Operational Model for C3 Feedstock Optimization on a Polypropylene Production Facility

Pablo A. Marchetti, Ignacio E. Grossmann
Department of Chemical Engineering
Carnegie Mellon University
marchet@andrew.cmu.edu

Wiley A. Bucey, Rita A. Majewski
Braskem America

Center for Advanced Process Decision-making
Project Overview

Polypropylene production facility

- Chemical and refinery grade feedstocks with different prices and propylene purities.
- Best operation will balance production rate with costs of feedstocks, maximizing plant throughput.
Project Overview

Polypropylene production facility

- Chemical and refinery grade feedstocks with different prices and propylene purities.
- Best operation will balance production rate with costs of feedstocks, maximizing plant throughput.

Objectives:
- Development of a Non-linear Programming (NLP) model to maximize benefits by obtaining a better balance of RG and CG feedstocks for single or multiple production orders.
- Determine operation rates for a schedule of multiple production orders within a 3-month timeframe.
- Implement user-friendly interface (GAMS model / MS-Excel)
Process and Problem Description

Chemical Grade (CG)

~95% propylene

Refinery Grade (RG)

~79% propylene

Catalyst

Polymerization

Polypropylene

Feed Tank

Propylene (91%)

Distillation

Propane return

Reactor effluent
Maximizing the amount of RG may not be the best economic option.
Mathematical Model (NLP)

- Maximize Profit
Mathematical Model (NLP)

- Maximize Profit

- Constraints on each time interval:
 - Material balances
 - Min/Max flow rates
 - Constraints on composition of Propane Return, Distillation Overhead & Reactor Feed
 - Limits on catalyst yield and flow
 - Availability of Chemical Grade
 - Specifications on splitter feed and recycle rate
Mathematical Model (NLP)

- Maximize Profit

- Constraints on each time interval:
 - Material balances
 - Min/Max flow rates
 - Constraints on composition of Propane Return, Distillation Overhead & Reactor Feed
 - Limits on catalyst yield and flow
 - Availability of Chemical Grade
 - Specifications on splitter feed and recycle rate

- Decision variables:
 - Production rate of polypropylene
 - RG and CG feedrates
 - Distillation overhead flow and composition
 - Reactor feed and catalyst flow
Single/Multiple Product Models

- **Single Product Model** (one time interval)
 - Maximize profit in terms of $/hr
 - Best production rate with minimum cost of feedstocks.
 - Model size: 31 variables, 40 constraints
 - Solved with CONOPT and BARON in less than 1 CPU s.
Single/Multiple Product Models

Single Product Model (one time interval)
- Maximize profit in terms of $/hr
- Best production rate with minimum cost of feedstocks.
 - Model size: 31 variables, 40 constraints
 - Solved with CONOPT and BARON in less than 1 CPU s.

Multiple Product Model
- Multiple orders of different products
- Production sequence given beforehand
- Profit ($) = selling prices – feedstock costs + propane return – others
- Solution gives best production rates with minimum costs for each product
 - Mid-size example (20 products, 5 families)
 - Model size: 727 variables, 986 constraints
 - Solved by CONOPT in ~9 seconds.
 - Preliminary results show realistic tradeoff on feedstocks costs vs production rates (depending on available time).
Single/Multiple Product Models

- **Single Product Model** (one time interval)
 - Maximize profit in terms of $/hr
 - Best production rate with minimum cost of feedstocks.
 - Model size: 31 variables, 40 constraints
 - Solved with CONOPT and BARON in less than 1 CPU s.

- **Multiple Product Model**
 - Multiple orders of different products
 - Production sequence given beforehand
 - Profit ($) = selling prices – feedstock costs
 - propane return – others
 - Solution gives best production rates with minimum costs for each product
 - Mid-size example (20 products, 5 families)
 - Model size: 727 variables, 986 constraints
 - Solved by CONOPT in ~9 seconds.
 - Preliminary results show **realistic tradeoff on feedstocks costs vs production rates** (depending on available time).

Models implemented with GAMS
User Interface via Excel Worksheet

User interface for GAMS multiple-product model developed in MS Excel

- Allows definition of input data and model parameters
- Presents results (output) in different levels of detail
- VBA code takes care of validation, running GAMS, and updating results.
- Flexibility to easily test different production schedules with alternative parameters.
User Interface via Excel Worksheet

User interface for GAMS multiple-product model developed in MS Excel

- Allows definition of input data and model parameters
- Presents results (output) in different levels of detail
- VBA code takes care of validation, running GAMS, and updating results.
- Flexibility to easily test different production schedules with alternative parameters.

Specific parameters for testing gain/loss scenarios:
- Time horizon
- Addition of slack product (yes/no)
Overview of GAMS/Excel integration

MS Excel
- Parameters
- Product and product family data
- Schedule
- General results
- Detailed results

GAMS Code
- Aggregate products by family
- Solve single-product model for each family
- Solve multiple-product model
- Disaggregate results

- GDX input file
- GDX output file
User Interface via Excel Worksheet

Overview of GAMS/Excel integration

- Parameters
- Product and product family data
- Schedule

MS Excel
- General results
- Detailed results

GAMS Code
- Aggregate products by family
- Solve single-product model for each family
- Solve multiple-product model
- Disaggregate results

Schedule requirements

GDX input file

GDX output file
User Interface via Excel Worksheet

Overview of GAMS/Excel integration

MS Excel
- Parameters
- Product and product family data
- Schedule
- General results
- Detailed results

GAMS Code
- Schedule requirements
- Aggregate products by family
- Solve single-product model for each family
- Solve multiple-product model
- GDX input file
- GDX output file
- Disaggregate results

Aggregated schedule
User Interface via Excel Worksheet

Overview of GAMS/Excel integration

- Parameters
- Product and product family data
- Schedule

MS Excel

- General results
- Detailed results

Schedule requirements

GDX input file

Aggregated schedule

GAMS Code

Aggregate products by family

Solve single-product model for each family

Initial solution

Solve multiple-product model

Disaggregate results

GDX output file
User Interface via Excel Worksheet

Overview of GAMS/Excel integration

MS Excel
- Parameters
- Product and product family data
- Schedule
- General results
- Detailed results

GAMS Code
- Aggregate products by family
- Solve single-product model for each family
- Initial solution
- Solve multiple-product model
- Aggregated multiple-product solution

- GDX input file
- GDX output file

Schedule requirements
Overview of GAMS/Excel integration

MS Excel
- Parameters
- Product and product family data
- Schedule
- General results
- Detailed results

GAMS Code
- Aggregate products by family
- Solve single-product model for each family
- Initial solution
- Solve multiple-product model
- Disaggregate results
- Aggregated multiple-product solution

GDX input file

GDX output file

Schedule requirements

Detailed schedule results
User Interface via Excel Worksheet

Screenshots
User Interface via Excel Worksheet

Screenshots

Feedstock Optimization Model

<table>
<thead>
<tr>
<th>Order</th>
<th>Product</th>
<th># Cars</th>
<th>Start Time</th>
<th>Duration</th>
<th>Production Rate</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10</td>
<td>dd-mm-mm, hh:mm</td>
<td>#.#</td>
<td>#.#</td>
<td>#.#</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>10</td>
<td>dd-mm-mm, hh:mm</td>
<td>#.#</td>
<td>#.#</td>
<td>#.#</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>34</td>
<td>dd-mm-mm, hh:mm</td>
<td>#.#</td>
<td>#.#</td>
<td>#.#</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2</td>
<td>dd-mm-mm, hh:mm</td>
<td>#.#</td>
<td>#.#</td>
<td>#.#</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>8</td>
<td>dd-mm-mm, hh:mm</td>
<td>#.#</td>
<td>#.#</td>
<td>#.#</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2</td>
<td>dd-mm-mm, hh:mm</td>
<td>#.#</td>
<td>#.#</td>
<td>#.#</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>30</td>
<td>dd-mm-mm, hh:mm</td>
<td>#.#</td>
<td>#.#</td>
<td>#.#</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2</td>
<td>dd-mm-mm, hh:mm</td>
<td>#.#</td>
<td>#.#</td>
<td>#.#</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>14</td>
<td>dd-mm-mm, hh:mm</td>
<td>#.#</td>
<td>#.#</td>
<td>#.#</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10</td>
<td>dd-mm-mm, hh:mm</td>
<td>#.#</td>
<td>#.#</td>
<td>#.#</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>4</td>
<td>dd-mm-mm, hh:mm</td>
<td>#.#</td>
<td>#.#</td>
<td>#.#</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2</td>
<td>dd-mm-mm, hh:mm</td>
<td>#.#</td>
<td>#.#</td>
<td>#.#</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>12</td>
<td>dd-mm-mm, hh:mm</td>
<td>#.#</td>
<td>#.#</td>
<td>#.#</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>7</td>
<td>dd-mm-mm, hh:mm</td>
<td>#.#</td>
<td>#.#</td>
<td>#.#</td>
</tr>
</tbody>
</table>

Schedule Data
Schedule Results
17 Jun, 08:30 AM

Run Feedstock Model

Update Results

Time Horizon: 50 days

Add SACK Product

Braskem America - Neal Plant
User Interface via Excel Worksheet

Screenshots

<table>
<thead>
<tr>
<th>Order</th>
<th>Product</th>
<th># Cars</th>
<th>Start Time</th>
<th>Duration</th>
<th>Production Rate</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>10</td>
<td>dd-mmm, hh:mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>10</td>
<td>dd-mmm, hh:mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>34</td>
<td>dd-mmm, hh:mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2</td>
<td>dd-mmm, hh:mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>8</td>
<td>dd-mmm, hh:mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2</td>
<td>dd-mmm, hh:mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>10</td>
<td>dd-mmm, hh:mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2</td>
<td>dd-mmm, hh:mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>14</td>
<td>dd-mmm, hh:mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10</td>
<td>dd-mmm, hh:mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>4</td>
<td>dd-mmm, hh:mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2</td>
<td>dd-mmm, hh:mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>12</td>
<td>dd-mmm, hh:mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>7</td>
<td>dd-mmm, hh:mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multiple-product Feedstock Model - Detailed Results

Time Horizon = 50 days

TIME SLOTS

<table>
<thead>
<tr>
<th>TIME SLOTS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>

Production Requirements

<table>
<thead>
<tr>
<th>Product</th>
<th># Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Results Summary

- Production rate (lb/hr)
- Time (hr)
- Use of product

Refinery Grade

<table>
<thead>
<tr>
<th>% Propane</th>
<th>Propane</th>
<th>% Propylene</th>
<th>Propylene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chemical Grade

<table>
<thead>
<tr>
<th>% Propane</th>
<th>Propane</th>
<th>% Propylene</th>
<th>Propylene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Improvements on Distillation Model

Objective:

• Develop an approximation procedure that provides overall treatment of the distillation (no details about flows, composition, temperatures, etc. for each individual tray)
• The number of variables and constraints must remain small
• The predicted outputs must closely match those of rigorous model
Improvements on Distillation Model

Objective:

- Develop an approximation procedure that provides overall treatment of the distillation (no details about flows, composition, temperatures, etc. for each individual tray)
- The number of variables and constraints must remain small
- The predicted outputs must closely match those of rigorous model

Aggregated group-method of Kamath et al. (2010)

- Models a counter-current cascade of trays

Tray-by-Tray Method (Rigorous)
Group-Method (Approximate)

Kamath, Grossmann and Biegler (2010), *Comp. and Chem. Eng.* 34, pp. 1312-1319
Improvements on Distillation Model

Objective:
- Develop an approximation procedure that provides overall treatment of the distillation (no details about flows, composition, temperatures, etc. for each individual tray)
- The number of variables and constraints must remain small
- The predicted outputs must closely match those of rigorous model

Aggregated group-method of Kamath et al. (2010)
- Models a counter-current cascade of trays

Kamath, Grossmann and Biegler (2010), *Comp. and Chem. Eng.* 34, pp. 1312-1319
Improvements on Distillation Model

C3 Splitter modeled with Group-Method

Degrees of freedom:
- Reflux rate
- Bottoms composition

Additional Assumptions
- Fixed pressure for the whole column = 9.778 atm
- Total condenser (top)
- Total reboiler (bottom)
- Single feed
Improvements on Distillation Model

C3 Splitter modeled with Group-Method

Degrees of freedom:

- Reflux rate
- Bottoms composition

Additional Assumptions

- Fixed pressure for the whole column = 9.778 atm
- Total condenser (top)
- Total reboiler (bottom)
- Single feed

Parameterization and Validation

- Comparison against rigorous tray-to-tray simulations (Aspen / HySys) based on plant data.

Comparison of different column sizes (or efficiencies) against linear correlation

Tray-to-tray relative volatilities predicted by rigorous model
Conclusions and Future Work

CONCLUSIONS

- Single and multiple-product feedstock optimization models including distillation and polymerization processes.
- User interface through MS Excel developed and being tested (with promising initial results).
- Proposed method handles gain/loss scenarios and large schedules (through aggregation/disaggregation).
- Distillation model reformulated using aggregated group-method based on work of Kamath et al. 2010.
Conclusions and Future Work

CONCLUSIONS

- Single and multiple-product feedstock optimization models including distillation and polymerization processes.
- User interface through MS Excel developed and being tested (with promising initial results).
- Proposed method handles gain/loss scenarios and large schedules (through aggregation/disaggregation).
- Distillation model reformulated using aggregated group-method based on work of Kamath et al. 2010.

FUTURE WORK

- Final deployment of computational tool to assess monthly feedstock purchase decisions.
- Parameterization of aggregated group-method, and integration with overall plant model.