
RC23862 (W0602-029) February 2, 2006
Mathematics

IBM Research Report

A Feasibility Pump for Mixed Integer Nonlinear Programs

Pierre Bonami, Gérard Cornuéjols, Andrea Lodi*, François Margot
Tepper School of Business
Carnegie Mellon University

Pittsburgh, PA

*DEIS
University of Bologna
viale Risorgimento 2
40136 Bologna, Italy

(Part of this research was carried out when Andrea Lodi was Herman Goldstine Fellow of the IBM T. J. Watson Research Center)

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Pierre Bonami � Gérard Cornuéjols
Andrea Lodi � François Margot

A Feasibility Pump for Mixed Integer
Nonlinear Programs

Abstract We present an algorithm for finding a feasible solution to a convex
mixed integer nonlinear program. This algorithm, called Feasibility Pump, alter-
nates between solving nonlinear programs and mixed integer linear programs. We
also discuss how the algorithm can be iterated so as to improve the first solution it
finds, as well as its integration within an outer approximation scheme. We report
computational results.

1 Introduction

Finding a good feasible solution to a Mixed Integer Linear Program (MILP) can
be difficult, and sometimes just finding a feasible solution is an issue. Fischetti,
Glover and Lodi [6] developed a heuristic for the latter which they called Feasi-
bility Pump. Here we propose a heuristic for finding a feasible solution for Mixed
Integer NonLinear Programs

P. Bonami
Tepper School of Business, Carnegie Mellon University, Pittsburgh PA 15213, USA. Supported
in part by a grant from IBM. E-mail: pbonami@andrew.cmu.edu

G. Cornuéjols
Tepper School of Business, Carnegie Mellon University, Pittsburgh PA 15213, USA; and LIF,
Faculté des Sciences de Luminy, 13288 Marseille, France. Supported in part by NSF grant DMI-
0352885 and ONR grant N00014-03-1-0188. E-mail: gc0v@andrew.cmu.edu

A. Lodi
DEIS, University of Bologna, viale Risorgimento 2, 40136 Bologna, Italy. Part of this research
was carried out when Andrea Lodi was Herman Goldstine Fellow of the IBM T.J. Watson Re-
search Center whose support is gratefully acknowledged. E-mail: alodi@deis.unibo.it

F. Margot
Tepper School of Business, Carnegie Mellon University, Pittsburgh PA 15213, USA. Sup-
ported in part by a grant from IBM and by ONR grant N00014-03-1-0188. E-mail: fmar-
got@andrew.cmu.edu

2 Pierre Bonami et al.

�
MINLP �

������� ������

min f
�
x � y �

s � t � :
g
�
x � y �	� b

x
�� n1

y
� n2

where f is a function from n1 � n2 to and g is a function from n1 � n2

to m . If a variable is nonnegative, the corresponding inequality is part of the
constraints g

�
x � y ��� b. In this paper, all functions are assumed to be differentiable

everywhere.
For MILP (when both f and g are linear functions), the basic principle of the

Feasibility Pump consists in generating a sequence of points
�
x0 � y0 ����������� � xk � yk �

that satisfy the continuous relaxation. Associated with the sequence
�
x0 � y0 ������������

xk � yk � of integer infeasible points is a sequence
�
x̂1 � ŷ1 ����������� � x̂k � 1 � ŷk � 1 � of points

which are integer feasible but do not necessarily satisfy the other constraints of the
problem. Specifically, each x̂i � 1 is the componentwise rounding of xi and ŷi � 1 � yi.
The sequence

�
xi � yi � is generated by solving a linear program whose objective

function is to minimize the distance of x to x̂i according to the L1 norm. The two
sequences have the property that at each iteration the distance between xi and x̂i � 1

is nonincreasing. This basic procedure may cycle and Fischetti, Glover and Lodi
use randomization to restart the procedure.

For MINLP, we construct two sequences
�
x0 � y0 ����������� � xk � yk � and

�
x̂1 � ŷ1 ������������

x̂k � 1 � ŷk � 1 � with the following properties. The points
�
xi � yi � in the first sequence

satisfy g
�
xi � yi ��� b but xi �
�� n1. The points

�
x̂i � ŷi � in the second sequence do not

satisfy g
�
x̂i � ŷi �	� b but they satisfy x̂i
�� n1. The sequence

�
xi � yi � is generated by

solving nonlinear programs (NLP) and the sequence
�
x̂i � ŷi � is generated by solving

MILPs. We call this procedure Feasibility Pump for MINLP and we present two
versions, a basic version and an enhanced version, which we denote basic FP and
enhanced FP respectively. Unlike the procedure of Fischetti, Glover and Lodi,
the enhanced FP cannot cycle and it is finite when all the integer variables are
bounded. The Feasibility Pump for MINLP is a heuristic in general, but when the
region S : ��� � x � y ��
� n1 � n2 : g

�
x � y � � b ! is convex, the enhanced version is an

exact algorithm: either it finds a feasible solution or it proves that none exists.
The paper is organized as follows. In Section 2 we outline two versions of

the Feasibility Pump for MINLP assuming that the functions g j are convex. We
present the basic version of our algorithm as well as an enhanced version. In Sec-
tion 3, we present the enhanced FP in the more general case where the region
g
�
x � y �"� b is convex. In Section 4, we study the convergence of these algorithms.

When constraint qualification holds, we show that the basic Feasibility Pump can-
not cycle. When constraint qualification does not hold, we give an example show-
ing that the basic FP can cycle. On the other hand, we prove that the enhanced
version never cycles. It follows that, when the region g

�
x � y �#� b is convex and the

integer variables x are bounded, the enhanced FP either finds a feasible solution
or proves that none exists. In Section 5, we present computational results showing
the effectiveness of the method. In Section 6, we discuss how the algorithm can
be iterated so as to improve the first solution it finds and we report computational
experiments for such an iterated Feasibility Pump algorithm. Finally, in Section 7,

A Feasibility Pump for Mixed Integer Nonlinear Programs 3

we discuss the integration of the Feasibility Pump within the Outer Approximation
[4] approach and we report computational results.

2 Feasibility Pump When the Functions g j Are Convex

In this section, we consider the case where each of the functions g j is convex for
j � 1 ��������� m.

To construct the sequence
�
x̂1 � ŷ1 ����������� � x̂k � 1 � ŷk � 1 � , we use an Outer Approxi-

mation of the region g
�
x � y ��� b. This technique was first proposed by Duran and

Grossmann [4]. It linearizes the constraints of the continuous relaxation of MINLP
to build a mixed integer linear relaxation of MINLP.

Consider any feasible solution
�
x � y � of the continuous relaxation of MINLP.

By convexity of the functions g j, the constraints

g j
�
x � y ��� ∇g j

�
x � y � T ��� x

y ��� � x
y ��� � b j j � 1 ��������� m (1)

are valid for MINLP. Therefore, given any set of points � � x0 � y0 ����������� � xi � 1 � yi � 1 ��! ,
we can build a relaxation of the feasible set of MINLP����� ����

g
�
xk � yk ��� Jg

�
xk � yk � �	� x

y � � � xk

yk �	� � b
 k � 0 ��������� i � 1

x
�� n1

y
 n2

where Jg denotes the Jacobian matrix of function g. Our basic algorithm generates�
x̂i � ŷi � using this relaxation.

The basic Feasibility Pump. Initially, we choose
�
x0 � y0 � to be an optimal solu-

tion of the continuous relaxation of MINLP. More generally, when the objective
f
�
x � y � is not important, we could start from any feasible solution of this contin-

uous relaxation. Then, for i � 1, we start by finding a point
�
x̂i � ŷi � in the current

outer approximation of the constraints that solves

�
FOA � i

���������� ���������

min � x � xi � 1 � 1
s � t � :
g
�
xk � yk ��� Jg

�
xk � yk � ��� x

y ��� � xk

yk �	� � b
 k � 0 ��������� i � 1

x
�� n1

y
 n2 �
We then compute

�
xi � yi � by solving the NLP

4 Pierre Bonami et al.

�
FP � NLP � i

������� ������

min � x � x̂i � 2
s � t � :
g
�
x � y �	� b

x
 n1

y
 n2 �
The basic FP iterates between solving

�
FOA � i and

�
FP � NLP � i until either a

feasible solution of MINLP is found or
�
FOA � i becomes infeasible. See Figure 1

for an illustration of the Feasibility Pump.

0 1 2 x

y

g � x � y ��� b

� x̂2 � ŷ2 �

� x̂1 � ŷ1 �
� x1 � y1 �

� x2 � y2 �

� x0 � y0 �

Fig. 1 Illustration of the Feasibility Pump (both basic and enhanced). The tangent lines to the
feasible region represent outer approximation constraints (1) added in iterations 0 and 1.

The enhanced Feasibility Pump (case where the functions gi are convex). In
addition to the inequalities (1), other valid linear inequalities for MINLP may
improve the outer approximation. For example, at iteration k � 0, we have a point�
x̂k � ŷk � outside the convex region g

�
x � y � � b and a point

�
xk � yk � on its boundary

that minimizes � x � x̂k � 2. Then the inequality�
xk � x̂k � T � x � xk � � 0 (2)

is valid for MINLP. This is because the hyperplane that goes through xk and is or-
thogonal to the vector xk � x̂k is tangent at xk to the projection of the convex region

A Feasibility Pump for Mixed Integer Nonlinear Programs 5

g
�
x � y ��� b onto the x-space. Furthermore this hyperplane separates

�
x̂k � ŷk � from

the convex region g
�
x � y ��� b. Therefore, we can add constraint (2) to

�
FOA � i for

any i � k. We denote by
�
SFOA � i the resulting strengthening of the outer approx-

imation
�
FOA � i:

�
SFOA � i

������������ �����������

min � x � xi � 1 � 1
s � t � :
g
�
xk � yk ��� Jg

�
xk � yk � �	� x

y � � � xk

yk �	� � b
 k � 0 ��������� i � 1�
xk � x̂k � T � x � xk � � 0
 k � 1 ��������� i � 1

x
�� n1

y
 n2 �
Let

�
x̂i � ŷi � denote the solution found by solving

�
SFOA � i. The enhanced Feasi-

bility Pump for MINLP when the functions gi are convex iterates between solving�
SFOA � i and

�
FP � NLP � i until either a feasible solution of MINLP is found or�

SFOA � i becomes infeasible.

3 Feasibility Pump When the Region g
�
x � y �"� b is Convex

Let us now consider the case where the region g
�
x � y � � b is convex but some of

the functions defining it are nonconvex. Assume g j is nonconvex. Then, constraint
(1) may cut off part of the feasible region in general, unless

�
x � y � satisfies the

constraint g j
�
x � y � � b j with equality, namely g j

�
x � y � � b j , as proved in the next

lemma.

Lemma 1 Assume the region S � � z
 n : g
�
z �#� b ! is convex and let z �"
 S such

that g j
�
z ��� � b j. If g j is differentiable at z � , then

∇g j
�
z � � T � z � z � �	� 0

is valid for all z
 S.

Proof: Take any z
 S
� � z : g j

�
z � � b j ! with z �� z � . By convexity of S, we have

that, for any λ
�� 0 � 1 � , z � � λ
�
z � z � �
 S. As S

� � z : g j
�
z � � b j ! and g j

�
z ��� � b j,

we get

g j
�
z � � λ

�
z � z � ��� � g j

�
z � ��� 0 �

It follows that

lim
λ � 0 � g j

�
z � � λ

�
z � z ����� � g j

�
z � �

λ
� ∇g j

�
z � � T � z � z � �	� 0 � �

6 Pierre Bonami et al.

Lemma 1 shows that constraint (1) is valid for any point
�
x � y � when g j is convex,

and for those points
�
x � y � such that g j

�
x � y � � b j when g j is nonconvex. Therefore

for our most general version of the Feasibility Pump, we define the program
�
FP �

OA � i obtained from
�
SFOA � i by using only the following subset of constraints of

type (1)

g j
�
x � y ��� ∇g j

�
x � y � T ��� x

y ��� � x
y ��� � b j
 j
 I

�
x � y � (3)

where I
�
x � y � � � j : either g j is convex or g j

�
x � y � � b j ! � � 1 ��������� m ! . Thus the

program
�
FP � OA � i reads as follows:

�
FP � OA � i

��������������� ��������������

min � x � xi � 1 � 1
s � t � :
g j
�
xk � yk ��� ∇g j

�
xk � yk � T �	� x

y � � � xk

yk ��� � b j
 j
 I
�
xk � yk ���
 k � 0 ��������� i � 1�

xk � x̂k � T � x � xk � � 0
 k � 1 ��������� i � 1

x
�� n1

y
 n2 �
This way of defining the constraints of

�
FP � OA � i gives a valid outer approx-

imation of MINLP provided the region g
�
x � y �"� b is convex.

The enhanced Feasibility Pump (case where the region g
�
x � y �	� b is con-

vex). The algorithm starts with a feasible solution
�
x̄0 � ȳ0 � of the continuous relax-

ation of MINLP and then iterates between solving
�
FP � OA � i and

�
FP � NLP � i

for i � 1 until either a feasible solution of MINLP is found or
�
FP � OA � i becomes

infeasible.
Note that in the case where the region g

�
x � y � � b is nonconvex, the method

can still be applied, but the outer approximation constraints (3) are not always
valid. This may result in the problem

�
FP � OA � i being infeasible and the method

failing while there exists some integer feasible solution to MINLP.

4 Convergence

Consider a point
�
x � y � such that g

�
x � y � � b. Let � � � 1 ��������� m ! be the set of

indices for which g j
�
x � y � � b j is satisfied with equality by

�
x � y � . The linear in-

dependence constraint qualification (constraint qualification for short) is said to
hold at

�
x � y � if the vectors ∇g j

�
x � y � for i
�� are linearly independent [5].

The next theorem shows that if the constraint qualification holds at each point�
xi � yi � , then the basic FP cannot cycle.

Theorem 1 In the basic FP, let
�
x̂i � ŷi � be an optimal solution of

�
FOA � i and�

xi � yi � an optimal solution of
�
FP � NLP � i. If the constraint qualification for�

FP � NLP � i holds at
�
xi � yi � , then xi �� xk for all k � 0 ��������� i � 1.

A Feasibility Pump for Mixed Integer Nonlinear Programs 7

Proof:
Suppose that xk � xi for some k � i � 1 (i.e.

�
xk � yk � is an optimal solution of�

FP � NLP � i).
Let h

�
x � � � x � x̂i � 2. By property of the norm, x̂i satisfies

∇h
�
xk � T � x̂i � xk � � � h

�
xk ��� 0 � (4)

as the equality is derived from h
�
x � ��� �

x � x̂i � T � x � x̂i � , implying ∇h
�
x � � x � x̂i

h � x � .
Now, as a minimizer of h

�
x � over g

�
x � y ��� b satisfying the constraint qualifi-

cation, the point (xk � yk � satisfies the KKT conditions�
∇h

�
xk � T � 0 � � � λJg

�
xk � yk � (5)

λ
�
g
�
xk � yk � � b � � 0 (6)

for some λ � 0. As a feasible solution of
�
FOA � i, � x̂i � ŷi � satisfies the outer-

approximation the constraints in
�
xk � yk � and therefore, since λ � 0 :

λg
�
xk � yk ��� λJg

�
xk � yk � ��� x̂i

ŷi � � � xk

yk ��� � λb �
Using (5) and (6), this implies that

∇h
�
xk � T � x̂i � xk � � 0

which contradicts (4) and proves Theorem 1. �
The proof of Theorem 1 shows that, when the constraint qualification holds,

constraint (2) is implied by the outer approximations constraints at
�
xk � yk � .

Note that Theorem 1 still holds if we replace the L2-norm by any Lp-norm in
the objective of

�
FP � NLP � i. Note also that if we replace the outer approximation

constraints in
�
FOA � i by constraints (3), Theorem 1 still holds when the region

g
�
x � y �"� b is convex.

Next we give an example showing that when the constraint qualification does
not hold the basic algorithm may cycle.

Example 1 Consider the following constraint set for a 3-variable MINLP:��������� ��������

�
y1 � 1

2
� 2 � �

y2 � 1
2
� 2 � 1

4
x � y1 � 0

y2 � 0

x
 � 0 � 1 !
y
 2 �

(7)

The first and third constraints imply that y2
� 0. Figure 2 illustrates the feasible

region of the continuous relaxation, namely the line segment joining the points�
0 � 1

2 � 0 � and
� 1

2 � 1
2 � 0 � .

8 Pierre Bonami et al.

y1

x

0

� 1 � 1 � 0 �

y2

1
2 1

1
2 � 1

2 � 1
2 � 0 �

Fig. 2 Illustration of Example 1.

Starting from the point
�
x̂ � ŷ1 � ŷ2 � � �

1 � 1 � 0 � , and solving
�
FP � NLP � , we get

the point
�
x � y1 � y2 � � � 1

2 � 1
2 � 0 � . The Jacobian of g and g

�
x � y1 � y2 � are given by

Jg
�
x � y1 � y2 � �

����
�

0 2y1 � 1 2y2 � 1
1 � 1 0
0 0 1
1 0 0� 1 0 0

�����
� � g

�
x � y1 � y2 � �

����
�

1
4
0
0
1
2� 1

2

�����
� �

Therefore the outer approximation constraints (1) for the point
�
x � y1 � y2 � are given

by ����
�

1
4
0
0
1
2� 1

2

� ���
� �

����
�

0 0 � 1
1 � 1 0
0 0 1
1 0 0� 1 0 0

� ���
�

�� x � 1
2

y1 � 1
2

y2

�� �
����
�

1
4
0
0
1
0

� ���
� �

Among these constraints, the last four are linear constraints already present in (7),
and after simplification the first one yields

y2 � 0 �
Since all these constraints are satisfied by

�
x̂ � ŷ1 � ŷ2 � � �

1 � 1 � 0 � , this point is a feasi-
ble solution of the FOA and it is easy to verify that it is indeed optimum. Therefore
we encounter a cycle. This happens since the constraint qualification does not hold
at the point

�
x � y1 � y2 � � � 1

2 � 1
2 � 0 � . (Indeed, the first and third rows of A Jg

�
x � y1 � y2 �

are linearly dependent.) �

In the next theorem, we consider the convergence of the enhanced Feasibility
Pump for MINLP. In particular we prove that it cannot cycle. This is a difference
with the Feasibility Pump of Fischetti, Glover and Lodi for MILP, where cycling
can occur.

A Feasibility Pump for Mixed Integer Nonlinear Programs 9

Theorem 2 The enhanced Feasibility Pump cannot cycle. If the integer variables
x are bounded, the enhanced FP terminates in a finite number of iterations. If, in
addition, the region g

�
x � y �"� b is convex, the enhanced FP is an exact algorithm:

either it finds a feasible solution of MINLP if one exists, or it proves that none
exists.

Proof: If for some k � 0,
�
x̄k � ȳk � is integer feasible, the Feasibility Pump ter-

minates. So we may assume that
�
x̄k � ȳk � is not integer feasible. Since

�
x̂k � ŷk � ���

xk � yk � , the point
�
x̂k � ŷk � does not satisfy constraint (2) and therefore x̂k cannot be

repeated when solving
�
FP � OA � i. Thus the enhanced Feasibility Pump cannot

cycle. If the integer variables x are bounded, the enhanced Feasibility Pump is a
finite algorithm, since there is only a finite number of possible different values for
x̂k. The last part of the theorem follows from the fact that

�
FP � OA � i is a valid

relaxation of MINLP when the region g
�
x � y �"� b is convex. �

Example 2 We run the enhanced Feasibility Pump starting from the point where
we were stuck with the basic algorithm in Example 1, namely

�
x1 � y1

1 � y1
2 � � � 1

2 � 1
2 � 0 � .

The corresponding inequality (2), namely x � 1
2 , is added to

�
FOA � 2. Solving the

resulting ILP
�
FP � OA � 2 yields

�
x̂2 � ŷ2

1 � ŷ2
2 � � �

0 � 0 � 0 � . Solving
�
FP � NLP � 2, we

get the point
�
x2 � y2

1 � y2
2 � � �

0 � 1
2 � 0 � , which is feasible for (7) and we stop. �

Note that, although x̂i cannot be repeated in the enhanced Feasibility Pump,
the point

�
xi � yi � could be repeated as shown by considering a slightly modified

version of Example 1.

Example 3 Change the second constraint in Example 1 to x � y1
� 0. Starting

from the point
�
x̂1 � ŷ1

1 � ŷ1
2 � � �

1 � 1 � 0 � , and solving
�
FP � NLP � 1, we get the point�

x1 � y1
1 � y1

2 � � � 1
2 � 1

2 � 0 � . As in Example 1, the constraint qualification does not hold
at this point. Here inequality (2) is x � 1

2 . We add this inequality to
�
FOA � 2 to

get
�
FP � OA � 2. Solving this integer program yields

�
x̂2 � ŷ2

1 � ŷ2
2 � � �

0 � 0 � 0 � . Solv-
ing

�
FP � NLP � 2, we get the point

�
x2 � y2

1 � y2
2 � � � 1

2 � 1
2 � 0 � , which is the same as�

x1 � y1
1 � y1

2 � . Although a point
�
x � y � is repeated, the enhanced Feasibility Pump

does not cycle. Indeed, now inequality (2) is x � 1
2 . Adding it to

�
FOA � 3 yields�

FP � OA � 3 which is infeasible. This proves that the starting MINLP is infeasible.�

5 Computational Results

The Feasibility Pump for MINLP has been implemented in the COIN infras-
tructure [2] using a new framework for MINLP [1]. Our implementation uses���������	��
�

to solve the nonlinear programs and � �������	��
� to solve the mixed in-
teger linear programs. All the tests were performed on an IBM IntellistationZ Pro
with an Intel Xeon 3.2GHz CPU, 2 gigabytes of RAM and running Linux Fedora
Core 3.

We tested the Feasibility Pump on a set of 66 convex MINLP instances gath-
ered from different sources, and featuring applications from operations research

10 Pierre Bonami et al.

and chemical engineering. Those instances are discussed in [1,8]. In these in-
stances, the objective function and all the functions g j are convex.

The basic Feasibility Pump never cycles on the instances in our test set. This
means that using the enhanced FP is not necessary for these instances. Therefore
all the results reported in this paper are obtained with the basic Feasibility Pump.

FP OA
Name previous best value time # iter value time # iter
BatchS101006M 769440* 786499 0 1 782384 1 1
BatchS121208M 1241125* 1364991 0 1 1243886 3 1
BatchS151208M 1543472* 1692878 0 1 1545222 3 1
BatchS201210M 2295349* 2401369 1 1 2311640 10 1
CLay0304M 40262.40* 59269.10 2 10 40262.40 25 14
CLay0304H 40262.40* 65209.10 0 10 40262.40 7 13
CLay0305M 8092.50* 9006.76 0 3 8278.46 35 2
CLay0305H 8092.50* 8646.44 0 2 8278.46 4 3
FLay04M 54.41* 54.41 0 1 54.41 0 1
FLay04H 54.41* 54.41 0 1 54.41 0 1
FLay05M 64.50* 64.50 0 1 64.50 2 1
FLay05H 64.50* 64.50 0 1 64.50 0 1
FLay06M 66.93* 66.93 2 1 66.93 41 1
FLay06H 66.93* 66.93 0 1 66.93 19 1
fo7 2 17.75 17.75 1 2 17.75 19 1
fo7 20.73 29.94 0 1 20.73 23 1
fo8 22.38 38.01 0 1 23.91 123 1
fo9 23.46 49.80 3 4 24.00 1916 1
o7 2 116.94 159.38 0 1 118.85 5650 4
o7 131.64 171.51 3 5 — � 7200 —
RSyn0830H -510.07* -509.49 1 1 -510.07 1 1
RSyn0830M -510.07* -491.53 0 1 -497.87 0 1
RSyn0830M02H -730.51* -727.22 0 1 -728.23 0 1
RSyn0830M02M -730.51* -663.55 0 1 -712.45 365 1
RSyn0830M03H -1543.06* -1538.02 1 1 -1535.46 1 1
RSyn0830M03M -1543.06* -981.98 0 1 -1532.09 442 1
RSyn0830M04H -2529.07* -2519.03 2 1 -2512.04 2 1
RSyn0830M04M -2529.07* -2436.44 1 1 -2502.39 2584 1
RSyn0840H -325.55* -317.50 0 1 -325.55 1 1
RSyn0840M -325.55* -321.42 0 1 -325.55 0 1
RSyn0840M02H -734.98* -732.31 0 1 -732.31 0 1
RSyn0840M02M -734.98* -599.57 0 1 -721.98 209 1
RSyn0840M03H -2742.65* -2719.53 1 1 -2732.53 1 1
RSyn0840M03M -2742.65* -2525.19 3 3 -2701.81 695 1
RSyn0840M04H -2564.50* -2538.83 2 1 -2544.04 2 1
RSyn0840M04M -2563.50* -2478.67 5 3 -2488.87 7200 1

Table 1 FP vs. first solution found by OA (on the first 36 instances of the test set). Column
labeled “previous best” gives the best known solution obtained using �������	��
 and �	� and ”*”
indicates that the value is known to be optimal; columns labeled “value” report the objective
value of the solution found, where “ � ” indicates that no solution is found; columns labeled
“time” show the CPU time in seconds rounded to the closest integer (with a maximum of 2
hours of CPU time allowed); columns labeled “# iter” give the number of iterations.

In order to guarantee convergence to an optimal solution in Theorems 1 and 2
it is important to find an optimum solution

�
x̄i � ȳi � of

�
FP � NLP � i. On the other

hand, it is not necessary to obtain an optimum solution of
�
FP � OA � i. In our

A Feasibility Pump for Mixed Integer Nonlinear Programs 11

FP OA
Name previous best value time # iter value time # iter
SLay07H 64749* 66223 0 1 69509 0 1
SLay07M 64749* 65254 0 1 65287 0 1
SLay08H 84960* 93425 0 1 115041 0 1
SLay08M 84960* 91849 0 1 91849 0 1
SLay09H 107806* 120858 0 1 115989 0 1
SLay09M 107806* 115881 0 1 117250 0 1
SLay10H 129580* 156882 0 1 156490 2 1
SLay10M 129580* 136402 0 1 163371 0 1
Syn30H -138.16* -111.86 0 1 -111.86 0 1
Syn30M -138.16* -125.19 0 1 -125.19 0 1
Syn30M02H -399.68* -387.37 0 1 -387.37 0 1
Syn30M02M -399.68* -386.25 0 1 -386.25 0 1
Syn30M03H -654.15* -641.84 0 1 -641.84 0 1
Syn30M03M -654.15* -646.05 0 1 -646.05 1 1
Syn30M04H -865.72* -818.12 0 1 -818.12 0 1
Syn30M04M -865.72* -825.75 0 1 -856.05 2 1
Syn40H -67.71* -61.19 0 1 -61.19 0 1
Syn40M -67.71* -55.71 0 1 -55.71 0 1
Syn40M02H -388.77* -387.04 0 1 -388.77 0 1
Syn40M02M -388.77* -371.48 0 1 -376.48 1 1
Syn40M03H -395.15* -318.64 4 1 -318.64 0 1
Syn40M03M -395.15* -331.69 0 1 -354.69 14 1
Syn40M04H -901.75* -827.71 0 1 -837.71 0 1
Syn40M04M -901.75* -765.20 0 1 -805.70 17 1
trimloss2 5.3* 5.3 0 3 5.3 0 6
trimloss4 8.3* 11.7 1 11 8.3 893 72
trimloss5 — 13.0 12 23 — � 7200 —
trimloss6 — 16.7 14 24 — � 7200 —
trimloss7 — 23.2 553 111 — � 7200 —
trimloss12 — 221.7 4523 243 — � 7200 —

Table 2 FP vs. first solution found by OA (on the remaining 30 instances). Table 2 is the con-
tinuation of Table 1. Symbol ”*” indicates that the value is known to be optimal, “ � ” indicates
that no solution is found.

implementation of the Feasibility Pump, we do not insist on solving the MILP�
FP � OA � i to optimality. Once a feasible solution has been found and has not

been improved for 5000 nodes of the � ��� ��� branch-and-cut algorithm, we use
this solution as our point

�
x̂i � ŷi � . This reduces the amount of time spent solving

MILPs and it improves the overall computing time of the Feasibility Pump.
In a first experiment, we compare the solution obtained with the Feasibility

Pump to the first solution obtained by the Outer Approximation algorithm (OA for
short) as implemented in [1] and using � �������	��
� and

����� � �	��
�
as subsolvers.

Tables 1 and 2 summarize this comparison.
The following comments can be made about the results of tables 1 and 2. The

Feasibility Pump finds a feasible solution in less than a second in most cases.
Overall, FP is much faster than OA. Although on the ������� instances both FP
and OA require several iterations to find a feasible solution, FP is roughly ten
times faster. The � � ,

�
and

���
	�� � ���
instances are particularly challenging for

OA, which fails to find a feasible solution within the 2-hour time limit for 5 of
these 12 instances. By contrast, FP finds a feasible solution to each of them. The
cases of

����	�� �������
,
����	�� � �����

,
���
	�� � �����

and
���
	�� � �������

are noteworthy

12 Pierre Bonami et al.

since no feasible solution was known prior to this work. The column “previous
best” contains the best known solution from � 	�� � ��� [3] and ����� [9]. � 	�� � � � is
an MINLP solver based on the outer approximation technique whereas ����� is a
solver based on branch-and-bound.

6 Iterating the Feasibility Pump for MINLP

In the next two sections, we assume that we have a convex MINLP, that is we as-
sume that both the region g

�
x � y ��� b and the objective function f are convex. This

section investigates the heuristic obtained by iterating the FP, i.e. calling several
time in a row FP, each time trying to find a solution strictly better than the last
solution found.

More precisely, to take into account the cost function f
�
x � y � of MINLP, we add

to
�
FOA � i a new variable α and the constraint f

�
x � y �#� α . Initially, the variable α

is unbounded. Each time a new feasible solution with value zU to MINLP is found,
the upper bound on α is decreased to zU � δ for some small δ � 0. As a result,
the current best known feasible solution becomes infeasible and it is possible to
restart FP from the optimal solution of the relaxation of MINLP. Note that (1) is
used to generate outer approximations of the convex constraint f

�
x � y � � α .

If executed long enough, this algorithm will ultimately find the optimal solu-
tion of MINLP and prove its optimality by application of Theorem 2 under the
assumption that the integer variables are bounded and δ is small enough. Here,
we do not use it as an exact algorithm but instead we just run it for a limited time.
We call this heuristic Iterated Feasibility Pump for MINLP (or IFP for short).

Table 3 compares the best solutions found by iterated FP and by OA with a
time limit of 1 minute of CPU time. In our experiments, we use δ � 10 � 4.

The following comments can be made about the results of Table 3. IFP pro-
duces good feasible solutions for all but 2 of the instances within the 1-minute
time limit, whereas OA fails to find a feasible solution for 15 of the instances.
In terms of the quality of solutions found, OA finds a strictly better solution than
IFP in 9 cases while IFP is the winner in 20 cases. OA can prove optimality of its
solution in 36 instances and IFP in 30 instances.

7 Application to Outer Approximation Decomposition

We now present a new variation of the Outer Approximation Decomposition al-
gorithm of Duran and Grossmann [4] which integrates the Feasibility Pump algo-
rithm. Duran and Grossmann assume that all the functions are convex and that the
constraint qualification holds at all optimal points. Our variation of outer approx-
imation does not need the assumption that all functions are convex, provided that
the region g

�
x � y �"� b is a convex set and that f

�
x � y � is convex.

In this algorithm we alternate between solving four different problems. The
first one is a linear outer approximation of MINLP with the original convex ob-

A Feasibility Pump for Mixed Integer Nonlinear Programs 13

IFP OA IFP OA
Name value value Name value value
BatchS101006M 769440 * 769440 * SLay07H 64749 * 64749 *
BatchS121208M 1241125 * 1241125 * SLay07M 64749 * 64749 *
BatchS151208M 1543472 * 1543472 * SLay08H 84960 * 84960 *
BatchS201210M 2297282 2295349 SLay08M 84960 * 84960 *
CLay0304H 40791.00 40262.40 * SLay09H 107983 108910
CLay0304M 41359.60 40262.40 * SLay09M 107806 108125
CLay0305H 8092.50 * 8092.50 * SLay10H 132562 136401
CLay0305M 8092.50 * 8278.46 SLay10M 129814 130447
FLay04H 54.41 * 54.41 * Syn30H -138.16 * -138.16 *
FLay04M 54.41 * 54.41 * Syn30M -138.16 * -138.16 *
FLay05H 64.50 64.50 Syn30M02H -399.68 * -399.68 *
FLay05M 64.50 64.50 Syn30M02M -399.68 * -399.68 *
FLay06H 66.93 66.93 Syn30M03H -654.15 * -654.16 *
FLay06M 66.93 66.93 Syn30M03M -654.15 * -654.15 *
fo7 2 17.75 * 17.75 Syn30M04H -865.72 * -865.72 *
fo7 20.73 20.73 Syn30M04M -865.72 * -865.72
fo8 22.38 — Syn40H -67.71 * -67.71 *
fo9 28.95 — Syn40M -67.71 * -67.71 *
o7 2 124.83 — Syn40M02H -388.77 * -388.77 *
o7 139.87 — Syn40M02M -388.77 * -388.77 *
RSyn0830H -510.07 * -510.07 * Syn40M03H -395.15 * -395.15 *
RSyn0830M -510.07 * -510.07 * Syn40M03M -395.06 -395.15
RSyn0830M02H -730.51 -730.51 * Syn40M04H -827.71 -901.75 *
RSyn0830M02M -730.51 — Syn40M04M -864.76 -901.75
RSyn0830M03H -1541.84 -1543.06 * trimloss2 5.3 * 5.3 *
RSyn0830M03M -1543.06 — trimloss4 8.3 —
RSyn0830M04H -2527.86 -2529.07 * trimloss5 11.8 —
RSyn0830M04M -2520.88 — trimloss6 16.7 —
RSyn0840H -325.55 * -325.55 * trimloss7 — —
RSyn0840M -325.55 * -325.55 * trimloss12 — —
RSyn0840M02H -734.98 -734.98 *
RSyn0840M02M -734.98 —
RSyn0840M03H -2742.65 -2742.65 *
RSyn0840M03M -2741.65 —
RSyn0840M04H -2561.37 -2564.50 *
RSyn0840M04M -2499.29 —

Table 3 IFP vs. OA (at most 1 minute of CPU time). Columns labeled “value” report the
objective value of the solution found; symbol “*” denotes proven optimality and “ � ” indicates
that no solution is found.

jective function f
�
x � y � being linearized as well:

�
OA � i

������������������� ������������������

minα
s � t � :
∇ f

�
xk � yk � T � x � xk

y � yk � � α � � f
�
xk � yk �

k � 0 ��������� i � 1

∇g j
�
xk � yk � T � x � xk

y � yk � � b j � g j
�
xk � yk �

 j
 I
�
xk � yk ��� k � 0 ��������� i � 1�

xk � x̂k � T � x � xk � � 0
 k
 K

x
�� n1 � y
 n2 � α

14 Pierre Bonami et al.

where I
�
x � y � � � j : either g j is convex or g j

�
x � y � � b j ! as defined in Section 3 and

K
� � 1 ��� � � � i � 1 ! is the subset of iterations where

�
xk � yk � is obtained by solving�

FP � NLP � k and xk �� x̂k. Note that
�
OA � i is an MILP.

The second problem is MINLP with x fixed:

�
NLP � i

����� ����
min f

�
x̂i � y �

s � t � :
g
�
x̂i � y �	� b

y
 n2 �
Note that

�
NLP � i is a nonlinear program.

The third one is
�
FP � NLP � i as defined in Section 2. Recall that this is a nonlinear

program.
The fourth one is the following MILP which looks for a better solution than the
best found so far:

�
FP � OA � i

�������������������� �������������������

min � x � xi � 1 � 1
s � t � :
∇ f

�
xk � yk � T � x � xk

y � yk � � � f
�
xk � yk ��� zU � δ

k � 0 ��������� i � 1

∇g j
�
xk � yk � T � x � xk

y � yk � � b j � g j
�
xk � yk �

 j
 I
�
xk � yk ��� k � 0 ��������� i � 1�

xk � x̂k � T � x � xk � � 0
 k
 K

x
 � n1 � y
� n2

where zU is the current upper bound on the value of MINLP and δ � 0 is a small
value indicating the desired improvement in objective function value. As in

�
OA � k,

K denotes the subset of iterations where
�
xk � yk � is obtained by solving

�
FP �

NLP � k and xk �� x̂k.
The overall algorithm is given in Figure 3. A cursory description of its steps is

as follows: Initially, we solve the continuous relaxation of MINLP to optimality to
obtain a starting point

�
x0 � y0 � . Then, we compute the optimum

�
x̂1 � ŷ1 � of

�
OA � 1

where K � /0. Similarly, at subsequent iterations, we obtain
�
x̂i � ŷi � and a lower

bound α̂ i on the value of MINLP by solving
�
OA � i. We then solve

�
NLP � i with x

fixed at x̂i. If
�
NLP � i is feasible, then

�
xi � yi � given by xi � x̂i and yi is the optimal

solution of
�
NLP � i. Moreover, f

�
xi � yi � is an upper bound on the optimal solution

of MINLP. Otherwise,
�
NLP � i is infeasible and we perform at least one iteration of

the Feasibility Pump. More precisely, FP starts by solving
�
FP � NLP � i, obtaining

the point
�
xi � yi � . Then

�
x̂i � 1 � ŷi � 1 � is obtained by solving

�
FP � OA � i � 1. Additional

iterations of the Feasibility Pump are possibly performed, solving alternatively�
FP � NLP � and

�
FP � OA � until either a better feasible solution of MINLP is

found, or a proof is obtained that no such solution exists, or some iteration or
time limit is reached (five iterations and at most two minutes CPU time are used
in the experiments). If no better feasible solution of MINLP exists, the algorithm

A Feasibility Pump for Mixed Integer Nonlinear Programs 15

terminates. In the other two cases, a sequence of points
�
xk � yk � is generated for

k � i ��������� l � 1. In the case where a better feasible solution
�
xl � 1 � yl � 1 � is found by�

FP � NLP � l � 1, i.e.
�
FP � NLP � l � 1 has objective value zero, we solve

�
NLP � l � 1

to check whether there exists a better solution than
�
xl � 1 � yl � 1 � with respect to the

original objective function f . If we find such an improved solution we replace yl � 1

by this solution. In both cases, the algorithm reverts to solving
�
OA � l with all the

outer approximation constraints generated for the points � � xi � yi ����������� � xl � 1 � yl � 1 ��! .
The algorithm continues iterating between the four problems as described above.
The algorithm terminates when the lower bound given by

�
OA � and the best upper

bound found are equal within a specified tolerance ε .

zU : � � ∞;
zL : � � ∞;�
x0 � y0 � : � optimal solution of the continuous relaxation of MINLP;

K : � /0;
i : � 1;
Choose convergence parameters ε and δ
while zU � zL � ε do

Let
�
α̂ i � x̂i � ŷi � be the optimal solution of

�
OA � i;

zL : � α̂ i;
if
�
NLP � i is feasible;

then
Let xi : � x̂ and yi be the optimal solution to

�
NLP � i;

zU : � min
�
zU � f � xi � yi ��� ;

i : � i
�

1;
else

Let
�
xi � yi � be the optimal solution of

�
FP � NLP � i ;

l : � i
�

1
while xl � 1 �� x̂l � 1 � l 	 i

�
5 �

time in this FP
 2 minutes do
if
�
FP � OA � l is feasible

then
Let

�
x̂l � ŷl � be the optimal solution of

�
FP � OA � l ;

Let
�
xl � yl � be the optimal solution of

�
FP � NLP � l ;

if xl � x̂l

then
replace yl by the optimal solution of

�
NLP � l ;

zU : � min
�
zU � f � xl � yl ��� ;

else
K : � K �� l � ;

fi
l : � l

�
1;

else zU is optimal, exit;
fi

od
i : � l

fi
od

Fig. 3 Enhanced Outer Approximation algorithm.

16 Pierre Bonami et al.

The integration of Feasibility Pump into the Outer Approximation algorithm
enhances the behavior of OA for instances with convex feasible sets defined by
nonconvex constraints. This is shown by the following example (see also Figure
4).

Example 4 �������������� �������������

min � y

s � t � :
y � sin

�
5π
3

x � � 0

� y � sin

�
5π
3

x � � 0

x
 � 0 � 1 !
y
 �

Although the constraints of the above problem are nonconvex, the feasible region

Fig. 4 Illustration of Example 4.

of the continuous relaxation is convex. Solving the continuous relaxation gives the
point

�
x0 � y0 � � �

0 � 3 � 1 � . The first outer approximation problem, namely
�
OA � 1 �

max � y : y � 1 � x
 � 0 � 1 ! ! , has solution
�
x̂1 � ŷ1 � � �

1 � 1 � . At this point, the classical
OA tries to minimize the violation of the constraints over the line x � 1 selecting
the point

�
1 � 0 � . Then it adds the following two constraints

� 5π
6

x � y � � 5π
6 � �

3
2

and � 5π
6

x � y � � 5π
6 � �

3
2

which make the corresponding MILP infeasible. This occurs because the point�
1 � 0 � is taken outside of the feasible region of the continuous relaxation and, since

the constraints are not defined by convex functions, generating the supporting hy-
perplanes at this point induces invalid constraints. On the other hand, the OA en-
hanced by FP � NLP warm starting from

�
x̂1 � ŷ1 � solves

�
FP � NLP � 1 finding the

closest NLP feasible point
�
x1 � y1 � � �

0 � 6 � 0 � to x̂1 in L2-norm. Starting from such a
point

�
FP � OA � 2 converges to

�
x̂2 � ŷ2 � � �

0 � 0 � which is integer and NLP feasible
(as proved by the next FP � NLP iteration). �

A Feasibility Pump for Mixed Integer Nonlinear Programs 17

The behavior outlined by the previous example is generalized by the following
theorem.

Theorem 3 Consider an MINLP with convex objective function and convex re-
gion g

�
x � y �	� b. Assume that the integer variables are bounded. If the constraint

qualification holds at every optimal solution of
�
NLP � i, the modified version of OA

converges to an optimal solution or proves that none exists even when the convex
region g

�
x � y �"� b is defined by nonconvex constraints.

Proof: If x̂i �� x̂k for all i � k with i �� k then the algorithm terminates in a finite
number of iterations since the integer variables are bounded. Furthermore the al-
gorithm finds an optimum solution of MINLP or proves that none exists since the
constraints of

�
OA � i and

�
FP � OA � i are valid outer approximations of MINLP.

Now suppose that
�
x̂i � ŷi � satisfies x̂i � x̂k for some k � i. We consider two

cases. First suppose that x̂k was obtained by solving
�
OA � k. Then we claim that�

NLP � k is feasible, for suppose not. Then the algorithm calls the Feasibility Pump.
Since

�
NLP � k is infeasible, the first iteration of FP finds a point xk �� x̂k. Therefore,

k
 K and constraint
�
xk � x̂k � T � x � x̂k � � 0 has been added. This implies that x̂k

can never be repeated, a contradiction. This proves the claim. Second, suppose that
x̂k was obtained by solving

�
FP � OA � k. Then xk is obtained by solving

�
FP �

NLP � k. If xk �� x̂k then, by the argument used above, x̂k cannot be repeated, a
contradiction. Therefore xk � x̂k which implies that

�
NLP � k is feasible. Thus in

both cases
�
NLP � k is feasible, xk � x̂k and yk is the optimum solution of

�
NLP � k.

Since yk is optimal for
�
NLP � k and the constraint qualification holds, yk satis-

fies the KKT conditions:

∇y f
�
xk � yk � � � m

∑
j � 1

λ j∇yg j
�
xk � yk �

λ j

�
g j
�
xk � yk � � b j � � 0
 j � 1 ��������� m

λ � 0

where ∇yg j denotes the gradient of g j with respect to the y variables.
Since i � k and

�
x̂i � ŷi � is feasible for

�
OA � i or

�
FP � OA � i the following outer

approximation constraints are satisfied by
�
x̂i � ŷi � :

∇g j
�
xk � yk � T � x̂i � xk

ŷi � yk � � b j � g j
�
xk � yk �
 j
 I

�
xk � yk ���

Since x̂i � xk we have

∇yg j
�
xk � yk � T �

ŷi � yk � � b j � g j
�
xk � yk �
 j
 I

�
xk � yk ���

Using the above KKT conditions, this implies that

∇y f
�
xk � yk � T �

ŷi � yk � � 0 � (8)

There are now two possible cases. First, if
�
x̂i � ŷi � is a solution of

�
OA � i, it satisfies

the inequality

∇ f
�
xk � yk � T � 0

ŷi � yk � � α̂ i � � f
�
xk � yk ���

18 Pierre Bonami et al.

Then equation (8) implies that α i � f
�
xk � yk � showing that

�
xk � yk � is an optimum

solution, and therefore the algorithm terminates with the correct answer.
In the second case,

�
x̂i � ŷi � is a solution of

�
FP � OA � i. Then it satisfies

∇ f
�
xk � yk � T � 0

ŷi � yk � � � f
�
xk � yk ��� zU � δ

and equation (8) implies that zU � δ � f
�
xk � yk � . This is a contradiction to the facts

that
�
xk � yk � is feasible to MINLP and that zU is the best known upper bound. �

Computational experiments. In Table 4 we report computational results com-
paring the OA with the enhanced OA coupled with FP (OA+FP). The latter is
implemented as a modification of the OA algorithm implemented in [1], which is
used as the OA code. Our procedure is set as follows. We start by performing one
minute of iterated Feasibility Pump in order to find a good solution. We then start
the enhanced OA algorithm. Since the primary goal of the FP in the enhanced OA
is to quickly find improved feasible solutions, we put a limit of two minutes and
five iterations for each call to the FP inside the enhanced OA.

OA+FP OA
Name ub tub lb tlb ub tub lb tlb
CLay0304M 40262.4 79 * 82 40262.4 12 * 14
CLay0305H 8092.5 4 * 32 8092.5 24 * 24
CLay0305M 8092.5 4 * 24 8092.5 75 * 75
fo7 2 17.75 4 * 103 17.75 20 * 128
fo7 20.73 260 * 260 20.73 24 * 197
fo8 22.38 573 * 835 22.38 727 * 906
fo9 23.46 1160 * 2613 23.46 5235 * 6024
o7 2 116.94 189 * 2312 118.86 5651 114.08 7200
o7 131.64 5 * 6055 — — 122.79 7200
RSyn0830M02M -730.51 12 * 178 -730.51 3837 * 5272
RSyn0830M03M -1543.06 52 * 1018 -1538.91 5933 -1548.46 7200
RSyn0830M04M -2520.88 46 -3067.54 7200 -2502.39 5697 -3216.91 7200
RSyn0840M02M -734.98 1383 * 1383 -734.98 1846 * 1846
RSyn0840M03M -2742.65 3418 * 3418 -2734.53 7200 -2789.93 7200
RSyn0840M04M -2556.60 42 -2638.63 7200 -2488.87 7200 -3599.77 7200
SLay10M 129580 1778 * 3421 129580 336 128531 7200
trimloss4 8.3 10 * 423 8.3 785 * 785
trimloss5 10.7 485 3.3 7200 — — 5.9 7200
trimloss6 16.5 2040 3.5 7200 — — 6.5 7200
trimloss7 27.5 387 2.6 7200 — — 3.3 7200
trimloss12 — — 5.4 7200 — — 9.6 7200

Table 4 Comparison between OA and its enhanced version on a subset of difficult instances.
Columns labeled “ub” and “lb” report the upper and lower bound values; columns labeled “tub”
and “tlb” give the CPU time in seconds for obtaining those upper and lower bounds; symbol “*”
denotes proven optimality and “ � ” indicates that no solution is found.

The results of Table 4 show that OA+FP can solve 15 instances whereas the
classical OA algorithm solves only 10 within the 2-hour time limit. Furthermore,
OA+FP finds a feasible solution in all but one instance, whereas the classical OA

A Feasibility Pump for Mixed Integer Nonlinear Programs 19

algorithm fails to find a feasible solution in 5 cases. In addition to being more
robust, OA+FP is also competitive in terms of computing time, on most instances.

Acknowledgements We would like to thank all the members of the IBM-CMU working group
on MINLP (Larry Biegler, Andy Conn, Ignacio Grossmann, Carl Laird, Jon Lee, Nick Sawaya
and Andreas Waechter) for numerous discussions on this topic. Special thanks to Andy Conn
for his helpful comments on an earlier draft of the paper.

References

1. P. Bonami, A. Wächter, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D. Laird,
J. Lee, A. Lodi, F. Margot and N.W. Sawaya. An algorithmic framework for convex mixed
integer nonlinear programs. Technical Report RC23771, IBM T.J. Watson Research Center,
2005.

2. COIN-OR. ������� � ���������
	�� �
	��
3. ����� � ��
 . �
�
�������������������������� � ������� ��������	���������� �	�
������ � ���!�
��
4. M. Duran and I.E. Grossmann. An outer-approximation algorithm for a class of mixed-

integer nonlinear programs. Mathematical Programming, 36:307–339, 1986.
5. A.V. Fiacco, G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Mini-

mization Techniques, Wiley & Sons, 1968; republished 1990, SIAM Philadelphia.
6. M. Fischetti, F. Glover and A. Lodi. The Feasibility Pump. Mathematical Programming,

104:91–104, 2004.
7. R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer approxima-

tion. Mathematical Programming, 66:327–349, 1994.
8. N.W. Sawaya, C.D. Laird and P. Bonami. A novel library of nonlinear mixed-integer and

generalized disjunctive programming problems. In preparation, 2006.
9. �	� . �
�
 ���"����������� � ��� � ��
�� � ������� �����
#�# � ��� ��$�� �
���%�
��
��!�
 �

