Dynamic Modeling and Recipe Optimization of Polyether Polyol Processes

Fall 2012 EWO Meeting

Yisu Nie1 Lorenz T. Biegler1 Carlos M. Villa2 John M. Wassick2

1Center for Advanced Process Decision-making
Department of Chemical Engineering
Carnegie Mellon University

2The Dow Chemical Company

September 27, 2012
Introduction
Polyether polyol process description

Key ingredients
- **Epoxides** (ethylene oxide (EO), propylene oxide (PO))

 ![Epoxides](image)

- Molecules containing active hydrogen atoms (alcohols, amines)

 ![Molecules](image)

- A basic **catalyst** (KOH)
Introduction
Polyether polyol process description

Key ingredients
- **Epoxides** (ethylene oxide (EO), propylene oxide (PO))
- Molecules containing active hydrogen atoms (alcohols, amines)
- A basic **catalyst** (KOH)

Basic procedures
- Starters are first mixed with catalyst in the liquid phase
- Alkylene oxides in the liquid phase are fed in controlled rates
- The reactor temperature is controlled by the heat exchanger
- Allowed maximum reactor pressure guarded by the vent system control valve
Process Dynamic Modeling
Modeling reaction kinetics

- **Reaction scheme:** Polypropylene glycol

<table>
<thead>
<tr>
<th>Process</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrolysis</td>
<td>(W + M \xrightarrow{k_h} D_0)</td>
</tr>
<tr>
<td>Initiation</td>
<td>(G_0 + M \xrightarrow{k_i} G_1)</td>
</tr>
<tr>
<td></td>
<td>(Q_0 + M \xrightarrow{k_i} Q_1)</td>
</tr>
<tr>
<td>Propagation</td>
<td>(G_n + M \xrightarrow{k_p} G_{n+1} \quad (n \geq 1))</td>
</tr>
<tr>
<td></td>
<td>(Q_n + M \xrightarrow{k_p} Q_{n+1} \quad (n \geq 1))</td>
</tr>
<tr>
<td>Transfer</td>
<td>(G_n + M \xrightarrow{k_t} D_n + Q_0 \quad (n \geq 0))</td>
</tr>
<tr>
<td></td>
<td>(Q_n + M \xrightarrow{k_t} R_n + Q_0 \quad (n \geq 0))</td>
</tr>
<tr>
<td>Exchange</td>
<td>(G_n + D_m \xrightarrow{k_e} D_n + G_m \quad (n, m \geq 0))</td>
</tr>
<tr>
<td></td>
<td>(Q_n + R_m \xrightarrow{k_e} R_n + Q_m \quad (n, m \geq 0))</td>
</tr>
<tr>
<td></td>
<td>(G_n + R_m \xrightarrow{k_e} D_n + Q_m \quad (n, m \geq 0))</td>
</tr>
</tbody>
</table>

Material
- **Starter:** Propylene glycol (PG)
- **Water:**
- **Catalyst:** KOH
- **Monomer:** PO

Notation
- \(M \): monomers (PO)
- \(W \): water
- \(G_n \): growing product chains (\(P_nO^{-}K^+ \))
- \(D_n \): dormant product chains (\(P_nOH \))
- \(Q_n \): growing unsat chains (\(U_nO^{-}K^+ \))
- \(R_n \): dormant unsat chains (\(U_nOH \))
- \(P_n \): \(CH_3(PO)_n \)
- \(U_n \): \(CH_2 = CHCH_2(PO)_n \)

Index
- \(n, m \): repeating units
Model equations

- **Population balances**

\[
\frac{d(V[G_n])}{dt} = V(k_p([G_{n-1}] - [G_n])[M] - k_t[G_n][M] - ke[G_n] \sum_{m=0}^{N} ([D_m] + [R_m]) + k_e[D_n] \sum_{m=0}^{N} ([G_m] + [Q_m]))
\]

\[
\frac{d(V[D_n])}{dt} = V(k_h[W][M] + k_t[G_n][M] + ke[G_n] \sum_{m=0}^{N} ([D_m] + [R_m]) - k_e[D_n] \sum_{m=0}^{N} ([G_m] + [Q_m]))
\]

Similar balances for unsat populations (Q and R).

- **Monomer balance**
- **Total mass balance**
- **Volume determination**
- **Vapor-liquid equilibrium**
 - Liquid phase activities: Flory-Huggins theory
 - Vapor pressures: Antoine equation
Characteristics of the obtained model

- A large-scale differential-algebraic equation (DAE) system
- Synergistic fast and slow dynamic modes
 - Caused by fast exchange reactions
 - Stiff differential equations
 - Numerical difficulties in optimization
- A reformulation procedure
Process Dynamic Modeling
Reformulation of the first-principle model

Characteristics of the obtained model

- A large-scale differential-algebraic equation (DAE) system
- Synergistic fast and slow dynamic modes
 - Caused by fast exchange reactions
 - Stiff differential equations
 - Numerical difficulties in optimization
 - A reformulation procedure

A nullspace projection method for equilibrium reactions

- Separating fast and slow dynamic components
- Modeling fast dynamics as algebraic equations
 - Systematic procedure based on linear algebra
Two pseudo-species introduced: \(X = G + D \) \(Y = Q + R \)

Population balances

\[
\frac{d(V[X_n])}{dt} = V_k p ([G_{n-1}] - [G_n]) [M] \\
\frac{d(V[Y_n])}{dt} = V_k p ([Q_{n-1}] - [Q_n]) [M]
\]

Quasi-steady states of the equilibrium reactions

\[
X_n n_c = G_i (n_i + n_u) \\
Y_n n_c = Q_i (n_i + n_u)
\]

Important remarks

- Complete with additional equations: monomer balance, VLE, etc.
- An index-one DAE system
- Fewer differential variables and equations
- Less stiff differential equations
Process Recipe Optimization
A dynamic optimization formulation

Objective function
Minimizing the batch time of polymerization

Constraints
- Reformulated process model
- Product quality constraints
 - Target molecular weight
 - Requirement on the unsaturation value
 - Final time monomer concentration
- Process safety constraints
 - Heat removal duty
 - Adiabatic end temperature due to loss of cooling

Control variables
Reactor temperature and monomer feed rate
Case Study

Production of polypropylene glycol

Process specifications

Initial charge condition
- **Initiator:** PG and Water
- **Catalyst:** KOH
- **Monomer:** PO

Process constraints
- **Product molecular weight** \(\geq 950 \) g/mol
- **Product unsaturation value** \(\leq 0.032 \) mmol/g polyol
- **Unreacted PO** \(\leq 120 \) ppm
- **Heat exchanger load** \(\leq H_{\text{max}} \) kW
- **Adiabatic end temperature** \(T_{ad} - T_b \leq 80^\circ C \)
Case Study
Production of polypropylene glycol

Process specifications

- **Initial charge condition**
 - Initiator: PG and Water
 - Catalyst: KOH
 - Monomer: PO

- **Process constraints**
 - Product molecular weight $\geq 950 \text{ g/mol}$
 - Product unsaturation value $\leq 0.032 \text{ mmol/g polyol}$
 - Unreacted PO $\leq 120 \text{ ppm}$
 - Heat exchanger load $\leq H_{\text{max}} \text{ kW}$
 - Adiabatic end temperature $T_{\text{ad}} - T_b \leq 80^\circ C$

Model validation on reactor pressure: model prediction vs. plant data

![Graph showing model validation on reactor pressure: model prediction vs. plant data]
Case Study
Production of polypropylene glycol

Optimization results

- Optimization model statistics and solution

<table>
<thead>
<tr>
<th>Opt. soln</th>
<th>MW (g/mol)</th>
<th>Unsat (mmol/g)</th>
<th>PO(ppm)</th>
<th># of var.</th>
<th># of con.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.575</td>
<td>950</td>
<td>0.028</td>
<td>120</td>
<td>10946</td>
<td>11043</td>
</tr>
</tbody>
</table>

- Batch time reduced by 42.5% (base case batch time is normalized to 1)
- Product quality constraints are satisfied at the end of the operation

Important remarks
- Piecewise linear control profiles with continuity on finite element boundaries
- U-shape temperature profile and higher average feed rates
- Merging the feeding and digestion periods

Yisu Nie (Carnegie Mellon University)
Case Study

Production of polypropylene glycol

Optimization results

- Optimization model statistics and solution

<table>
<thead>
<tr>
<th>Opt. soln</th>
<th>MW (g/mol)</th>
<th>Unsat (mmol/g)</th>
<th>PO(ppm)</th>
<th># of var.</th>
<th># of con.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.575</td>
<td>950</td>
<td>0.028</td>
<td>120</td>
<td>10946</td>
<td>11043</td>
</tr>
</tbody>
</table>

- Batch time reduced by 42.5% (base case batch time is normalized to 1)
- Product quality constraints are satisfied at the end of the operation

- Reactor temperature (top) and monomer feed rate (bottom) profiles

- Important remarks
 - Piecewise linear control profiles with continuity on finite element boundaries
 - U-shape temperature profile and higher average feed rates
 - Merging the feeding and digestion periods
Case Study Results

Optimal product molecular weight distributions (MWD)

- **MWD of the product** (top) and **unsat** (bottom) polymers

![Graph showing MWD of product and unsat polymers]

- **Important remarks**
 - Near *Poisson* distribution for the **product** polymers
 - Flat distribution for the **unsat** polymers

Yisu Nie (Carnegie Mellon University)
Case Study Results

Optimal product polymer property profiles

- Unsat number, functionality, HEW, and OH number

![Graphs showing Unsat number, functionality, HEW, and OH number evolution over time.]

- Important remarks
 - All widely used property indexes
 - All in proper ranges at final time
Conclusions and acknowledgments

Project timeline

- Nov. 2009 - Dec. 2011
 - Proof-of-concept: integration of scheduling and dynamic optimization

 - Application at Dow: polyether polyols
 - First-principle reactor model development
 - Optimization case study: 3000-MW product of PO and glycerol

 - Polyol process: reactor model development con’t
 - VLE model and reactor pressure calculations
 - Model calibration against plant data
 - Copolymerization of EO and PO and multi-step products
 - Optimization case study: polypropylene glycol
 - Recipe design pattern change

 - Modeling and optimization of copolymers, multi-step products
 - Simultaneous scheduling and dynamic optimization
 - Multiple reactors and possible incorporation of finishing trains
 - Real-time constraints on shared resources
 - Methodology generalization and further extensions
Conclusions and acknowledgments

Project timeline

- **Nov. 2009 - Dec. 2011**
 - Proof-of-concept: integration of scheduling and dynamic optimization

- **Jan. 2012 - May. 2012**
 - Application at Dow: polyether polyols
 - First-principle reactor model development
 - Optimization case study: 3000-MW product of PO and glycerol

 - Polyol process: reactor model development con’t
 - VLE model and reactor pressure calculations
 - Model calibration against plant data
 - Copolymerization of EO and PO and multi-step products
 - Optimization case study: polypropylene glycol
 - Recipe design pattern change

- **Sep. 2012 - Dec. 2013**
 - Modeling and optimization of copolymers, multi-step products
 - Simultaneous scheduling and dynamic optimization
 - Multiple reactors and possible incorporation of finishing trains
 - Real-time constraints on shared resources
 - Methodology generalization and further extensions

Thank you

I am glad to take any questions
The nullspace projection method

A generic reaction system with irreversible and equilibrium reactions

\[\dot{x} = [A_1 \quad A_2] \begin{bmatrix} r_1(x) \\ \sigma r_2(x) \end{bmatrix} + g(t) \]

Multiplying with a non-singular matrix \([Y^T \quad Z^T]^T (Z^T A_2 = 0)\)

\[
\begin{bmatrix} Y_a^T \\ Y_b^T \\ Z^T \end{bmatrix} \dot{x} = \begin{bmatrix} Y_a^T \\ Y_b^T \\ Z^T \end{bmatrix} A_1 r_1(x) + \begin{bmatrix} 0 \\ \sigma f(x) \\ 0 \end{bmatrix} + \begin{bmatrix} Y_a^T \\ Y_b^T \\ Z^T \end{bmatrix} g(t)
\]

Stable solution needs \(f(x) = 0\), when \(\sigma \to \infty\)

Reformulated system

\[
Y_a^T \dot{x} = Y_a^T A_1 r_1(x) + Y_a^T g(t) \\
f(x) = 0 \\
Z^T \dot{x} = Z^T A_1 r_1(x) + Z^T g(t)
\]
A toy example

- **Reaction system** $A \xrightarrow{k_1} B \xrightleftharpoons[k_3]{k_2} C$

- **Mass balance equations**
 \[
 \dot{a} = -k_1 a \quad a(0) = a_0 \\
 \dot{b} = k_1 a - k_2 b + k_3 c \quad b(0) = 0 \\
 \dot{c} = k_2 b - k_3 c \quad c(0) = 0
 \]

- **Analytical solution**
 \[
 K_e = \frac{k_3}{k_2} = 2 \quad \frac{k_2}{k_1} = 2
 \]

\[\text{Graph of } a(t), b(t), c(t)\]
A toy example

- Reformulation matrix
 \[Y^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad Z^T = [0 \ 1 \ 1] \]

- Reformulated system
 \[
 \begin{align*}
 \dot{a} &= -k_1 a \\
 \dot{b} &= k_1 a - k_2 b + k_3 c \\
 \dot{c} &= k_2 b - k_3 c
 \end{align*} \quad \implies \quad \begin{align*}
 \dot{s} &= k_1 a \\
 s &= b + c \\
 k_2 b &= k_3 c
 \end{align*}
 \]

- Analytical solution
 \[
 K_e = \frac{k_3}{k_2} = 2 \quad \frac{k_2}{k_1} = 2
 \]
Backup Slides

The nullspace projection method

A toy example

- Reformulation matrix
 \[Y^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad Z^T = [0 \quad 1 \quad 1] \]

- Reformulated system
 \[
 \begin{align*}
 \dot{a} &= -k_1 a \\
 \dot{b} &= k_1 a - k_2 b + k_3 c \\
 \dot{c} &= k_2 b - k_3 c \\
 \end{align*}
 \]

- Analytical solution
 \[
 \begin{align*}
 \dot{a} &= -k_1 a & a(0) &= a_0 \\
 \dot{s} &= k_1 a & s(0) &= 0 \\
 s &= b + c & k_2 b &= k_3 c \\
 \end{align*}
 \]

\[
K_e = \frac{k_3}{k_2} = 2 \quad \frac{k_2}{k_1} = 20
\]
Process constraint profiles

- **Adiabatic end temp. (top) and hxn. duty (bottom)**

![Graphs showing adiabatic end temperature and heat removal over normalized time]

- **Important remarks**
 - Heat exchanger capacity is the main constraining factor
 - The adiabatic end temperature constraint is also limiting process performance