
Improvements on Distillation Model

Current model is based on a linear correlation obtained from plant data, relating the overhead composition of propane with flowrate of propane feed to the splitter.

Goal

- Develop an approximation procedure that provides overall treatment of the distillation (no details about flows, composition, temperatures, etc. for each individual tray)
- The number of variables and constraints must remain small
- The predicted outputs must closely match those of rigorous model (Aspen)
Improvements on Distillation Model

Current model is based on a linear correlation obtained from plant data, relating the overhead composition of propane with flowrate of propane feed to the splitter.

Goal

- Develop an approximation procedure that provides overall treatment of the distillation (no details about flows, composition, temperatures, etc. for each individual tray)
- The number of variables and constraints must remain small
- The predicted outputs must closely match those of rigorous model (Aspen)

Aggregated group-method of Kamath et al. (2010)

- Models a counter-current cascade of trays

Kamath, Grossmann and Biegler (2010)
Comp. and Chem. Eng. 34, pp. 1312-1319
Improvements on Distillation Model

Two alternative models were developed to represent the C3 Splitter:
• Aggregated group-method of Kamath et al.
Improvements on Distillation Model

Two alternative models were developed to represent the C3 Splitter:
• Aggregated group-method of Kamath et al.
• Modified group-method using Fixed Relative Volatilities
 • Relative volatility fixed for the top, bottom, feed trays
 • It becomes a model parameter
 • Can be accurately obtained using Peng-Robinson or other first-principle method.
Improvements on Distillation Model

Two alternative models were developed to represent the C3 Splitter:

• Aggregated group-method of Kamath et al.
• Modified group-method using Fixed Relative Volatilities
 • Relative volatility fixed for the top, bottom, feed trays
 • It becomes a model parameter
 • Can be accurately obtained using Peng-Robinson or other first-principle method.

C3 Splitter modeled with Group-Method
Two alternative models were developed to represent the C3 Splitter:

- Aggregated group-method of Kamath et al.
- Modified group-method using Fixed Relative Volatilities
 - Relative volatility fixed for the top, bottom, feed trays
 - It becomes a model parameter
 - Can be accurately obtained using Peng-Robinson or other first-principle method.

C3 Splitter modeled with Group-Method

Degrees of freedom:
- Reflux rate
- Bottoms composition

Additional Assumptions
- Fixed pressure for the whole column = 9.778 atm
- Total condenser (top)
- Total reboiler (bottom)
- Single feed
Improvements on Distillation Model

Parameterization and Validation (Work in Progress)
- Comparison of results obtained by the Aggregated Group-Methods against rigorous tray-to-tray simulations (Aspen) and plant data.
Improvements on Distillation Model

Parameterization and Validation (Work in Progress)

- Comparison of results obtained by the Aggregated Group-Methods against rigorous tray-to-tray simulations (Aspen) and plant data.

\[\alpha = 1.1645 \]

Propylene composition in distillation overhead for different column efficiencies

Modified Group-Method - comparison of different column sizes (or efficiencies) against linear correlation

Aspen Simulation Results

RadFrac component
Peng-Robinson thermodynamics

Tray-to-tray relative volatilities predicted by rigorous model
Integrated Model and User Interface
Integrated Model and User Interface

Integration of Group-Method Distillation Model in General Flowsheet Model (Work in progress)

- The new distillation model is being integrated within the single and multiple-product models.
- Initial point for multiple-product model obtained by the solution of several single product models, one for each product.
Integrated Model and User Interface

Integration of Group-Method Distillation Model in General Flowsheet Model (Work in progress)

- The new distillation model is being integrated within the single and multiple-product models.
- Initial point for multiple-product model obtained by the solution of several single product models, one for each product.

User Interface for GAMS model being developed in Excel

- Excel and VBA as a front-end
- Excel as User Interface (UI) to define input data
- Excel used to display results
- Flexibility to manipulate input data/output results (tables, graphics)
Conclusions and Future Work
Conclusions and Future Work

CONCLUSIONS

- Integrated plant formulation developed including distillation and polymerization processes in a single model.
- Single and multiple-product models.
- Distillation model reformulated using aggregated group-methods (based on work of Kamath et al. 2010)
- Comparison with rigorous tray-to-tray simulation results (Aspen) and plant data to parameterize the models.
- Integrated model and UI being developed.
Conclusions and Future Work

CONCLUSIONS

- Integrated plant formulation developed including distillation and polymerization processes in a single model.
- Single and multiple-product models.
- Distillation model reformulated using aggregated group-methods (based on work of Kamath et al. 2010)
- Comparison with rigorous tray-to-tray simulation results (Aspen) and plant data to parameterize the models.
- Integrated model and UI being developed.

FUTURE WORK

- Determine most accurate parameterization of aggregated group-methods to predict distillation column outputs
- Additional tests on larger problem instances
- Deployment of computational tool to assess monthly feedstock purchase decisions