
RC23771 (W0511-023) November 4, 2005
Mathematics

IBM Research Report

An Algorithmic Framework for Convex
Mixed Integer Nonlinear Programs

Pierre Bonami1, Lorenz T. Biegler1, Andrew R. Conn2, Gérard Cornuéjols1,3,
Ignacio E. Grossmann1, Carl D. Laird1, Jon Lee2,

Andrea Lodi2,4, François Margot1, Nicolas Sawaya1, Andreas Wächter2

1Carnegie Mellon University
Pittsburgh, PA 15213

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

3Faculté des Sciences de Luminy
13288 Marseille, France

4University of Bologna
viale Risorgimento 2
40136 Bologna, Italy

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An algorithmic framework for convex mixed integer

nonlinear programs

Pierre Bonami1,5, Lorenz T. Biegler2, Andrew R. Conn3,
Gérard Cornuéjols1,4, Ignacio E. Grossmann2, Carl D. Laird2,5, Jon Lee3,
Andrea Lodi3,6, François Margot1,7, Nicolas Sawaya2, Andreas Wächter3

October 31, 2005

Abstract

This paper is motivated by the fact that mixed integer nonlinear programming is an
important and difficult area for which there is a need for developing new methods and soft-
ware for solving large-scale problems. Moreover, both fundamental building blocks, namely
mixed integer linear programming and nonlinear programming, have seen considerable and
steady progress in recent years. Wishing to exploit expertise in these areas as well as on pre-
vious work in mixed integer nonlinear programming, this work represents the first step in an
ongoing and ambitious project within an open-source environment. COIN-OR is our chosen
environment for the development of the optimization software. A class of hybrid algorithms,
of which branch and bound and polyhedral outer approximation are the two extreme cases,
is proposed and implemented. Computational results that demonstrate the effectiveness of
this framework are reported, and a library of mixed integer nonlinear problems that exhibit
convex continuous relaxations is made publicly available.

1 Introduction

Solution algorithms for mixed integer nonlinear programs (MINLPs) have become an active area
of research [9, 10, 19, 31, 36]. Owing to the steady progress over the years in the development and
successful implementation of algorithms for mixed integer linear programs (MILPs) and nonlinear
programs (NLPs), it is natural to expect that combining expertise from both fields might yield
significant advances. The recent creation of COIN-OR [6] provides a useful vehicle for facilitating
the development and dissemination of open-source software for problems in operations research.
In particular, COIN-OR contains reusable software components for MILP (e.g., Cbc) and NLP
(e.g., Ipopt). In 2004, researchers at IBM and CMU joined forces to study algorithms for
MINLPs and develop associated open-source software, leveraging components already available
from COIN-OR. This paper introduces an algorithmic framework for MINLP resulting from this

1Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
2Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
3IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA.
4LIF, Faculté des Sciences de Luminy, 13288 Marseille, France.
Supported in part by NSF grant DMI-0352885 and ONR grant N00014-03-1-0188.

5Supported in part by a grant from IBM.
6DEIS, University of Bologna, viale Risorgimento 2, 40136 Bologna, Italy.
7Supported in part by a grant from IBM and ONR grant N00014-03-1-0188.

1

collaboration. For MINLPs with convex relaxation, this framework is an exact algorithm, but it
can also be applied to nonconvex MINLPs as a heuristic.

Thus far, the main contributions of this effort are:

(i) a new publicly available library of test instances of convex MINLPs;

(ii) a new family of hybrid algorithms of which branch-and-bound (BB) and polyhedral outer
approximation (OA) are two extreme (classical) cases;

(iii) a new open-source framework which uses existing software in COIN-OR. In particular Cbc,
Cgl, Clp and Ipopt are used as building blocks. We expect the package to be available on
the COIN-OR site in 2006;

(iv) computational results on publicly available test problems.

We consider the mixed integer nonlinear program

P


min f(x, y)
s.t.

g(x, y) ≤ 0,

x ∈ X ∩ Zn, y ∈ Y,

where X and Y are polyhedral subsets of Rn and Rp respectively, and X is bounded. The
functions f : X × Y → R and g : X × Y → Rm are continuously twice differentiable. When
f and g are convex functions, P is said to be convex.

Two main ideas have been proposed for solving convex MINLPs. The first one is a branch
and bound (BB) approach [14, 19], where lower bounds for subproblems

PX̄


min f(x, y)
s.t.

g(x, y) ≤ 0,

x ∈ X̄ ∩ Zn, y ∈ Y,

with polyhedral subsets X̄ of X, are computed by solving their continuous relaxations P̃X̄ ; here
and elsewhere P̃ denotes the continuous relaxation of the associated problem P , e.g.,

P̃X̄


min f(x, y)
s.t.

g(x, y) ≤ 0,

x ∈ X̄, y ∈ Y.

We note that the lower bound in the BB approach can be strengthened with cutting planes
like the ones described in [30], which represent a generalization to the nonlinear case of the
lift-and-project cuts of [2].

The second approach alternates between solving an MILP and a convex NLP. We know of
two different methods that follow this approach: generalized Benders decomposition [11] and
Outer Approximation (OA) [9]. The MILP solved in both approaches is obtained from P by
replacing the nonlinear functions by polyhedral outer approximations. Calling (x̄, ȳ) the optimal
solution of this MILP, the convex NLP is P with x fixed to x̄ (i.e., Px̄). We note that a related
approach is the extended cutting-plane method [36], which relies on successive solutions of the
MILP problem.

2

Our computational framework uses outer approximations and subproblem relaxations P̃X̄ to
compute lower bounds, and Px̄ to compute upper bounds in a flexible branch-and-cut scheme.
When only subproblem relaxations P̃X̄ are used to compute lower bounds, we have the classical
BB algorithm. When outer approximations and Px̄ are used alternatingly at the root node, we
get the classical OA algorithm.

In Section 2, the OA algorithm is presented in more detail. In Section 3, three related
algorithms are presented. Subsection 3.1 presents the NLP Branch-and-Bound framework and
details of our implementation (named I-BB) based on the interior-point NLP solver Ipopt.
Subsection 3.2 presents the OA framework and details of our implementation (named I-OA)
based on Ipopt and the LP solver Clp. Finally, Subsection 3.3 presents the hybrid algorithm
(named I-Hyb). Depending on the parameter setting of I-Hyb, one obtains either I-BB or I-OA
or anything in between. In Section 4, we present computational results comparing I-BB, I-OA,
and one incarnation of I-Hyb with the commercial solvers SBB and Dicopt.

2 Outer approximation of the MINLP

In the following, we assume that P is convex. The OA algorithm consists of using linearizations
of the objective function and the constraints at different points to build a MILP relaxation of
the problem.

First note that P can be reformulated as an MINLP, P̂ , with a linear objective by introducing
an extra variable, α, which is minimized subject to the additional constraint f(x, y) ≤ α. Now
consider any point (x̄, ȳ) ∈ X × Y , not necessarily feasible to P . By convexity of f and g, the
constraints

∇f(x̄, ȳ)T

(
x− x̄
y − ȳ

)
+ f(x̄, ȳ) ≤ α, (1)

∇g(x̄, ȳ)T

(
x− x̄
y − ȳ

)
+ g(x̄, ȳ) ≤ 0 (2)

are then valid for P̂ .
Therefore, given any set of points T =

{(
x1, y1

)
, . . . ,

(
xK , yK

)}
, we can build a relaxation

of P :

POA(T)



minα

s.t.

∇f(xk, yk)T

(
x− xk

y − yk

)
+ f(xk, yk) ≤ α,

∇g(xk, yk)T

(
x− xk

y − yk

)
+ g(xk, yk) ≤ 0,

∀(xk, yk) ∈ T

x ∈ X ∩ Zn, y ∈ Y, α ∈ R.

As is well known, this is equivalent to the problem
minx∈X∩Zn y∈Y maxk f(xk, yk) +∇f(xk, yk)T

(
x− xk

y − yk

)
s.t. g(xk, yk) +∇g(xk, yk)T

(
x− xk

y − yk

)
≤ 0,

(xk, yk) ∈ T.

Theorem 1 below states that if T contains suitable points and if a constraint qualification
holds for P , then POA(T) and P are equivalent, in the sense that they have the same optimal

3

value, and that the optimal solution (x̄, ȳ) of P corresponds to an optimal solution (ᾱ, x̄, ȳ) of
POA(T) with ᾱ = f(x̄, ȳ).

Theorem 1. For any x̄ ∈ X ∩ Zn, if the problem

Px̄


min f(x̄, y)
s.t.
g(x̄, y) ≤ 0,

y ∈ Y

is feasible, then let ȳ be one optimal solution. On the other hand, if Px̄ is infeasible, then ȳ is
defined as one optimal solution to the following feasibility problem:

PF
x̄



min
m∑

i=1

u

s.t.
g(x̄, y)− u ≤ 0,

y ∈ Y, u ∈ Rm
+ .

Let T̂ be the set of all such pairs (x̄, ȳ).
Assuming that f and g are convex, continuously twice differentiable, and that a constraint

qualification holds at every optimum of Px̄ and PF
x̄ , then P and POA(T̂) have the same optimal

value.

Theorem 1 is weaker than Theorem 1 in [10], where it is incorrectly stated that (under the
conditions of Theorem 1) (x∗, y∗) is optimal for P if and only if it is optimal for POA(T).

Indeed, although all optimal solutions of P are optimal solutions of POA(T), the converse is
not true as the following example shows.

Example 1 : Consider the following MINLP where we optimize over a ball in R3

min z

s.t.

(x− 1
2
)2 + y2 + z2 ≤ 1,

x ∈ Z ∩ [−1, 2], y ∈ R, z ∈ R.

This problem has an optimal value of −
√

3
2 . The MILP obtained by applying Theorem 1 is the

4

following

minα

s.t.
z − α ≤ 0, (constraint (1))

x−
√

3z ≤ 1 + 3/2, ((2) taken for the optimal solution of P(1) (x, y, z) = (1, 0,−
√

3
2

))

− x−
√

3z ≤ 3/2, ((2) taken for the optimal solution of P(0) (x, y, z) = (0, 0,−
√

3
2

))

x ≥ −7
12

, ((2) taken for the optimal solution of PF
(−1) (x, y, z) = (−1, 0, 0))

x ≤ 19
12

, ((2) taken for the optimal solution of PF
(2) (x, y, z) = (2, 0, 0))

x ∈ Z, y ∈ R, z ∈ R.

It can be seen that in the linearized problem variable y is unconstrained. Therefore for any λ ∈ R,
the point (1, λ,−

√
3

2) is feasible and also optimal for the MILP POA(T̂), but it is infeasible for
the MINLP whenever λ 6= 0. �

2.1 Outer approximation algorithm

Originally proposed in [9], the relaxation POA(T) induces a natural iterative algorithm for solving
P . We present here briefly a slightly modified version introduced in [10]. The algorithm starts
with T = {(x0, y0)}, where (x0, y0) can be either a feasible solution to P or to its continuous
relaxation P̃X . Then each iteration starts by solving POA(T) to find a point (αk, xk, ŷ) and a
lower bound αk on the optimal value of P . The problem Pxk defined above is then solved. If Pxk

is feasible, then its optimal solution yk associated with xk gives a feasible solution and an upper
bound for P and (xk, yk) is added to T to strengthen the mixed-integer linear relaxation. If Pxk

is infeasible, let yk be the solution of the feasibility problem PF
xk , and add (xk, yk) to T . As shown

by Theorem 2 in [10], the algorithm converges to an optimal solution of P in a finite number of
iterations provided that assumptions on convexity, differentiability and constraint qualifications
of Theorem 1 hold.

The algorithm is described in Figure 1.

2.2 Branch-and-cut based outer approximation

Quesada and Grossmann [24] proposed an algorithmic scheme that combines the use of linear and
nonlinear programming in an original branch-and-cut scheme. The motivation of the method
proposed by them is to improve the outer-approximation scheme presented in Section 2.1 by
integrating the construction of the outer approximation of P into a single tree search. In this
way the sequential solution of several MILPs is avoided. Instead one single tree search is per-
formed, during which nonlinear programs are solved and used to progressively tighten the MILP
relaxation.

As in the OA algorithm, a mixed integer linear relaxation POA(T) is used. But, instead of
solving to optimality the successive approximations given by the POA(T) relaxations, we perform
a branch-and-cut procedure, where the linear outer approximation is updated at selected nodes
of the search tree.

5

zU := +∞;
zL := −∞;
(x0, y0) := optimal solution of P̃ ;
T :=

{(
x0, y0

)}
;

k := 1; Choose a convergence tolerance ε
while zU − zL > ε and POA(T) is feasible do

Let (α̂, x̂, ŷ) be the optimal solution of the updatedPOA(T);
zL := α̂;
if Px̂ is feasible;

then Let xk := x̂ and yk be the optimal solution to Px̂;
zU := min(zU , f(xk, yk));

else Let xk := x̂ and yk be the optimal solution to PF
x̂ ;

fi
T := T ∪ {(xk, yk)};
k := k + 1;

od

Figure 1: Outer approximation algorithm.

The branch-and-cut algorithm of Quesada and Grossmann is based on two problems, related
to POA(T) and Px presented in the previous section. The outer approximation of a subproblem
corresponding to X̄ ⊆ X

POA
X̄ (T)



minα

s.t.

∇f(xk, yk)T

(
x− xk

y − yk

)
+ f(xk, yk) ≤ α

∇g(xk, yk)T

(
x− xk

y − yk

)
+ g(xk, yk) ≤ 0

∀(xk, yk) ∈ T

x ∈ X̄ ∩ Zn, y ∈ Y, α ∈ R

is used as a relaxation which gives lower bounds, while P̃X̄ gives feasible solutions, upper bounds
and new outer approximation constraints.

Let i be a node of the search tree, and let Xi ⊆ X be the modified polyhedral feasibility
set for x at that node (with modified bounds). The continuous relaxation P̃OA

Xi (T) is solved,
obtaining a solution (x∗, y∗) and a lower bound on the optimal value of the subtree rooted at i.
If x∗ satisfies the integrality requirements, a feasible solution for P may exist at that node, and
it can be found by solving Px∗ . Let ȳ be an optimal solution to Px∗ . If (x∗, ȳ) is feasible for P ,
the upper bound is updated. Moreover, we update T to T ∪ {(x∗, ȳ)}.

As shown in [24] the algorithm converges to an optimal solution in finite time provided that
assumptions on convexity, continuity, differentiability and constraint qualification of Theorem 1
hold.

The complete algorithm is described in Figure 2.
In the algorithm of Quesada and Grossmann as described above, the NLP subproblem Px∗ is

solved only when the optimal solution (x∗, y∗) of P̃OA
Xi (T) is integer feasible. This is the least we

can do in terms of solving NLPs, to guarantee the convergence of the algorithm by application of

6

zU := +∞;
(x0, y0) := optimal solution of P̃ ;
T := {(x0, y0)};
X0 := X;
Initialize list of active nodes: L := {0};
i := 0;
while L 6= ∅ do

Select a node k in L;
Let (αk, xk, yk) be the optimal solution of P̃OA

Xk (T);
while xk is integer and αk < zU do

if Pxk is feasible
then let ȳ be its optimal solution;
else let ȳ be the optimal solution of PF

xk

fi
if (xk, ȳ) is feasible for P

then zU := min(zU , f(xk, ȳ));
fi
T := T ∪ {(xk, ȳ)};
Let (αk, xk, yk) be the optimal solution of updated P̃OA

Xk (T);
od
if αk < zU (branch)

then Select a variable xj with a fractional xk
j for branching;

Xi+1 := Xk ∩ {x ∈ Rn : xj ≤ bxk
j c};

Xi+2 := Xk ∩ {x ∈ Rn : xj ≥ dxk
j e};

L := L ∪ {i + 1, i + 2} \ {k};
i := i + 2;

else (fathom the node by bounds)
L := L \ {k};

fi
od

Figure 2: Outer approximation based branch-and-cut.

7

Theorem 1. However, it is entirely possible to solve PXi at additional nodes in order to reduce
the size of the branch-and-bound tree. In Section 3.3, we present two ways of enhancing this
branch-and-bound scheme which we implemented in our hybrid algorithm.

3 Our algorithmic framework

We implemented three different algorithms:

• I-BB : the simple nonlinear programming based BB as presented in Section 1;

• I-OA : the OA algorithm as presented in Section 2.1;

• I-Hyb: an enhanced version of the hybrid procedure presented in Section 2.2.

The three algorithms are implemented using existing software components from the COIN-OR
open source library as building blocks. To solve the continuous NLPs we use the interior point
solver Ipopt 3.0 [35]. The various branch-and-bound techniques are based on the branch-and-
cut module Cbc and the cut-generation library Cgl, and the LP subproblems are solved using
Clp.

3.1 Algorithm I-BB

The BB algorithm was implemented by modifying Cbc in order to replace the solution of LPs at
each node of the tree by the solution of NLPs. BB is an efficient technique for solving MILPs,
as the reoptimization of an LP after small modifications can be done efficiently using hot-start
techniques in simplex-based algorithms. (The reader is refereed to [17, 23, 37] for terminology
and background information related to branch-and-cut for solving MILPs.) The same applies
to NLPs, to some extent, when they are solved using active set algorithms [19]. Nevertheless,
we chose the interior point NLP solver Ipopt as our solver, as a suitable open source active-
set NLP solver was unavailable. Note that using a different NLP solver is possible with minor
modifications to the code.

The BB algorithm follows a simple scheme; no cutting-plane method is used, no strong
branching is performed, and no heuristic methods are implemented. The branching variable
selection strategy uses pseudo-costs initialized with the average known pseudo-cost as defined in
[20].

To try to reduce the time spent solving NLPs, at each node Ipopt is warm-started by using
the optimal primal and dual solution of the direct parent node as a starting point. In addition,
the initial modification of the starting point, aiming to move it sufficiently away from bounds, is
done less strongly for a warm start than for a cold start. This leads to a reduction in the average
run time for solving the NLPs.

Ipopt was used with the adaptive barrier parameter strategy [22]. We also added a heuristic
to switch sooner to the feasibility restoration phase if little progress was made at the beginning
of the optimization, in order to improve infeasibility detection.

3.2 Algorithm I-OA

The OA algorithm is implemented using Ipopt to solve the NLPs and Cbc to solve the MILPs.
It follows exactly the algorithm described in Figure 1. The default strategies of Cbc are used,
namely:

8

• for branching variable selection at a node strong branching is performed on the five most
integer infeasible variables (in case of ties variables are chosen in lexicographic order) in
the current optimal solution of the relaxed problem,

• various cutting planes procedures (mixed integer Gomory cuts, probing cuts, mixed integer
rounding cuts, clique cuts, cover cuts and flow cover cuts [6]) are applied but only at the
root node.

3.3 Algorithm I-Hyb

This algorithm is an enhanced version of the branch-and-cut procedure presented in Section 2.2.
Its implementation is based on Cbc. One enhancement is that more NLPs are solved in order
to reduce the size of the tree. This is done in two ways: by solving the NLP relaxation P̃Xk

at additional nodes of the tree and by performing local enumerations at nodes of the tree. In
the limiting cases, the first way reduces the algorithm to a classical NLP BB, while the second
one reduces the algorithm to the classical OA algorithm. Of course, both alternatives can be
combined within a hybrid algorithm, an approach investigated in this paper, apparently for the
first time. A further enhancement is that our hybrid scheme uses a number of MILP techniques
available in Cbc. We describe the enhancements in more detail in the following subsections.

3.3.1 Solving NLP relaxations at some nodes

Consider a node k. If P̃Xk , the relaxation of the corresponding subproblem, is infeasible, then
node k can be fathomed. Otherwise, let (x̄, ȳ) be an optimal solution of P̃Xk . If x̄ is integer,
then we obtain a new feasible solution (x̄, ȳ) for P , which gives an upper bound for the problem,
and the node can be fathomed. Otherwise, we add (x̄, ȳ) to T .

Solving P̃Xk allows us to strengthen the bounds and therefore typically leads to a smaller
enumeration tree. Note also that this scheme improves the outer approximation higher in the
tree, in contrast to the basic algorithm where the outer approximation is strengthened only at
nodes k where the optimal solution (x̄, ȳ) to P̃OA

Xk has x̄ integer.
If the subproblem relaxation P̃Xk is solved at each node of the tree, then the algorithm

reduces to a NLP BB algorithm. This is unlikely to be the optimal strategy for all problem
classes. In the computational experiments presented in Section 4, the subproblem relaxations
are solved every L := 10 nodes.

3.3.2 Performing local searches at nodes

The enhancement described above makes the algorithm closer to a pure BB algorithm. An
alternative approach is to perform some outer-approximation iterations at selected nodes of the
tree.

At any node k of the tree, we may perform a truncated MILP BB procedure to try to find a
feasible solution (x∗, y∗) for POA

Xk (T). If such a solution is found, then we solve Px∗ (or PF
x∗ , if

Px∗ is infeasible), obtaining (x∗, ȳ). As before, the solution (x∗, ȳ) is added to T , and the upper
bound and best incumbent solution are possibly updated. We can then repeat this process until
the MINLP problem corresponding to node k is solved.

In our experiments, we perform such a local search only at the root node with an overall limit
on the time spent in solving such MILP’s of κ := 30 seconds. The local searches are performed
by using Cbc with the settings used by I-OA described in Section 3.3.

9

Of course, if the value for the time limit κ is set to infinity the algorithm then reduces to the
usual OA algorithm.

3.3.3 Integration of MILP techniques

Cbc is an elaborate code for MILP. Using it as the underlying framework for our hybrid procedure
allows us to take advantage of the advanced MILP techniques already implemented in or utilized
by Cbc. Cbc uses several families of cuts from Cgl to tighten the OA relaxations. To produce
the results in Section 4 we use mixed integer Gomory cuts, probing cuts, mixed integer rounding
cuts, and cover cuts. The different cut generators are called at the root node and in the tree
search according to the dynamic strategy implemented in Cbc.

For the branching variable selection strategy, we use the implementation of reliability branch-
ing [1] available in Cbc with a reliability parameter of 8 and a limit of 20 variables on which strong
branching is performed and a limit of 100 simplex iterations in the strong branching. If a feasible
solution for POA(T) is found during strong branching, an NLP is solved to verify if it corresponds
to a feasible solution for P and additional outer-approximation constraints are added in the same
way as it is done when nodes of the tree are processed.

The implementation of the hybrid algorithm follows the branch-and-cut procedure described
in Figure 3.

4 Computational results

The problems used in the computational experiments were gathered from different sources, and
feature applications from operations research and chemical engineering. We present a brief
description of every class of problems below, and highlight some of their defining characteristics.
Note that those whose name ends with an “M” or an “H” refer to problems that were originally
formulated in generalized disjunctive form [25]. The MINLP version of the problems was obtained
using either a “big-M” transformation (end in “M”), or a “convex hull” transformation (end in
“H”) [13].

The BatchS problems are multi-product batch plant design problems with multiple units
in parallel and intermediate storage tanks [26, 33]. These problems consist of determining the
volume of the equipment, the number of units in parallel, and the volume and location of the inter-
mediate storage tanks. The nonlinearities in this set of problems stem from exactly one constraint
that contains an exponential term. The relative integrality gap (defined as optval(P)−optval(P̃)

|optval(P)|
where optval() returns the optimal value of the problem) of the big-M version of this set of
problems is about 15% on average.

The CLay problems are constrained layout problems [27, 28], where non-overlapping units
represented by rectangles must be placed within the confines of certain designated areas formu-
lated as circular nonlinear constraints, such that the cost of connecting these units is minimized.
The nonlinearities in this set of problems are all quadratic and correspond to Euclidean-distance
constraints, and the integrality gap for all instances presented is equal to 100%. Note that these
problem are intentionally poorly modeled in order to have a large integrality gap and no feasible
solution near the optimal solution of the continuous relaxation.

The FLay problems concern farm land layout [27, 28], where one would like to determine the
optimal length and width of a number of rectangular patches of land with fixed area, such that
the perimeter of the set of patches is minimized. The nonlinearities in this set of problems stem
from a set of hyperbolic constraints, and the integrality gap is, on average, about 44%.

10

zU := +∞;
(x0, y0) := optimal solution of P̃ ; T := {(x0, y0)}; X0 := X;
while Local search time limit κ is not exceeded do

Solve POA(T)(without exceeding resource limits);
if a solution (x∗, y∗) of POA(T) is found

then
Let ȳ be the optimal solution of Px∗

(or of PF
x∗ if Px∗ is infeasible);

if (x∗, ȳ) is feasible for P
then zU := min(zU , f(x∗, ȳ));

fi
T := T ∪ {(x∗, ȳ)};

fi
od
Initialize list of active nodes: L := {0}; i := 0; l := 0; L := 10
while L 6= ∅ do

Select a node k in L;
if l ≡ 0 (mod L)

then (solve the MINLP relaxation at the node)
Let (x̄, ȳ) be the optimal solution of P̃Xk ;
if x̄ is integer

then zU := min(zU , f(x̄, ȳ));
fi
T := T ∪ {(x̄, ȳ)};

fi
Apply MILP cuts to P̃OA

Xk (T), let (αk, xk, yk) be the resulting optimal solution;
while xk is integer and αk < zU do

if Pxk is feasible
then let ȳ be its optimal solution;
else let ȳ be the optimal solution of PF

xk

fi
if (xk, ȳ) is feasible for P

then zU := min(zU , f(xk, ȳ));
fi
T := T ∪ {(xk, ȳ)};
Let (αk, xk, yk) be the optimal solution of updated P̃OA

Xk (T);
od
if αk < zU (branch)

then Select a variable xj with xk
j fractional;

Xi+1 := Xk ∩ {x ∈ Rn : xj ≤ bxk
j c};

Xi+2 := Xk ∩ {x ∈ Rn : xj ≥ dxk
j e};

L := L ∪ {i + 1, i + 2} \ {k};
i := i + 2; l := l + 1;

else (fathom the node by bounds)
L := L \ {k};

fi
od

Figure 3: Hybrid Algorithm

11

The Fo7 2 problem is a block layout design with unequal areas [5], and is concerned with
finding the most efficient arrangement of a given number of departments with unequal area
requirements within a facility. This problem has the same defining characteristics as the farm
layout problems described above

The Water problems are large inverse problems for the determination of contamination sources
in municipal water networks. The constraints are linear and come from discretized dynamic
models of the network water quality model. The objective is the least squares error between
calculated and measured network concentrations with a regularization term to force a unique
solution. Integer variables are added to restrict the allowable contamination scenarios, giving
the final form as a mixed integer quadratic program (MIQPs) [18].

The RSyn problems concern retrofit-synthesis problems [27, 28], in which one would like to
simultaneously redesign part of an existing plant and synthesize (from scratch) part of a new
one. Specifically, one is interested in determining whether certain units should be included in
the design of the new plant, and whether certain modifications such as improvements in yield,
capacity and energy reduction should be performed on the existing plant. In addition it is
required that economic potential is maximized given a certain time horizon and limited capital
investments. The nonlinearities in this set of problems stem from the synthesis portion of the
model, and correspond to logarithmic functions. The integrality gap for the convex hull version
of these problems tends to be small and of the order of about 1%.

The SLay problems are Safety Layout problems [27, 28], where one is interested in placing a
set of units with fixed width and length such that the Euclidean distance between their center
point and a pre-defined “safety point” is minimized. This problem is a mixed-integer quadratic
program, and thus, the nonlinearities in this set of problems are contained solely in the objective
function (as quadratic terms). The integrality gap is approximately equal to 6% on average.
Furthermore, this class of problems is known to be symmetric, a feature shared with the other
layout problems Clay and FLay.

The Syn problems are Synthesis problems [9, 32], and correspond to the synthesis portions
of the RSyn class described above. As such, they have similar characteristics to the latter set of
problems, although it should be noted that the big-M version of this class tends to have very
poor relaxations resulting in integrality gaps of over 600%.

The cutting stock problems, trimloss, [15], are where one is interested in cutting out a set
of product paper rolls from raw paper rolls such that the cost function, including the trim loss
as well as the over production, is minimized. The nonlinearities in this set of problems arise
from square root transformations that were used to convexify a set of bilinear constraints. The
integrality gap is about 75% on average.

All these problems are available on the web [21] in Ampl and Gams formats, except the Water
problems available only in Ampl format. (This implies that we are unable to run the Water
problems with SBB or Dicopt. We kept these problems in the test set, since they have a large
number of continuous variables, a feature absent from other problems.) These 41 problems were
selected from a library of more than 150 convex problems that we collected [27]. We selected
problems that were solved in less than 3 hours by an earlier implementation of the hybrid
algorithm described in the previous section. We rejected problems that were solved in less than
30 seconds. In addition, for each class of problems, we added the smallest problem in the class
that was not solved in 3 hours. Improvements in the hybrid algorithm mean that most problems
are now solved within the time limit by the current version of the hybrid. Characteristics of
the instances are reported in Table 1. The optimal value is known for all problems, except
trimloss5.

We compare three types of algorithms: Branch-and-bound algorithms solving NLPs at the
nodes of the tree (NLP BB for short), outer approximations algorithms as described in Section 2

12

Problem name var integer constr nnz opt. sol
value

continuous
relaxation

BatchS101006M 278 129 1019 79 769440.42 734943
BatchS121208M 406 203 1511 95 1241125.51 1202360
BatchS151208M 445 203 1781 98 1543472.39 1499910
BatchS201210M 558 251 2327 103 2296535.15 2255300

CLay0203H 90 18 132 30 41573.30 0.00
CLay0204H 164 32 234 40 6545 0.00
CLay0205M 80 50 135 10 8092.5 0.00
CLay0205H 260 50 365 50 8092.5 0.00
CLay0303M 33 21 66 6 26669.10 0.00
CLay0303H 99 21 150 45 26669.13 0.00
CLay0305M 85 55 155 10 8092.5 0.00
FLay04H 234 24 282 4 54.40 30.98
FLay05M 62 40 65 5 64.49 34.64
FLay05H 382 40 465 5 64.49 34.64

Fo7 2 114 42 211 14 17.74 0.00
Water0202 106711 7 107209 4017 125.19 60.28
Water0303 107222 14 108217 4521 207.98 75.52

Water0202R 384 14 556 17205 424.54 0.00
RSyn0810M03H 1185 252 1935 90 -2722.44 -2797.66
RSyn0815M03H 1347 282 2217 156 -2827.92 -2916.02
RSyn0820M03H 1467 312 2448 201 -2028.81 -2102.39
RSyn0820M04H 1956 416 3528 268 -2450.77 -2509.27
RSyn0830M03H 1758 372 2934 291 -1543.05 -1589.61
RSyn0840M04H 2344 496 4236 388 -2529.07 -2579.75
RSyn0840M03H 2040 432 3447 402 -2742.64 -2806.52
RSyn0840M04H 2720 576 4980 536 -2564.50 -2618.98

SLay10M 290 180 405 20 129579.88 119090
SLay07H 476 84 609 14 64748.82 61757.1
SLay08H 632 112 812 16 84960.21 80754.9
Slay09M 234 144 324 18 107805.75 103126
SLay09H 810 144 1044 18 107805.75 103126

Syn20M04M 420 160 1052 56 -3532.74 -9864.89
Syn30M03M 480 180 1041 60 -654.15 -4535.1
Syn30M04M 640 240 1568 80 -865.72 -6171.15
Syn40M02M 420 160 812 56 -388.77 -4555.35
Syn40M03M 630 240 1398 84 -395.14 -6190.65
Syn40M03H 1146 240 1998 402 -395.14 -417.45
Syn40M04M 840 320 2104 112 -901.75 -9168.63
Syn40M04H 1528 320 2904 536 -901.75 -920.15

trimloss4 105 85 64 36 8.3 1.70
trimloss5 161 131 90 55 ≤11.2 1.17

Table 1: Test set statistics. Number of variables, number of integer variables, number of con-
straints, number of non zero entries in the Hessian of the Lagrangian, optimal solution value and
value of the continuous relaxation are listed. (The optimum for trimloss5 is not known.)

13

(OA for short) and one hybrid algorithm as described in Section 3.3. We compare our implemen-
tation I-BB of an NLP BB with the commercial software SBB [29] (version Level 009) using the
CONOPT NLP solver (version 3.14g-016-054), and our implementation I-OA of an OA algorithm
with the commercial software Dicopt [7, 34] (version 2x-c), using CPLEX (version 9.0) for the
MILP subproblems and CONOPT (same version as above) for the NLPs. Finally, we also list
results obtained with our hybrid algorithm I-Hyb. The machine used in the tests is an IBM
IntellistationZ Pro with an Intel Xeon 3.2GHz CPU, 2 gigabytes of RAM and running Linux
Fedora Core 3.

Note that the computing time we use for the results obtained with SBB are the CPU times
reported by the software. This time is much smaller than the wall clock time on large problems,
as SBB writes (sometimes huge) files during the computation, and the time for reading/writing
files is not included in the reported CPU times. For example, on problem Syn40M02M which hits
the three hour time limit, the actual user time is almost 13 hours and the real time (including
system time) is more than 31 hours.

Figure 4 is a performance plot [8] of the five algorithms. The curve plotted for algorithm A
gives the proportion of problems that are solved within factor p of the time required by the best
algorithm. More precisely, if t∗(P) is the smallest time needed by one of the five algorithms to
solve problem P , then P is solved within a factor p by any algorithm requiring at most time
p t∗(P). For p = 1, the plotted point for algorithm A represents the proportion of problems for
which A is fastest. For p very large, the plotted point is the proportion of problems solved by the
algorithm in less than 3 hours. (Note that the three Water problems are not used for this plot.)
It is clear from the plot that I-Hyb dominates I-BB and I-OA. It also dominates SBB except for
very small values of p. The number of problems solved in 3 hours by I-Hyb is larger than the
comparable number for the other algorithms, indicating that I-Hyb is overall the most robust
algorithm. Dicopt solves more problems very early, and that the performance of I-Hyb becomes
competitive for p = 28. This value for p might seems quite high, but it is obtained due to a
number of problems that are solved in a few seconds with Dicopt, but require much more time
with I-Hyb. Indeed, in a performance plot based on solution time differences instead of ratios,
I-Hyb is the best performer as soon as running for 45 seconds beyond the best solution time is
allowed.

Table 2 presents the running times of the five algorithms. Failures are listed as *** and are
caused by numerical difficulties in Ipopt, except on SLay07H for I-OA where the failure is caused
by numerical problems in the LP solver and on RSyn0815M03H for Dicopt where the failure occurs
with CONOPT.

Note that Dicopt seems particularly efficient on the BatchS, RSyn and Syn problems, while
SBB dominates on the CLay and FLay problems. For all the SLay problems except one, either
SBB or I-BB works best. For trimloss4, only I-Hyb is able to solve it in 3 hours. An interesting
question is to determine which problems are well suited for OA algorithms and which ones should
be attacked with an NLP BB approach. We suspect that the quality of the linear relaxation
obtained by the OA algorithms is the driving criterion: When this approximation is good, the
solution of the MILP is close to the solution of the MINLP and OA works well. On the other
hand, when the approximation is poor, solving the MILP does not help to find good feasible
solutions and helps only moderately in improving the LP relaxation.

Table 3 compares the I-BB, I-Hyb and I-OA algorithms. As noted before, I-Hyb is almost
always faster than I-BB, the only notable exceptions being the CLay, FLay and SLay problems
where none of the two dominates clearly the other. Comparing I-Hyb with I-OA, they have
comparable performances on the CLay, RSyn and Water problems that can be solved in less than
3 minutes. On the other classes, I-Hyb dominates I-OA.

Comparing the number of nodes of I-BB and I-Hyb, the latter usually has a smaller enumer-

14

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 100 1000 10000 100000

of

 p
ro

bl
em

s
so

lv
ed

time (sec)

I-Hyb
Dicopt

I-BB
SBB
I-OA

Figure 4: Relative performance of the five algorithms.

ation tree, illustrating the benefit of having the OA approximation available for bounding and
branching decisions.

The number of NLPs solved by I-Hyb is much larger than for I-OA. The percentage of the
time spent solved NLPs in I-OA is usually well below 5% of the total time, while this is sometimes
the dominant part for I-Hyb.

Table 4 compares the two NLP BB algorithms. A rough estimation is that the number of
nodes is comparable for the two algorithms. It is worth noting that the time spent per node for
SBB is on the order of 0.27 second, while it is about 0.21 second for I-BB (average taken over all
problems solved in less than 3 hours by both algorithms). Since in those two algorithm the bulk
of the time is spent solving NLPs, this indicates that the warm-starting advantage of the active
set solver used by SBB over the interior point solver used by I-BB does not confer any advantage
in terms of computing time in our test set.

Table 5 compares the two OA algorithms. Usually, I-OA requires fewer iterations than Dicopt,
but this does not translate to a large advantage in running times. This is explained by the average
time required to solve MILPs: Dicopt requires about 2.1 seconds per iteration while I-OA requires
81.9 seconds (average taken over problems solved in less than 3 hours by both algorithms). At
least two factors play a role in this large difference: First, Dicopt uses CPLEX to solve MILPs,
while I-OA uses Cbc. On average CPLEX is faster than Cbc on benchmark problems (such as

15

problems in MIPLIB [4]), but not by a factor of 40. The difference is that these benchmark
problems are relatively difficult, often requiring more than one hour to be solved. It turns out
that many of the MILPs that are solved in our experiments are fairly easy and that the relative
performance of Cbc on these easy problems is comparatively worse than on harder problems.
Second, when the OA algorithm solves an NLP that has more than one optimal solution, the
solution obtained by an interior point solver will tend to be on the center of the optimal “face”,
while the solution obtained by an active set solver will lie at an “extreme point” of the “face”.
The OA constraints (1) and (2) will be different and thus the difficulty of the MILPs that have
to be solved might be different. To illustrate this point we run I-OA using CPLEX as an LP
solver on the problem Syn40M03M. The problem is still solved in 5 iterations but in 267 seconds
(instead of 1815 seconds with Cbc) which is still much larger than the 1.2 seconds needed by
Dicopt.

Geometric considerations lead us to believe that the MILPs to be solved when using I-OA
are, in general, harder than those for Dicopt. On the other hand, these MILPs give sometimes
a stronger lower bound on the value of the optimal solution. The percentage of the gap between
the optimal value and the linear relaxation closed by solving the first MILP in I-OA is displayed
in Table 5. On our test problems, the corresponding gap for Dicopt is similar except for the FLay
and Fo7 2 problems where a difference of more than 20% can be observed. It is interesting to
note that these problems are the ones having nonlinearities coming from hyperbolic constraints.

We also note that the number of iterations is strongly correlated with the gap reduction
obtained in the first master iteration. Both algorithms require a similar number of master
iterations, with the notable exception of the CLay problems, where Dicopt requires a number of
iterations much larger than I-OA. This might be explained by the fact that these problems have
symmetries and thus the MILPs may have a lot of optimal integer solutions of which only a few
are NLP feasible.

References

[1] T. Achterberg, T. Koch and A. Martin. Branching rules revisited. Operations Research
Letters, 3:42–54, 2005.

[2] E. Balas, S. Ceria and G. Cornuejols. A lift-and-project cutting plane algorithm for mixed
0-1 programs. Mathematical Programming, 58:295–324, 1993.

[3] M. Benichou, J.M. Gauthier, P. Girodet, G. Hentges, G. Ribiere and O. Vincent. Experi-
ments in mixed-integer programming. Mathematical Programming, 1:76–94, 1971.

[4] R.E. Bixby, S. Ceria, C.M. McZeal, M.W.P. Savelsbergh, MIPLIB 3.0,
http://www.caam.rice.edu/∼bixby/miplib/miplib.html.

[5] I. Castillo, J. Westerlund, S. Emet and T. Westerlund. Optimization of Block Layout Design
Problems with Unequal Areas: a Comparison of MILP and MINLP Optimization Methods.
Computers & Chemical Engineering, 2005 (to appear).

[6] COIN-OR. www.coin-or.org

[7] Dicopt. http://www.gams.com/solvers/dicopt/main.htm

[8] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles.
Mathematical Programming, 91:201–213, 2002.

16

[9] M. Duran and I.E. Grossmann. An outer-approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Programming, 36:307–339, 1986.

[10] R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer approxima-
tion. Mathematical Programming, 66:327–349, 1994.

[11] A.M. Geoffrion. Generalized Benders decomposition. Journal of Optimization Theory and
Applications, 10:237–260, 1972.

[12] I.E. Grossmann. Review of nonlinear mixed-integer and disjunctive programming tech-
niques. Optimization and Engineering, 3:227–252, 2002.

[13] I.E. Grossmann and S. Lee. Generalized Disjunctive Programming: Nonlinear Convex Hull
Relaxation and Algorithms. Computational Optimization and Applications, 26:83–100, 2003

[14] O.K. Gupta and V. Ravindran. Branch and bound experiments in convex nonlinear integer
programming. Management Science, 31:1533–1546, 1985.

[15] I. Harjunkoski, T. Westerlund, R. Pörn and H. Skrifvars. Different transformations for solv-
ing non–convex trim loss problems by MINLP. European Journal of Operational Research,
105:594–603, 1998.

[16] V. Jain and I.E. Grossmann. Cyclic scheduling of continuous parallel units with decaying
performance. AIChE Journal, 44:1623–1636, 1998.

[17] M. Jünger and D. Naddef, eds. Computational Combinatorial Optimization. Lecture Notes
in Computer Science 2241, Springer, 2001.

[18] C.D. Laird, L.T. Biegler and B.G. van Bloemen Waanders. A Mixed Integer Approach for
Obtaining Unique Solutions in Source Inversion of Drinking Water Networks. ASCE Journal
of Water Resource Management and Planning, 2006 (to appear).

[19] S. Leyffer. Integrating SQP and branch-and-bound for mixed integer nonlinear program-
ming. Computational Optimization & Applications, 18:295–309, 2001.

[20] J.T. Linderoth and M.W.P. Savelsbergh. A computational study of search strategies for
mixed integer programming. INFORMS Journal of Computing 11:173–187, 1999.

[21] http://egon.cheme.cmu.edu/ibm/page.htm

[22] J. Nocedal, A. Wächter and R.A. Waltz. Adaptive barrier strategies for nonlinear interior
methods. Research Report RC 23563, IBM T. J. Watson Research Center, Yorktown, USA,
2005.

[23] M.W. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large scale
symmetric travelling salesman problems. SIAM Review 33:60–100, 1991.

[24] I. Quesada and I.E. Grossmann. An LP/NLP based branched and bound algorithm for
convex MINLP optimization problems. Computers and Chemical Engineering, 16:937–947,
1992.

[25] R. Raman and I.E. Grossmann. Modeling and computational techniques for logic based
integer programming. Computers and Chemical Engineering, 18:563–578, 1994.

[26] D.E. Ravemark. Optimization models for design and operation of chemical batch processes.
PhD thesis, Swiss Federal Institute of Technology, 1995.

17

[27] N.W. Sawaya, C.D. Laird, P. Bonami. A novel library of non-linear mixed-integer and
generalized disjunctive programming problems. In preparation.

[28] N.W. Sawaya. A generalized disjunctive framework for solving discrete-continuous opti-
mization problems with convex relaxations. PhD thesis, Chemical Engineering Department,
Carnegie Mellon University, 2006.

[29] SBB. http://www.conopt.com/sbb/SBB announcement.htm

[30] R. Stubbs and S. Mehrotra. A branch-and-cut method for 0-1 mixed convex programming.
Mathematical Programming, 86:515–532, 1999.

[31] M. Tawarmalani and N.V. Sahinidis. Global optimization of mixed-integer nonlinear pro-
grams: A theoretical and computational study. Mathematical Programming, 99:563–591,
2004.

[32] M. Turkay and I.E. Grossmann. Logic-based MINLP algorithms for the optimal synthesis
of process networks. Computers & Chemical Engineering, 20:959–978, 1996.

[33] A. Vechietti and I.E. Grossmann. LOGMIP: a disjunctive 0-1 non-linear optimizer for
process systems models. Computers & Chemical Engineering, 23:555–565, 1999.

[34] J. Viswanathan and I.E. Grossmann. A combined penalty function and outer-approximation
method for MINLP optimization. Computers & Chemical Engineering, 14:769, 1990.

[35] A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear programming. Mathematical Programming
2005.

[36] T. Westerlund and F. Pettersson. An extended cutting plane method for solving convex
MINLP problems. Computers and Chemical Engineering, 19:131–136, 1995.

[37] L.A. Wolsey. Integer Programming. Wiley, 1998.

18

Problem name SBB I-BB I-Hyb I-OA Dicopt
BatchS101006M 728.46 124.87 72.90 551.56 14.69
BatchS121208M 2316.28 1894.99 71.76 173.54 9.3
BatchS151208M 3871.95 2732.32 632.39 3360.58 22.53
BatchS201210M > 3hr 5304.94 816.16 >3hr 28.44

CLay0203H 3.39 20.15 39.45 6.91 5.011
CLay0204H 15.32 496.06 48.02 7.85 0.59
CLay0205M 19.49 284.01 114.19 179.72 156.67
CLay0205H 358.72 *** 428.93 1048.37 157.74
CLay0303M 0.87 13.44 55.84 11.15 99.91
CLay0303H 2.86 28.30 69.98 26.45 58.5
CLay0305M 65.77 644.29 79.87 659.44 769.73
FLay04H 28.49 75.89 68.12 148.14 439.5
FLay05M 266.74 955.89 7989.17 >3hr > 3hr
FLay05H 3047.4 4066.47 *** >3hr > 3hr

Fo7 2 >3hr 9833.10 7103.02 >3hr > 3hr
Water0202 N/A 545.95 390.11 974.19 N/A
Water0303 N/A 1523.86 1153.18 >3hr N/A

Water0202R N/A 328.20 156.45 115.28 N/A
RSyn0810M03H 84.31 301.51 14.70 15.87 10.52
RSyn0815M03H 150.41 188.10 27.78 27.76 ***
RSyn0820M03H 690.51 369.06 62.85 32.66 8.3
RSyn0820M04H 384.62 342.76 57.35 43.68 18.97
RSyn0830M03H 98.84 389.56 7.82 11.80 10.03
RSyn0840M04H 817.25 2182.70 118.43 69.74 14.25
RSyn0840M03H 151.37 319.17 13.27 20.02 12.45
RSyn0840M04H 1032.87 3119.50 22.94 60.32 20.68

SLay10M 19.45 514.56 197.93 >3hr > 3hr
SLay07H 160.54 53.22 73.46 *** 37.97
SLay08H 394.46 107.05 120.54 >3hr 228.38

SLay09MH 21.51 70.95 39.95 >3hr > 3hr
SLay09H 2383.73 260.69 328.35 >3hr > 3hr

Syn20M04M > 3hr > 3hr 52.50 174.60 0.27
Syn30M03M > 3hr > 3hr 16.89 15.06 0.72
Syn30M04M > 3hr > 3hr 118.01 1544.91 647.5
Syn40M02M > 3hr > 3hr 15.55 15.32 0.44
Syn40M03M > 3hr > 3hr 238.34 1875.38 1.2
Syn40M03H 36.3 24.07 17.33 24.32 2.04
Syn40M04M > 3hr > 3hr 256.23 >3hr 2.06
Syn40M04H 81.52 46.64 28.62 34.95 3.51

trimloss4 >3hr *** 178.60 >3hr > 3hr
trimloss5 >3hr *** >3hr >3hr > 3hr

Table 2: Comparison of running times (in seconds) for the five algorithms (bold face for best
running time).

19

I-BB I-Hyb I-OA

Problem name time nodes time nodes NLP OAIF
%
time
NLP

time nodes NLP

BatchS101006M 124.87 1532 72.90 502 47 5 31.56 551.56 78404 10
BatchS121208M 1894.99 14144 71.76 206 20 3 20.44 173.54 15083 4
BatchS151208M 2732.32 14677 632.39 4352 343 5 66.12 3360.58 258804 6
BatchS201210M 5304.94 18378 816.16 3608 327 4 66.33 >3hr >613631 >2

CLay0203H 20.15 206 39.45 138 101 41 35.78 6.91 2564 11
CLay0204H 496.06 4392 48.02 928 42 1 24.55 7.85 4490 1
CLay0205M 284.01 11171 114.19 5670 394 10 11.21 179.72 155440 6
CLay0205H *** *** 428.93 7035 417 8 61.99 1048.37 355333 4
CLay0303M 13.44 454 55.84 634 324 41 36.29 11.15 5688 13
CLay0303H 28.30 257 69.98 504 191 15 55.89 26.45 7119 13
CLay0305M 644.29 19759 79.87 3905 264 9 11.64 659.44 495398 8
FLay04H 75.89 2376 68.12 2094 574 425 34.85 148.14 49961 21
FLay05M 955.89 93632 7989.17 70904 18942 13752 4.74 6566.21 4582107 54
FLay05H 4066.47 88220 *** *** *** *** *** >3hr >2063219 >18

Fo7 2 9833.10 236974 7103.02 53908 4306 4 12.99 >3hr >2351933 >1
Water0202 545.95 32 390.11 14 16 14 71.71 974.19 118 7
Water0303 1523.86 80 1153.18 72 33 27 50.39 >3hr >1525 >24

Water0202R 328.20 190 156.45 188 65 53 90.35 115.28 2356 27
RSyn0810M03H 301.51 1164 14.70 0 4 3 11.80 15.87 201 3
RSyn0815M03H 188.10 638 27.78 0 6 5 7.98 27.76 301 5
RSyn0820M03H 369.06 1043 62.85 16 12 8 46.68 32.66 414 2
RSyn0820M04H 342.76 621 57.35 24 14 11 37.79 43.68 551 3
RSyn0830M03H 389.56 943 7.82 0 3 2 19.66 11.80 137 2
RSyn0840M04H 2182.70 3230 118.43 74 24 17 57.11 69.74 486 3
RSyn0840M03H 319.17 640 13.27 0 4 3 20.18 20.02 375 3
RSyn0840M04H 3119.50 3933 22.94 0 3 2 11.98 60.32 462 2

SLay10M 514.56 16072 197.93 6548 563 34 18.75 >3hr >2034251 >1
SLay07H 53.22 775 73.46 954 100 13 11.85 *** *** ***
SLay08H 107.05 1187 120.54 1372 157 3 13.55 >3hr >1643379 >1

SLay09MH 70.95 2488 39.95 1309 147 9 16.99 >3hr >3646655 >14
SLay09H 260.69 2239 328.35 5022 389 5 1.66 >3hr >1100614 >1

Syn20M04M > 3hr >100475 52.50 358 34 5 11.57 174.60 14550 2
Syn30M03M > 3hr >132373 16.89 0 4 3 2.24 15.06 746 3
Syn30M04M > 3hr >79144 118.01 886 119 41 18.08 1544.91 141255 4
Syn40M02M > 3hr >179089 15.55 0 4 3 2.18 15.32 1180 3
Syn40M03M > 3hr >84501 238.34 2154 309 118 20.07 1875.38 163802 5
Syn40M03H 24.07 96 17.33 0 5 4 51.96 24.32 422 4
Syn40M04M > 3hr >57992 256.23 1322 129 6 14.16 >3hr 952994 >1
Syn40M04H 46.64 126 28.62 0 6 5 53.97 34.95 543 4

trimloss4 *** *** 178.60 12773 985 4 15.33 >3hr >11869930 >2
trimloss5 *** *** >3hr > 104937 > 9715 > 0 *** >3hr >3240229 >1

Table 3: Detailed comparison of I-BB, I-Hyb, I-OA. Cpu times (in seconds), number of nodes, and
number of NLPs solved are displayed. For I-Hyb, the number of times the OA linear relaxation
has an integer solution (OAIF), forcing the solution of an NLP, and the percent of time spent
solving NLPs are also listed (bold face for best running time).

20

Problem name SBB I-BB
BatchS101006M 22590 1532
BatchS121208M 53580 14144
BatchS151208M 68484 14677
BatchS201210M >161338 18378
CLay0203H 420 206
CLay0204H 2808 4392
CLay0205M 10749 11171
CLay0205H 29730 ***
CLay0303M 387 454
CLay0303H 298 257
CLay0305M 21352 19759
FLay04H 2808 2376
FLay05M 86812 93632
FLay05H 112388 88220
Fo7 2 >217106 236974
RSyn0810M03H 232 1164
RSyn0815M03H 364 638
RSyn0820M03H 1540 1043
RSyn0820M04H 314 621
RSyn0830M03H 193 943
RSyn0840M04H 877 3230
RSyn0840M03H 222 640
RSyn0840M04H 833 3933
SLay10M 1858 16072
SLay07H 6335 775
SLay08H 7634 1187
SLay09MH 2227 2488
SLay09H 31015 2239
Syn20M04M >497221 >100475
Syn30M03M >328268 >132373
Syn30M04M >160695 >79144
Syn40M02M >492640 >179089
Syn40M03M >177817 >84501
Syn40M03H 72 96
Syn40M04M >212265 >57992
Syn40M04H 100 126
trimloss4 >1277211 ***
trimloss5 >1000000 ***

Table 4: Comparison of number of nodes in the two NLP BB.

21

Problem name I-OA Dicopt % of gap
closed

BatchS101006M 10 14 75.26
BatchS121208M 4 5 82.83
BatchS151208M 6 7 78.76
BatchS201210M >2 4 86.64
CLay0203H 11 77 8.56
CLay0204H 1 2 100
CLay0205M 6 120 99.90
CLay0205H 4 24 99.90
CLay0303M 13 516 13.34
CLay0303H 13 333 13.34
CLay0305M 8 282 99.90
FLay04H 21 332 72.39
FLay05M >54 >799 26.79
FLay05H >18 >757 26.79
Fo7 2 >1 >614 87.19∗

RSyn0810M03H 3 4 64.89
RSyn0815M03H 5 *** 71.67
RSyn0820M03H 2 3 90.58
RSyn0820M04H 3 4 68.85
RSyn0830M03H 2 3 85.26
RSyn0840M04H 3 3 80.01
RSyn0840M03H 3 3 75.55
RSyn0840M04H 2 3 74.74
SLay10M >1 >600 2.12∗

SLay07H *** 54 8.95
SLay08H >1 70 0∗

SLay09MH >14 >691 10.79
SLay09H >1 >234 0∗

Syn20M04M 2 3 42.21
Syn30M03M 3 5 63.93
Syn30M04M 4 249 64.52
Syn40M02M 3 4 77.63
Syn40M03M 5 5 79.28
Syn40M03H 4 5 0∗

Syn40M04M >1 4 75.56∗

Syn40M04H 4 3 0.08
trimloss4 >2 >97 24.13
trimloss5 >1 >75 21.41∗

Table 5: Comparison of number of iterations in the two OA algorithms and percentage of gap
closed by solving the first MILP in I-OA (“∗” indicates that the first MILP is not solved within
the time limit ; therefore the given number is only a lower bound on the gap closed).

22

