Quantitative Methods for Strategic and Investment Planning in the Oil-Refining Industry

Brenno C. Menezes, Lincoln F. Moro
Refining Optimization
PETROBRAS PetroleoS.A.
Rio de Janeiro, RJ

Ignacio E. Grossmann
Department of Chemical Engineering
Carnegie Mellon University
Pittsburgh, PA

Fernando Pellegrini, Ricardo Medronho
Department of Chemical Engineering
Federal University of Rio de Janeiro
Rio de Janeiro, RJ

Jeffrey D. Kelly
IndustriAlgorithms
Toronto, ON

September 4th, 2013

Refining Optimization

PETROBRAS Current Tool for Strategic Planning (PLANINV) – LP
No Production Scenario Synthesis
Only optimize streams transfers (oil and fuels import/export, market supply)

Mixed-Integer (MILP) + Nonlinear (NLP) Models

\[y_{\text{R},\text{U},\text{N},\text{T}} = \text{expansion of an existent unit} \]
\[y_{\text{I},\text{R},\text{U},\text{N},\text{T}} = \text{installation of a new unit} \]
\[y_{\text{F},\text{R},\text{U},\text{N},\text{T}} = \text{operational flow} \]
\[y_{\text{C},\text{R},\text{U},\text{N},\text{T}} = \text{total capacity} \]
\[y_{\text{E},\text{R},\text{U},\text{N},\text{T}} = \text{expansion capacity} \]
\[y_{\text{Q},\text{R},\text{U},\text{N},\text{T}} = \text{installation capacity} \]

\[\text{in} \times \text{out} = \text{in} \times \text{out} \]

\[\text{NLP} \quad \text{OPREF} \quad \text{INVREF} \]

\[\text{Crude Diet} \quad \text{Processing} \quad \text{Blending} \]

<table>
<thead>
<tr>
<th>(u)</th>
<th>Unit Products Properties:</th>
<th>(Q_{S,u} = f(Q_{F,u}, PF_{u,p}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>Splitter:</td>
<td>(Q_{S,u} = \sum Q_{u,a,p})</td>
</tr>
<tr>
<td>(s)</td>
<td>(Q_{S,u} = f(Q_{F,u}, PF_{u,p}, V_{u,v}))</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{INVREF} \]
\[\text{OPREF} \]
\[\text{Q}\text{P}\text{SQC} \quad \text{NLP} \]

\[\text{output} \]
\[\text{input} \]

\[\text{Project execution} \]
\[\text{NPV} = \sum (\text{sales} - \text{crude} - \text{op. costs}) - \sum \text{invest. costs} \]
Capital Cost Constraint

\[\sum_{R} \sum_{U} \sum_{N} \left(Q_{E_{R,U,N}} + Q_{E_{R,U,N}}^{*} y_{E_{R,U,N}}^{*} \right) + Q_{I_{R,U,N}} + Q_{I_{R,U,N}}^{*} y_{I_{R,U,N}}^{*} \right) \leq C(t) \times t \quad \text{capital for investment p/time} \]

Logic Constraints for Expansions and Installations

\[\sum_{N} \left(y_{E_{R,U,N}} + y_{I_{R,U,N}} \right) \leq 1 \quad \forall \quad r,u \quad \text{only one expansion or installation p/time} \]

\[\sum_{N} y_{E_{R,U,N}} \leq 1 \quad \forall \quad r,u \quad \text{expansion can appear only once during all time} \]

\[\sum_{N} y_{I_{R,U,N}} \leq 1 \quad \forall \quad r,u \quad \text{installation can appear only once during all time} \]

\[\sum_{N} \left(y_{E_{R,U,N}} + y_{I_{R,U,N}} \right) \leq 1 \quad \forall \quad r,u \quad \text{only one expansion or installation p/group p/time} \]

Crude Diet and Processing Equations

Crude diet

\[Q_{CDU} = \sum Q_{CRUDE,CDU} \]

\[PF_{CDU} = f(Q_{CRUDE,CDU}, PF_{CRUDE,CDU}) \]

Improved Swing-Cut (Menezes, Kelly & Grossmann, 2013)

\[Q_{CDU} = \sum Q_{CRUDE,CDU} \]

\[PF_{CDU} = f(Q_{CRUDE,CDU}, PF_{CRUDE,CDU}) \]

Other models (Moro, Zanin & Pinto, 1998)

\[Q_{P_{FCC}} = Q_{P_{FCC}}^{+} \left(1 + \frac{P_{F_{CDU}}}{P_{F_{CDU}}} \right) \]

\[Q_{P_{DASFA}} = Q_{P_{FCC}}^{+} \left(1 + \frac{P_{F_{PDA}}}{P_{F_{PDA}}} \right) \]

\[P_{F_{TFA}} = PF_{TFA} \left(1 - \frac{P_{TFA}}{P_{TFA}} \right) \]

Blending Equations

<table>
<thead>
<tr>
<th>Property Group</th>
<th>PF or IP base</th>
<th>Property Name</th>
<th>PF or IPF (Property Index)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACID</td>
<td>Mass</td>
<td>Acidity</td>
<td>PF_{Vol} = \frac{P F_{Vol}}{\sum_{P} F_{Vol}}</td>
</tr>
<tr>
<td>GRAV</td>
<td>Vol</td>
<td>Gravity</td>
<td>PF_{Mass} = \frac{P \cdot GRAV Vol}{\sum_{P} GRAV Vol}</td>
</tr>
<tr>
<td>SULF</td>
<td>Mass</td>
<td>Sulfur Content</td>
<td></td>
</tr>
<tr>
<td>CCR</td>
<td>Mass</td>
<td>Conradson Carbon Residue</td>
<td></td>
</tr>
<tr>
<td>Volatility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIST</td>
<td>Vol</td>
<td>Distillation</td>
<td>IP_{RVP} = \left(1.0 P + 32 \right) \frac{7.8}{549} \left(1000 V - 1409 \right)</td>
</tr>
<tr>
<td>RVP</td>
<td>Vol (IP)</td>
<td>Reid Vapor Pressure</td>
<td></td>
</tr>
<tr>
<td>FLASH</td>
<td>Vol (IP)</td>
<td>Flash Point</td>
<td>IP_{FLASH} = e^{1.949 (IP) - 14.99}</td>
</tr>
<tr>
<td>Volatility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MON</td>
<td>Formula</td>
<td>Motor Octane Number</td>
<td>PF_{MON} = \sum_{I} MON Vol</td>
</tr>
<tr>
<td>RON</td>
<td>Formula</td>
<td>Research Octane Number</td>
<td></td>
</tr>
<tr>
<td>CETAN</td>
<td>Vol</td>
<td>cetane Number</td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUM</td>
<td>Vol</td>
<td>Gum</td>
<td>IP_{GUM} = \frac{P_{GUM}}{\sum_{P} P_{GUM}}</td>
</tr>
<tr>
<td>Fluidity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISC</td>
<td>Vol (IP)</td>
<td>Viscosity</td>
<td>IP_{VISC} = \frac{P_{VISC}}{\sum_{P} P_{VISC}}</td>
</tr>
<tr>
<td>POUR</td>
<td>Vol (IP)</td>
<td>Pour Point</td>
<td>IP_{POUR} = \frac{P_{POUR}}{\sum_{P} P_{POUR}}</td>
</tr>
<tr>
<td>CLOUD</td>
<td>Vol (IP)</td>
<td>Cloud Point</td>
<td>IP_{CLOUD} = \frac{P_{CLOUD}}{\sum_{P} P_{CLOUD}}</td>
</tr>
<tr>
<td>PPFC</td>
<td>Vol (IP)</td>
<td>Plug-Flow Filter</td>
<td>PF = \frac{P_{PF}}{P_{IP}}</td>
</tr>
</tbody>
</table>

CDU: Crude distillation Unit
FCC: Fluid Catalytic Cracking
PDA: Propane Desasphalting
HT: Hydrotreater
Case 1 – Brazilian Oil-Refining Units Escalation until 2020

* (aggregated case for conceptual projects refit – only expansion)

MINLP Model

- **2016**
 - **2013**

NPV = \[\sum_{t=1}^{T} \left(1 + \frac{r}{100}\right)^{-t} \left(\sum \frac{W_{t,m,d}}{Q_{m,d}} \right) \] - \[\sum_{t=1}^{T} \frac{1}{1 + \frac{r}{100}} \left(\sum \left(T_{m,d} - T_{m,d} \right) \right) \]

- \(T_{m,d} = \frac{T_{m,d}}{1 + \frac{r}{100}} \)

\(T_{m,d} \) is the time in years.

Menezes, Moro, Medronho & Pessoa; 2013a,b

Case 2 – São Paulo Supply Chain

* (non-aggregated case for expansion and installation)

MILP + NLP Models Decomposed

Phenomenological Decomposition Heuristics (PDH)

How are the existent processes?

- **NLP (≤1)** for a feasible (y₁,y₂)
 - Variables: ...

MILP + NLP

QLQC

- Fixed:... Feed recipes for units/tasks

Z

- Interaction for new units

EWO Meeting – September 2013
Next Steps

Structural and temporal decomposition strategies integrated with the phenomenological decomposition heuristics (PDH)

Deal with operational modes to include investments in logistics

Uncertainties?
- Marketing & Sales (demands)
- Purchasing & Procurement
- Fuels Prices Brazil x World
- Projects delays

\[
\frac{(\text{EXCAP} + Q_{\text{new},t-1})}{QC_t}
\]

\(\alpha\) Slope (project velocity)

\(\alpha < 1\) anticipation
\(\alpha = 1\)
\(\alpha > 1\) delay

Project Expected Time/Time