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Abstract 

Enterprise-wide optimization (EWO) is an area that lies at the interface of chemical engineering and 
operations research, and has become a major goal in the process industries due to the increasing 
pressures for remaining competitive in the global marketplace. EWO involves optimizing the operations 
of supply, manufacturing and distribution activities of a company to reduce costs, inventories and 
environmental impact, and to maximize profits and responsiveness. A major focus in EWO is the 
optimal operation of manufacturing facilities that often require the use of nonlinear process models. 
Major operational items include planning, scheduling, real-time optimization and control. We provide 
an overview of EWO in terms of a mathematical programming framework. We first provide a brief 
overview of mathematical programming techniques (mixed-integer linear and nonlinear optimization 
methods), as well as decomposition methods, stochastic programming and modeling systems. We then 
address some of the major issues involved in the modeling and solution of these problems. Finally, 
based on the EWO program at the Center of Advanced Process Decision-making at Carnegie Mellon, 
we describe several applications to show the potential of this area. 

Keywords 

Introduction

The chemical industry is a major component of the US 
economy, converting raw materials such as oil, natural 
gas, air, water, metals and minerals into more than 
70,000 different products According to the American 
Chemical Council (ACC: ‘Industry Fact Sheet’), over 
96 percent of all manufactured goods are dependent in 
some way on the chemical industry. The US chemical 
industry produces 19 percent of the world’s chemical 
output, amounting to US$689 billion (The Outlook for 
the US Chemical Industry, KPMG, 2010). In addition, 
the US chemical industry is responsible for 10 percent 
of US merchandise exports, totaling US$145 billion 
annually. The industry directly employs over 800,000 
people nationwide.  

Due to the increasing pressure for reducing costs, 
inventories and ecological footprint, and in order to 
remain competitive in the global marketplace, 
Enterprise-wide Optimization (EWO) has become a 
major goal of the chemical industry. The last two 

conferences on Foundations of Computer-Aided Process 
Operations in Coral Springs in January 2003, and in Boston 
in July, 2008, had a number of papers from a variety of 
process industries such as petroleum, chemical, 
pharmaceutical, consumer products, that referred to the goal 
of EWO throughout the optimization of supply chain of 
these industries; see http://www.cheme.cmu.edu/focapo and 
special issues of Computers & Chemical Engineering, 28 
(6-7) (2004) and 33 (12) (2009). The need for EWO in the 
process industry has also been reinforced with the 
announcement of the new initiative on “Advanced 
Manufacturing Plan” announced by President Obama 
(http://www.whitehouse.gov/sites/default/files/microsites/os
tp/advanced-manu-fs.pdf). EWO has also been an important 
element of the “Smart Manufacturing” initiative led by Jim 
Davis and Tom Edgar https://smart-process-
manufacturing.ucla.edu/ 

This paper is a follow-up to an earlier paper by the 
author (Grossmann, 2005) that outlined the major research 
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challenges involved in the area of EWO for process 
industries. Subsequently, Varma et al, (2007) provided 
an alternative overview of challenges and opportunities 
in this area with major emphasis in the pharmaceutical 
industry. The present paper emphasizes the scope and 
application of mathematical programming techniques to 
EWO problems. The paper is organized as follows. We 
first present a general definition of Enterprise-wide 
Optimization, and describe an initiative that we have 
had in this area at the Center of Advanced Process 
Decision-making (CAPD) at Carnegie Mellon for the 
last five years. Next, we present a review of mixed-
integer optimization, stochastic programming 
techniques, and decomposition techniques, which 
constitute the core of EWO models. Next, we discuss 
some of the main research issues that we have 
identified as a result of this effort. We then present 
several examples to illustrate the potential of new 
developments in EWO. Finally, we close by outlining 
some of the major remaining challenges in this area. 

Definition of Enterprise-wide Optimization 

 

Figure 1. Major elements of Enterprise-wide 
Optimization 

Enterprise-wide Optimization is concerned with 
the coordinated optimization of the operations of a 
supply chain (Shapiro, 2001), namely R&D, supply of 
material, manufacturing and distribution of products. 
Process supply chains range from the ones in the 
petroleum industry (Shah et al., 2011) to the ones in 
the pharmaceutical industry (Shah, 2004), and include 
manufacturing as a major component (Pistikopoulos et 
al, 2007; Wassick, 2009). The main objectives in 
EWO include maximization of profits, responsiveness 
to customers and asset utilization, and minimization of 
costs, inventory levels and ecological footprint. Major 
operational activities include planning, scheduling, 
real-time optimization and control (see Fig. 1). One of 
the key features in EWO is integration of the 

information and decision-making among the various 
functions that comprise the supply chain of the company. 
Integration of information is being achieved with modern 
IT tools (e.g. SAP and Oracle) that allow the sharing and 
instantaneous flow of information along the various 
organizations in a company. While IT tools allow many 
groups in an enterprise to access the same information, 
these tools do not provide comprehensive decision making 
capabilities for optimization that account for complex 
trade-offs and interactions across the various functions, 
subsystems and levels of decision making. This means that 
companies are faced with the problem of deciding whether 
to develop their own in-house tools for integration, or 
make use of commercial software from vendors. 

In order to realize the full potential of transactional IT 
tools, the development of sophisticated decision-support 
tools based on mathematical programming (analytical IT 
tools) is needed to operate the supply chain in order to yield 
overall optimum economic performance, as well as high 
levels of customer satisfaction. A major challenge that is 
involved in EWO of process industries is the integrated and 
coordinated decision-making across the various functions in 
a company (purchasing, manufacturing, distribution, sales), 
across various geographically distributed organizations 
(vendors, facilities and markets), and across various levels 
of decision-making (strategic, tactical and operational) as 
seen in Figure 2 (Shapiro, 2001).  
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Figure 2. Transactional and Analytical IT (Tayur 
et al., 1999) 

The EWO Initiative at Carnegie Mellon 

Over the last 5 years we have organized at the Center of 
Advanced Process Decision-making (CAPD) at Carnegie Mellon a 
special interest group on Enterprise-wide Optimization. This 
research effort has been multidisciplinary in nature involving 
faculty from chemical engineering (Larry Biegler and Ignacio 
Grossmann at CMU), industrial engineering (Jeff Linderoth and 
Larry Snyder at Lehigh, and Andrew Schaefer from UPitt), and 
operations research (John Hooker, Nic Secomandi, Tepper Business 
School at CMU). The EWO group has over the years involved the 
following 14 companies: ABB, Air Liquide, Air Products, BP, 
Braskem, Cognizant, Dow Chemical, Ecopetrol,  
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ExxonMobil, NOVA Chemicals, PPG, Praxair, Total, and 
Unilever. 

The major goal of the EWO group at Carnegie 
Mellon has been to develop mathematical programming 
models and solution algorithms for a variety of 
applications, which have  
recently included the following: 
- Batch Scheduling with Electric Power Constraints (ABB) 
- Design of Resilient Supply Chain Networks for  
 Chemicals and Gases (Air Products) 
- Production-Distribution Coordination for Planning  
   of an Industrial Gases Supply Chain (Air Liquide) 
- Nonlinear models for Refinery Optimization (BP) 
- Multiperiod Scheduling of Polyproylene Production  
 (Braskem) 
- Optimization of Gas Pipelines (Cognizant) 
- Design of Reliable Integrated Sites (Dow) 
- Simultaneous Scheduling and Dynamic Optimization of  
  Batch Processes (Dow) 
- Nonlinear Programming for Refinery Optimization  
 (Ecopetrol) 
- Global Optimization of Bilinear GDP Models (ExxonMobil) 
- Multistage Stochastic Programming for Design and  
 Planning of Oil and Gasfields (ExxonMobil) 
- Chemicals: Polymerization Optimization (NOVA Chemicals) 
- Planning and Scheduling for Glass Production (PPG) 
- Capacity Planning of Power Intensive Networks with  
   Changing Electricity Price (Praxair) 
- Scheduling of Crude Oil Operations (Total) 
- Scheduling of Fast Moving Consumer Goods 
(Unilever) 

Knowledge that has emerged from these projects, 
which have largely emphasized planning and scheduling 
of a number of process systems, has been shared among 
the companies, and is in fact available in 
http://egon.cheme.cmu.edu/ewocp/slides_meetings.html. 
From a mathematical point of view most of the models 
that have been developed correspond to mixed-integer 
optimization problems. However, some of the projects 
also involve nonlinear programming and dynamic 
optimization problems as well. A series of seminars has 
been organized around these topics and can be found in: 
http://egon.cheme.cmu.edu/ewocp/slides_seminars.htm. 
Below we first briefly review the major mathematical 
programming tools that have been used in these projects. 
Next, we discuss some of the major challenges and issues 
that we have had to face in the application of these 
techniques in EWO projects.  

MILP 

A large number of optimization problems in EWO 
can be described by Mixed-Integer Linear Programming 
(MILP) models. Examples include the optimization of 
production operations including planning and 
scheduling (Pinedo, 2001; Mendez et al., 2006; Floudas 
and Lin, 2004; Pochet and Wolsey, 2006), optimization 

of supply chains involving logistics and distribution, 
multiple period optimization (Grossmann, 2005). In the 
process industries, real world problems usually lead to large-
scale models, due to the size of the system under study, but 
also because of models that involve multiple periods. 
Furthermore, often new variables and equations are 
introduced to replace nonlinearities by piecewise linear 
approximations, or by performing exact linearizations (eg. 
product binary and continuous variables).  

MILP problems may be represented by the following 
formulation in terms of continuous and 0-1 variables: 

 0},1,0{
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where c, d, b are vectors of coefficients, and A and B are 
matrices of coefficients.  

Generally MILP problems can be solved using Linear 
Programming (LP)-based Branch & Bound (B&B) solvers 
(Wolsey, 1998) that provide rigorous lower and upper 
bounds on the solution, which in turn provide information 
regarding the optimality of the solution. Broadly speaking 
the LP-based branch and bond algorithm starts with the 
solution of the initial relaxed LP problem at the root node in 
which the integer variables are treated as continuous 
variables. The solution to this problem provides a lower 
bound. If the continuous relaxation does not yields integer 
values for the 0-1 variables a tree search is performed by 
successively enforcing integrality on the variables in the tree 
search and solving the corresponding LP subproblem. When 
a feasible solution is found this yields an upper bound. This 
procedure is repeated for each sub-problem, until the upper 
bound defined by integer solutions is equal to the lower 
bound given by the LP subproblems. During the search the 
upper and lower bounds are used to prune branches of the 
tree (for a detailed description see Wolsey (1998)). B&B 
algorithms, however, may not be able to effectively solve 
large problems due to the exponential number of 
subproblems that may have to be solved, particularly when 
the LP relaxation is poor. MILP solvers have implemented 
more sophisticated versions denoted by Branch & Cut 
(B&C) algorithms. In these algorithms, valid inequalities 
denoted by cutting planes are added to the linear relaxations 
in order to reduce the size of the feasible space without 
eliminating any feasible integer solution. 

In the last 10 years great progress has been made in 
algorithms and hardware, which has resulted in an 
impressive improvement of our ability to solve mixed-
integer programming problems (MILPs) (Johnson et al., 
2000; Bixby, 2002; Bixby, Rothberg, 2007) through codes 
such as CPLEX, XPRESS and GUROBI. Capitalizing on 
theory developed during the last 20 years, it is now possible, 
using off-the-shelf LP-based branch-and-bound commercial 
software, to solve in a few seconds MILP instances that were 
unsolvable 10 years ago. As an example, consider the 
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classical Kondili State-Task Network MILP problem 
(Kondili et al.1993) with 72 binary variables, 179 
continuous variables and 250 constraints. In 1987 using 
Kondili’s B&B with MINOS for the LP solver, it took 
908 seconds and 1466 nodes in a VAX-8600 to solve 
this problem, while Shah et al. (1993) with a tighter 
constraint in place of a big-M constraint took 119 
seconds and 419 nodes using a SUN Sparc. Today in 
2011, using CPLEX 12.1 with a laptop Lenovo t60p 
only 0.14 seconds and 14 nodes were required. A more 
standard benchmark for MILP problems, the MIPLIB 
2003 (Achterberg et al, 2006), shows that in the 
beginning of 2003 there were more than 30 problems 
with unknown optimal solution, while in the beginning 
of 2011 only four problems remain to be solved 
(http://miplib.zib.de) The current computational 
performance of MILP software is the result of a 
combination of improvements in LP solvers, pre-
processing techniques for LP and MILP, linear algebra 
for sparse systems, cutting planes, heuristics, 
parallelization and faster computers (Bixby, Rothberg, 
2007).  

MINLP Methods  

While MINLP models are still less common than 
MILP problems in EWO applications, there are a 
number of important applications that require the 
handling of nonlinearities, which in turn give rise to 
MINLP models. The most basic form of an MINLP 
problem is as follows (Grossmann, 2002): 

    

min ( , )

. . ( , ) 0 (MINLP)

,

j

Z f x y

st g x y j J

x X y Y


 

   

where f: Rn  R1, g: Rn Rm are differentiable 
functions, J is the index set of constraints, and x and y 
are the continuous and discrete variables, respectively. 
In the general case the MINLP problem will also 
involve nonlinear equations, which we omit here for 
convenience in the presentation. The set X commonly 
corresponds to a convex compact set, e.g. 

   X = {x | xR
n
, Dx < d, xL < x < xU};  the 

discrete set Y corresponds to a polyhedral set of integer 
points,    Y = {y | yZm, Ay < a} which in most 

applications is restricted to 0-1 values, y m
. In 

most applications the objective and constraint functions 
f(·), g(·) are linear in y (e.g. fixed costs and mixed-logic 
constraints): 
f (x , y)  cT y  r(x), g(x, y)  By  h(x).  The 

derivation of the most methods for MINLP assumes that 
the functions f and g are convex. 

Methods that have addressed the solution of problem 
(MINLP) include first branch and bound methods (BB), 
which are generally a direct extension of the LP-based branch 
and bound method for MILP, except that in this case an NLP 
solver (e.g. reduced gradient, successive quadratic 
programming, or interior point method) is used at each node 
(e.g. Leyffer, 2001), while the use of cuts at this point is still 
rather limited (Stubbs and Mehrotra, 1999). A second class of 
methods includes decomposition algorithms such as 
Generalized Benders Decomposition (GBD) (Geoffrion, 
1972) and Outer-Approximation (OA) (Duran and 
Grossmann, 1986; Fletcher and Leyffer, 1994), in which 
there is an iterative sequence of NLP subproblems with fixed 
0-1 variables that yield upper bounds, and MILP master 
problems that yield lower bounds. Convergence in this case 
is achieved when bounds lie within a specified tolerance. In 
order to avoid the repeated sequence of MILP master 
problems, branch and cut methods (or LP/NLP based branch 
and bound) have been proposed in which a single branch and 
bound tree is enumerated by updating the linear 
approximations with solution of NLP subproblems at selected 
nodes (Quesada and Grossmann, 1992; Bonami et al, 2008). 
Finally, a variant of the decomposition methods is the 
Extended Cutting Plane Method (ECP) (Westerlund and 
Pettersson, 1995, and Westerlund and Pörn (2002)) in which 
the NLP subproblem is replaced by function evaluations, 
with which the algorithm effectively reduces to a successive 
MILP method. 

The number of computer codes for solving MINLP 
problems has greatly increased in the last decade. The 
program DICOPT (Viswanathan and Grossmann, 1990) is an 
MINLP solver that is based on the outer-approximation 
algorithm with some extensions, and is available in the 
modeling system GAMS (Brooke et al., 1998). This code 
also uses the relaxed NLP to generate the first linearization 
of the first MILP master problem, with which the user need 
not specify an initial integer value. Also, since the lower 
bounding properties of the master problem cannot be 
guaranteed, the search for nonconvex problems is terminated 
when there is no further improvement in the feasible NLP 
subproblems. This is a heuristic that works reasonably well 
in many problems. A similar code to DICOPT, AAOA, is 
available in AIMMS. Codes that implement the branch-and-
bound method solving NLP subproblems at each node 
include the code MINLP_BB that is based on an SQP 
algorithm (Leyffer, 2001) and is available in AMPL, and the 
code SBB, which is available in GAMS (Brooke et al, 1998). 
The code α–ECP that is available in GAMS implements the 
extended cutting plane method by Westerlund and Pettersson 
(1995), including the extension by Westerlund and Pörn 
(2002). The code MINOPT (Schweiger and Floudas, 1998) 
also implements the OA and GBD methods, and applies 
them to mixed-integer dynamic optimization problems. The 
open source code Bonmin (Bonami et al, 2008) implements 
the branch and bound method, the outer-approximation and 
an extension of the LP/NLP based branch and bound method 
in one single framework. FilMINT (Abhishek, Linderoth and 
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Leyffer, 2010) also implements a variant of the LP/NLP 
based branch and bound method. Codes for the global 
optimization that implement the spatial branch and 
bound method include BARON (Sahinidis, 1996), 
LINDOGlobal (Lindo Systems, 2010), and Couenne 
(Belotti et al, 2009). For a detailed treatment of global 
optimization problems see Tawarlamani and Sahinidis 
(2002) 

It should be noted that solving MINLP problems is 
still often a non-trivial task, especially when compared 
to solving MILP problems. A major reason for this is the 
need to solve NLP subproblems (see Biegler (2010) for 
a review), which often require good initial points to 
ensure convergence. Therefore, often an approach that is 
used in scheduling is to reformulate the problem as an 
MILP by for instance using exact linearizations of 
products of binary and continuous variables, or using 
piecewise linear approximations. This, however, can 
only be done in relatively few cases. 

Logic-based Optimization Methodologies 

Disjunctive Programming. A linear programming 
problem that includes as special constraints disjunctions 
(Balas, 1979) is denoted as a disjunctive programming 
problem. Disjunction refer to constraints where only one 
set of inequalities must be satisfied but not all. These 
disjunctions have been used extensively in scheduling to 
represent for instance whether a product i precedes 
product j or vice-versa through inequalities, where each 
of these is expressed in terms of start times for jobs i and 
j (Adams et al., 1988). Special purpose algorithms have 
been developed for solving disjunctive programs, the 
most common one being the disjunctive branch and 
bound method (Beaumont, 1991). Generalized 
disjunctive programming (GDP) corresponds to a 
generalization of linear or nonlinear programming 
model that includes disjunctions given in terms of 
constraints and Boolean variables that are in turn 
constrained through logic propositions (Raman and 
Grossmann, 1994). One way to solve a GDP problem is 
to reformulate it as a mixed-integer program, using 
either a big-M reformulation or a hull relaxation 
formulation that is given in terms of disaggregated 
variables with which the convex hull can be obtained for 
each disjunction (Lee and Grossmann, 2000). While the 
first produces a smaller mixed-integer program, the 
latter generally yields stronger lower bounds for its 
relaxation. Also, as has been shown by Sawaya and 
Grossmann (2011) and Ruiz and Grossmann (2011), the 
hull relaxation can be further strengthened through the 
application of basic steps that involve intersecting pairs 
of disjunctions. The advantage of starting with a GDP 
mode, is that it can be used as basis to derive mixed-
integer programs that exhibit good relaxation properties, 
which is especially useful in many large-scale 
scheduling models. Software for GDP problems is 

available in the GAMS based codes LOGMIP (Vecchietti 
and Grosmann, 1999) and EMP (Ferris et al, 2009). 

 
Constraint Programming. In terms of logic-based 

optimization methods, constraint programming offers an 
alternative approach for tackling scheduling problems, 
particularly resource-constrained scheduling problems, 
which occur frequently in supply-chain problems. Constraint 
programming (CP) offers certain advantages in the modeling 
and solution of scheduling problems. The models tend to be 
more concise and easier to interpret since logical and 
combinatorial conditions are much more naturally expressed 
in a CP than in an MILP model (e.g., Hooker, 2000; Hooker, 
2002; Milano 2003). The solvers take advantage of logical 
inference (constraint propagation) methods that are well 
suited to the combinatorial constraints that characterize 
scheduling problems. For instance, a CP model readily 
formulates sequencing problems and offers specialized 
propagation algorithms that exploit their structure. The 
integration of CP and MILP methods has shown to be 
effective in specialized scheduling problems. Integration 
allows one to attack problems in which some of the 
constraints are better suited to an MILP-like approach 
(assignment decisions because they have good continuous 
relaxations) and others are better suited for a CP approach 
(sequencing decisions because they “propagate well”). 
Hybrid methods have shown in some problems outstanding 
synergies that lead to order magnitude reductions in 
computation (Jain and Grossmann, 2001; Maravelias and 
Grossmann, 2004; Hooker 2007). Software for CP includes 
OPL (Van Hentenryck, 1999) now distributed by IBM, and 
CHIP, distributed by Cosytech. 

Stochastic Programming 

Planning under uncertainty is an important problem that 
arises in EWO problems. Modeling and solution of this class 
of problems by stochastic programming directly takes 
uncertainty into account in terms of probability distribution 
functions (Birge & Louveaux, 1997; Sahinidis, 2004). A 
Stochastic Program is a mathematical program in which 
some of the parameters defining a problem instance are 
random (e.g. demand, yield). The basic idea behind 
stochastic programming is to make some decisions now, 
stage 1, and to take some corrective action (recourse) in the 
future, stage 2, after revelation of the uncertainty. If there are 
only two stages then the problem corresponds to a 2-stage 
stochastic program, while in a multistage stochastic program 
the uncertainty is revealed sequentially, i.e. in multiple 
stages (periods), and the decision-maker can take corrective 
action over a sequence of stages. In the two-stage and 
multistage case the cost of the decisions and the expected 
cost of the recourse actions are optimized.  

The uncertain parameters are commonly assumed to 
follow discrete probability distributions and a planning 
horizon consisting of a fixed number of decision points. 
Using these two assumptions, the stochastic process can be 
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represented with scenario trees. In a scenario tree (Fig. 
3-a) each node represents a possible state of the system 
at a given time period. Each arc represents the possible 
transition from one state in time period t to another 
state in time period t+1, where each state is associated 
with the probabilistic outcome of a given uncertain 
parameter. A path from the root node to a leaf node 
represents a scenario. An alternative representation of 
the scenario tree was proposed by Ruszczynski (1997) 
where each scenario is represented by a set of unique 
nodes (Fig. 3-b). The horizontal lines connecting nodes 
in time period t mean that nodes are identical as they 
have the same information and those scenarios are said 
to be indistinguishable in that time period. These 
horizontal lines correspond to the non-anticipativity 
constraints in the model that link different scenarios 
and prevent the problem from being decomposable. 

 

Figure 3a. Standard Scenario Tree with 
uncertain parameters ξ1 and ξ2 Figure 3-b: 

Alternative Scenario Tree 

Jonsbraten et al. (1998) classified uncertainty in 
planning problems into two broad categories: exogenous 
uncertainty (e.g. demands) where stochastic processes 
are independent of planning and investment decisions 
and endogenous uncertainty (e.g. yields) where 
stochastic processes are affected by these decisions. 
While exogenous parameters are quite common, as for 
instance is the case of uncertain demands, a special type 
of multistage stochastic programming (MSSP) problems 
involve endogenous uncertainty where the structure of 
scenario tree is decision-dependent. As for solution 
methods, the simplest is to convert the problem into its 
deterministic equivalent form. Since this may give rise 
to very large-scale problems some type of 
decomposition method is used to tackle these problems 
(Birge & Louveaux, 1997; Sahinidis, 2004).  

In contrast to stochastic programming, robust 
optimization (Ben-Tal et al., 2009) focuses on a 
computationally tractable description of an uncertainty 
set, against which the solution is “robustified”. Soyster's 
worst-case approach (1973) is considered to be too 
conservative. Bertsimas and Sim (2003) provide a 
computationally tractable linear formulation that allows 
controlling the degree of conservatism. Bertsimas and 
Sim's (2003) approach assumes that each uncertain 
parameter will be either at its nominal or worst-case 
value and that the total number of parameters that take 
their worst-case values is restricted. The main advantage 
of robust optimization methods is that they are much 

more tractable than their stochastic programming 
counterpart. The disadvantage is that they do not include 
recourse actions limiting their scope for short-term problems 
in which recourse is not an issue. 

Decomposition Techniques 

Given the large size of many EWO problems, the 
application of decomposition techniques is often required. 
Four common approaches in EWO problems are Lagrangean 
decomposition, Benders decomposition, bi-level 
decomposition and rolling horizon. 

Lagrangean Decomposition (Geoffrion, 1972) is perhaps 
the most common technique used for decomposing problems 
so as to make them tractable. An excellent review on 
Lagrangean Relaxation and Lagrangean Decomposition can 
be found in Guignard (2003). Lagrangean relaxation is a 
useful technique for problems with complicating constraints. 
The basic idea consists of dualizing the complicating 
constraints by transferring them into the objective function 
and multiplying them by the Lagrange multipliers. The 
solution to this relaxed problem for fixed multipliers 
provides a lower bound for the minimization case. 
Furthermore, by fixing these multipliers the relaxation 
decomposes into subproblems (e.g. by time periods or by 
sites in supply chain problems; see Terrazas-Moreno et al, 
2011). Using heuristics an upper bound is obtained, after 
which the multipliers are typically updated with a 
subgradient optimization method so as to maximize the dual 
problem. The iterations proceed until the bounds lie within a 
specified tolerance or a maximum number of iterations is 
exceeded. It should be noted that non-convexities such as 
binary variables in an MILP problem give rise to a duality 
gap, and hence termination is by exceeding a specified limit 
of number of iterations. 

There is rich literature on the application of Benders 
decomposition (BD) (Benders, 1962) to optimization under 
uncertainty. Most of these applications model uncertainty 
using a stochastic programming (SP) representation (Birge 
and Louveaux, 1997), and apply variations of the BD 
algorithm. The standard decomposition technique is referred 
to as L-shaped decomposition (Van Slyke and Wets, 1969) 
in the stochastic programming literature. Straub and 
Grossmann (1993) proposed a nonlinear programming 
(NLP) model for maximizing the feasible operating region of 
a network with uncertain process parameters and used 
Generalized Benders Decomposition (GBD) (Geoffrion, 
1972) to solve this problem. A similar approach was 
proposed by Pistikopoulos (1995) and applied by Ierapetritou 
et al. (1996) as a general algorithmic technique for solving a 
class of problems defined as process design and operations 
under uncertainty.  

The bi-level decomposition algorithm is a specialized 
tailored decomposition technique. This technique was first 
proposed by Iyer and Grossmann (1998) for solving a 
multiperiod capacity expansion planning model for process 
networks. In the context of their problem the algorithm 



  

 7

involves a master problem in the reduced variable space 
of binary variables to determine the selection of 
processes and an upper bound to the NPV. A detailed 
planning model is then solved for the selected processes 
to determine the expansion plan and a lower bound to 
the objective function. Special cuts are added to the 
master problem to accelerate the convergence. Similar 
bi-level decomposition schemes have been developed by 
Bok et al. (2000) for supply chain optimization problem, 
and by Erdirik-Dogan and Grossmann (2006) for the 
simultaneous planning and scheduling of single-stage 
continuous multiproduct plants. 

 

Figure 4. Application of rolling horizon with 
detailed model A and aggregated model B. 

Finally, another major decomposition approach 
relies on a rolling horizon strategy in which multiperiod 
problems are solved by recursively applying a more 
detailed model in the first time period and a simpler 
aggregate problem in the remaining time periods 
(Bassett et al, 1996; Dimitriadis et al., 1997). After each 
stage, the decisions in the first time period are fixed and 
the horizon time is effectively shrunk as seen in Fig. 4. 

Multiobjective Optimization  

As indicated above, EWO problems involve 
multiple objectives, which are often conflicting in nature 
(e.g. NPV vs. responsiveness, NPV vs. environmental 
impact), thus giving rise to trade-off or Pareto-optimal 
solutions. There are three main types of multiobjective 
optimization approaches: (1) those based in the 
transformation of the problem into a single-objective 
one (see Ehrgott, 2000), (2) the Non-Pareto approaches, 
which use search operators based in the objectives to be 
optimized and (3) Pareto approaches, which directly 
apply the concept of dominance (see Deb, 2008). 
Whereas the first approach can be easily applied in 
conjunction with standard exact algorithms (i.e., branch 

and bound), the second and third ones are better suited to 
work with meta-heuristics. Note that any of the traditional 
exact methods (LP, MILP, MINLP, GDP and global 
optimization) can be coupled with single-objective 
multiobjective optimization approaches, such as aggregation 
methods, the epsilon constraint method, goal programming 
and goal attainment. Furthermore, parametric optimization 
techniques are especially attractive for efficiently obtaining 
Pareto-optimal solutions in linear bicriterion optimization 
problems (Pistikopoulos et al., 2007). 

 

Modeling Systems  

As described in the previous sections, the most common 
form of EWO models take the form of deterministic or 
stochastic MILP or MINLP models. Currently, it is possible 
to implement these models in commercial modeling systems 
since the models are expressed in equation form. This feature 
represents a significant advantage when compared for 
instance to process simulation, in which procedural 
approaches are common in large part due to the need of 
handling thermodynamic properties. Therefore, many 
planning, scheduling and supply chain models have been 
implemented in commercial modeling systems such as 
AIMMS, AMPL, GAMS and OPL. Furthermore, the effort 
involved is relatively modest. 

All modeling systems allow the user to implement 
models in the form of algebraic models involving variables, 
discrete and continuous, and constraints and an objective 
function. Since it is possible to use indexed variables and 
constraints it is easy to implement models in compact form, 
similar to those expressed analytically, with which large-
scale problems are generated automatically by appropriate 
definition of sets for the indices (e.g. products, lines, time 
intervals) and corresponding data for the indexed parameters. 
Furthermore, a major advantage of these modeling systems is 
that they automatically interface with optimization solvers 
with which the user need not be concerned with low level 
programming details (e.g. MPS format, or supplying 
subroutines) to use optimization software. Moreover, for 
nonlinear models, these modeling systems perform automatic 
differentiation with which the user need not be concerned 
with supplying derivative information for the nonlinear 
solvers.  

Finally, the modeling systems have capabilities of 
interfacing with spreadsheet, databases or graphics packages, 
thereby facilitating the deployment of the model as a tool 
with graphical user interface that can be used by non-
specialist users. Using these features, it is very easy to create 
new test instances and demonstrate the potential of 
optimization, as well as embed the solution into e.g. MS 
Office environment as the mathematical models are 
automatically propagated based on the given problem data. 
AIMMS has additionally graphical capabilities that allow 
easy implementation of prototype applications including 
Gantt chart displays, which in some cases may be sufficient 
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for a final optimization solution. Other modeling 
environments can be connected to various visualization 
components, which often involve separate licensing 
costs.  

Lastly, one important aspect is that models in these 
platforms have upward compatibility and are often 
platform independent (Windows, Linux, Unix, …) 
which ensures their long term use, especially if they are 
properly documented. However, the compatibility across 
the modeling systems is restricted, as no detailed 
common modeling language standards exist.  

Major Issues 

As discussed in Grossmann (2005), and based on 
our experience with the EWO group at Carnegie Mellon, 
following are the major issues and challenges that arise 
in the application of the above described mathematical 
programming and modeling tools in EWO problems (we 
do not attempt here to provide a comprehensive review): 

 
1. Linear versus Nonlinear Models. Many EWO 

problems are formulated as linear optimization 
models (mostly MILP), since the description of 
supply chains relies largely on simple input-
output models, while scheduling models are 
usually expressed in terms of fixed production 
rates and processing times (Kondili et al., 2003; 
Pantelides, 2004; Sundaramoorthy and 
Maravelias, 2011). However, if for instance one 
wants to include stochastic inventory to 
determine safety stock (e.g. You and 
Grossmann, 2008), that gives rise to 
nonlinearities, and hence an MINLP problem. 
Furthermore, it is clear that applications that 
require a more detailed process description give 
rise to nonlinearities leading to MINLP models. 
A common case is for instance the handling of 
blending constraints that involve bilinearities, 
which are nonconvex (e.g. Mendez et al, 2006; 
Mouret et al., 2009). Another, common case 
arises in cyclic scheduling problems in which 
the objective must be divided by the cycle time, 
or when the inventory term must be integrated 
(e.g. Pinto and Grossmann, 1994). When 
dynamic process models are considered for 
optimizing non-regulated batch processes and 
their transitions (e.g. Bhatia and Biegler, 1996; 
Nystrom et al, 2005; Flores-Tlacuahuac and 
Grossmann, 2006), that gives rise to MIDO 
problems, which are often reformulated as 
complex MINLP models.  
 

2. Multiscale Optimization. The spatial integration 
of geographically distributed manufacturing 
and inventory facilities in supply chains leads 
to large-scale problems that often require the 
application of specialized decomposition 

techniques (e.g. Graves, 1982; Gupta and Maranas, 
1999; Jackson and Grossmann, 2003; Neiro and 
Pinto, 2006; Li and Ierapetritou, 2010). As 
discussed above, these usually involve Lagrangean 
decomposition, Benders decomposition, bi-level 
decomposition or rolling horizon algorithms. The 
temporal integration, however, requires effective 
representations and strategies in the first place so as 
to integrate long-term design decisions, with 
intermediate term production planning and short-
term scheduling decisions. These then require in 
turn decomposition schemes for the optimization 
across different time scales (e.g. Erdirik-Dogan and 
Grossmann, 2006; Liu et al., 2008; Vendarme and 
Floudas, 2008; Maravelias and Sung, 2009). A 
common example is rolling horizon strategies in 
which a detailed scheduling is recursively used in 
the first period, and an aggregate model in the 
subsequent time periods (e.g. Dimitriades et al., 
1997; Lima et al., 2011). Finally, multisite planning 
and scheduling problems represent challenging 
problems as they require integration across both 
spatial and temporal scales (e.g. Terrazas-Moreno 
and Grossmann, 2011). 
 

3. Optimization under Uncertainty. This issue is clearly 
pervasive in EWO problems. Uncertainties range 
from orders placed and equipment availability in 
scheduling problems, to uncertainties in prices and 
demands in large-scale supply chains. The former 
type of problems is generally best addressed through 
robust optimization techniques since the goal in 
short-term problems is largely the one of ensuring 
feasibility of the constraints over a given uncertainty 
range (e.g. Li and Ierapetritou, 2008). In contrast, for 
long-term strategic problems, stochastic 
programming is better suited because of its capability 
to account for recourse actions for the different 
scenarios, which is essentially equivalent to 
embedding a “quasi-simulation” in the optimization 
process. The most common formulation is the two-
stage programming model (e.g. Liu and Sahinidis, 
1996; You et al., 2009). However, since most supply 
chain problem are multiperiod in nature, multistage 
stochastic programming is the natural formulation for 
these problems (e.g. Goel et al., 2006; Colvin and 
Marvelias, 2008; Tarhan et al, 2009). However, 
given the complexity of multistage problems, two-
stage programming models are usually used in order 
to make these problems manageable, and even then 
advanced computing architectures may be required 
(Linderoth and Wright, 2003). 
 

4. Commercial vs. Off-the Shelf Software. In practice 
there is great temptation to use commercial software 
as opposed to developing tailor-made models and 
solution methods. Experience in our EWO group at 
Carnegie Mellon has shown that current off-the-shelf 
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software is in fact rather limited. A major reason 
is that specific applications usually feature 
characteristics that make the problem inefficient 
for a more generic model (e.g. changeovers in 
discrete time STN or RTN models), or else 
require special treatment that is not 
contemplated in the general models (e.g. 
management of waste glass and its recycle). 
Perhaps the most useful software is for some 
generic planning problems (APO optimizer from 
SAP, PIMS from AspenTech) or for specialized 
scheduling applications (e.g. AspenOrion). 
Although the STN and RTN have given hope of 
developing generic scheduling software, the 
success of software such as VirtECS Scheduler 
and OSS has been rather limited. Therefore, a 
major trend has been to develop tailored models 
taking advantage of the flexibility and 
portability provided by modeling systems such 
as GAMS and AIMMS. Furthermore, the time 
for the development of these tailored models is 
quite reasonable and has the advantage of 
exploiting the particular features of the problem 
at hand. These modeling systems can also be 
readily interfaced with Excel spreadsheets and 
ERP software such as Oracle and SAP. It should 
also be mentioned that using as a basis generic 
models such as the RTN model has proved to be 
attractive to industry. 
 

5. Solution of large-scale problems. While many 
EWO models, especially if they correspond to 
MILP problems, can in principle be solved with 
commercial optimization software (e.g. CPLEX, 
Gurobi and XPRESS), it is often the case that 
industrial applications lead to problems that are 
at least one order of magnitude larger than 
academic problems that are commonly used to 
test new models. This often poses the problem of 
either having to develop special purpose exact 
algorithms (Pekny et al., 1990; You et al, 2009), 
or else to develop solution strategies that are 
usually heuristic in nature, and are aimed at 
obtaining “good feasible solution” (e.g. Kelly, 
2002; Castro et al, 2011). There is of course also 
the option of exploiting advanced computer 
architectures (Goux and Linderoth, 2003; Ferris 
and Munson, 2000). 

Illustrative examples 

In this section we present five examples that 
illustrate the major issues and challenges in the area of 
Enterprise-wide Optimization. Example 1 deals with a 
refinery planning model that involves nonlinear process 
model for the CDUs, illustrating the challenge of 
migrating from linear to nonlinear programming models. 
Example 2 deals with the scheduling and planning in 
production-distribution network of continuous 

multiproduct plants that involve different temporal and 
spatial scales. This example illustrates the challenge of 
multi-scale modeling given the dissimilar nature of the 
activities and the need of combining a detailed scheduling 
model with a high-level planning model. Example 3 deals 
with the design of tank sizes and distribution of industrial 
gases, which also illustrates another dimension of multiscale 
optimization problems. Example 4 deals with the design and 
planning of offshore oil field facilities with nonlinear 
reservoir models under uncertainty. This example illustrates 
the challenge of handling nonlinearities in multistage 
stochastic programming models. Finally, Example 5 deals 
with a supply chain design and planning for polymer 
manufacturing under the criteria of responsiveness and 
economics with the presence of demand uncertainty. This 
example illustrates the challenge of quantifying attributes 
like responsiveness and solving multiobjective optimization 
problems. 

Example 1 

Production planning modeling is an essential tool in the 
operation and management of modern refineries. It has 
traditionally relied on linear programming (LP) principles 
and methods for simple and robust planning models, such as 
the fixed-yield planning models and swing cuts planning 
models. However, these models fail to reflect the true 
nonlinear nature of the processing units. Alattas et al. (2011) 
have recently developed a fractionation index model (FI) to 
add nonlinearity to the linear refinery planning models. The 
FI model is developed as a more accurate nonlinear model 
for the complex crude distillation unit (CDU) than the fixed 
yield or the swing cuts models.  

 

Figure 5. Complex refinery configuration 

To illustrate the use of the FI-based planning model, the 
refinery configuration is shown in Figure 5. Three cases are 
analyzed where the refinery is processing 2 (Crudes 3, 4), 3 
(Crudes 2, 3, 4) and 4 (Crudes 1, 2, 3, 4) types of crude oils, 
where Crude1 is the heaviest and Crude4 is the lightest. The 
objective is to select the crude oils and quantities that will 
maximize refinery profit, while meeting the specified 
product demand and qualities. The available crude oil assays 
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are used to generate the pseudo-components for use in 
the case studies. The detailed data are given in Alattas et 
al. (2011). 

The FI model predicts the largest profit in all three 
cases, as seen in Table 1. The swing cut (SC) model also 
predicted profits that are much better than the basic FY 
model. In terms of crude oil feeds, the three models 
calculate different proportions of the available crude oils 
(Table 2). However, FY and FI preferred the middle 
crudes over the lightest or heaviest, using the middle 
Crude3 in all cases while increasing the use of the 
similar but slightly lighter Crude2 when introduced in 
Case2 and Case3. However, the FI model consistently 
used less of Crude 3 than FY. SC, on the other hand, 
preferred the lightest crude, keeping the rest at the 
minimum. 

 
 

Table 1 Refinery profits as calculated from the 
three planning models 

($1000/day)

 

Table 2 Calculated crude oil feed rate (1000’s 
bbl/day) 

 
 
In terms of the impact on the model size and solution 
time, the FI model is significantly larger, but does not 
require substantial increase in the solution time. The 
simplicity of the model is maintained by using the 
continuous Heaviside step function for the temperature 
cuts, which avoids the use of an MINLP formulation, 
although it has the potential drawback that it introduces 
nonconvexities. The models statistics are shown in 
Table 3. All three models were implemented in GAMS 

and used the CONOPT 3.14 solver for the FI model and 
CPLEX 11.1.1 solver for the linear FY and SC models.  

Example 2 

Terrazas-Moreno and Grossmann (2011) recently 
addressed the solution of simultaneous scheduling and 
planning problems in production-distribution networks (Fig. 
6) of continuous multiproduct plants that involve different 
temporal and spatial scales. Production planning results in 
medium- and long-term decisions, whereas production 
scheduling determines the timing and sequence of operations 
in the short-term. The production-distribution network is 
made up of several production sites distributing to different 
markets. The planning and scheduling model has to include 
spatial scales that go from a single production unit within a 
site, to a geographically distributed network. Terrazas-
Moreno and Grossmann (2011) proposed two decomposition 
methods to solve this type of problems. One method 
corresponds to the extension of the bi-level decomposition of 
Erdirik-Dogan and Grossmann (2008) to multi-site, multi-
market networks. A second method is a hybrid 
decomposition method that combines bi-level and spatial 
Lagrangean decomposition methods.  

 

Market 3

Market 2

Market 1

Production 
Site 1

Production 
Site 2

Production 
Site n-1

Production 
Site n

 

Figure 6. Production and distribution network 

As an illustration consider a small manufacturing and 
distribution network that consists of 3 production sites with 
single production lines serving 2 markets that demand 
products A, B, and C. The objective is to obtain the optimal 
planning and detailed production schedule for 4 weeks. Data 
on the maximum production rates in each site, values of 
market demand for all products, while transition times and 
costs can be found in Terrazas-Moreno and Grossmann 
(2011).  
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Table 3 Models statistics 

 

This example is a small case study so it is possible 
to obtain an optimal solution without decomposition 
techniques. The full space model consists of 144 
discrete variables, 1117 continuous variables, and 1303 
constraints. Using CPLEX 12.2.0 in GAMS version 23.6 
for Windows, using an Intel Core i7 CPU at 2.93 GHz, 
and 4.00 GB of RAM requires less than 1 CPU sec. 
Figure 7 shows the Gantt chart that corresponds to the 
optimal production schedule for every site, which leads 
to a profit of $69,711. Product A is assigned more 
production time since it is the most profitable. Note that 
after week 2 each site is dedicated to a single product.  

 
 

 

 

 

 

Figure 7. Optimal production schedule 

In examples, with up to 6 sites, 25 products and 24 
weeks, the computational performance of the hybrid 
algorithm was similar to bi-level decomposition in 
medium-sized problems and faster in large-scale 
problems. In all case studies (see Fig. 8) the hybrid 
algorithm converged within a 2% of the optimality 
tolerance. This method is therefore efficient for 
problems with tens of thousands of discrete variables, 
and hundreds of thousands of continuous variables and 
constraints.  

 

Figure 8. Solution time for case studies using full 
space, bi-level, and hybrid algorithms 

Example 3 

You et al. (2011) addressed the optimization of 
industrial gas distribution systems, which consist of plants 
and customers, as well as storage tanks, trucks and trailers. 
The specific problem assumes an industrial gas distribution 
network consisting of a production plant and a set of 
customers as shown in Figure 9. The locations of the plant 
and customers, as well as the distances between them are 
given. Each customer has a deterministic and constant 
demand rate and safety stock level in each year within the 
planning horizon. Given is also a set of possible tanks with 
different discrete sizes. For customers with existing tanks, 
their specific initial inventory levels are given. New 
customers need to determine the size of tank to be installed 
in their location. Existing customers can upgrade or 
downgrade the existing tanks, or add a second tank if extra 
space is available. There are a numbers of trucks of size with 
discrete capacities. The delivery cost per distance traveled 
for every truck is also given. All the trucks are assumed to 
have the same average traveling speed and a maximum 
number of working hours per day.  

You et al. (2011) presented a simultaneous MILP model 
to minimize the total capital and operating cost, and to 
integrate short-term distribution planning decisions for the 
vehicle routing with long-term inventory decisions for sizing 
storage tanks at customer locations. To circumvent the large-
scale MILP model, these authors proposed a strategy that 
employs a continuous approximation (Langevin et al., 1996) 
to estimate the annual delivery cost without considering the 
detailed schedules of the routing problem. By accounting for 
the capacitated vehicle routing cost at the strategic level, the 
trade-off between the capital cost and operational cost is 
established. After the strategic tank sizing decisions are 
determined, detailed vehicle routing is considered for 
operational decisions. The major advantage is that both the 
upper level continuous approximation model and the lower 
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level detailed routing problem can be solved effectively 
without sacrificing too much solution quality.  

 

Routing ?

Tank size for the 
New Customer ?

Truck selection

j  J 

i  I 

n N 

Size change?

Customers

 

Figure 9. Tank sizing and vehicle routing of 
industrial gas supply chains 

As a specific example, consider a four-customer 
industrial gas cluster, of which the network structure and 
the demand rates of the first year are given in Figure 10. 
Based on this network, there are 15 possible routes for 
this case study. Also, from the network structure, it is 
easy to see that the TSP distance to visit all the 
customers once is 50877km for this case study. 

Plant

N14

600 km

1,253 km

N15
1,100 km

2,835 L/Month

5,250 L/M

N18

N21

290 km

950 km

1,137 km
993 km

6,417 L/M

3,337 L/Month

1,124 km

 

Figure 10. Four-customer industrial gas 
supply chain 

Table 4 Optimal solution of the second instance of case  
 study 2 (three year planning horizon, and N14,  
 

 
 >memory: computation was terminated due to memory limit 
 *: best found solution with 74.54% gap 
 

The planning horizon is 3 years and all customers are 
treated as new without any existing tanks. In the three-year 
horizon, a 15% demand growth rate is considered for all 
customers. The computational results are given in Table 4. 
We can clearly see that the problem sizes increase 
significantly and some problems include more than 10,000 
binary variables. The simultaneous approach ran out of 
memory after around 4 hours, and the best solution found 
($156,774) has a gap as large as 74.54%. Because there are 4 
customers and 15 possible routes, the problem size of the 
route selection – tank-sizing model also becomes 
computationally intractable.  
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Figure 11. Optimal inventory profiles of the four 
customers in the second instance of case study 2 
(three year planning horizon, and N14, N15, N18 

and N21 are all new customers) 

With the continuous approximation approach, the 
problem size of the upper level approximation model is 
rather small and can be solved very efficiently (only 5.3s for 
the global optimum). The detailed routing model with fixed 
tank sizes, despite its large size, was solved to global 
optimality in about 9 hours. The solution predicted by this 
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approach has a lower total cost of $101,402, and the 
optimal tank sizes for customers N14, N15, N18 and 
N21 are 10,000L, 16,000L, 10,000L and 20,000L, 
respectively. The detailed inventory profiles are given in 
Figure 11, that account for the trade-offs between tank 
sizes, demand rates and deliveries.  

Example 4. 

Tarhan et al. (2009) considered the design and 
planning of an offshore oil field infrastructure under 
uncertainty over a specified planning horizon (Fig. 11). 
The main uncertainties considered were in the initial 
maximum oil or gas flowrate, recoverable oil or gas 
volume, and water breakthrough time of the reservoir, 
which are represented by discrete distributions. 
Furthermore, it was assumed that these uncertainties are 
not immediately realized, but are gradually revealed as a 
function of design and operation decisions. Specifically, 
the authors considered a field consisting of several 
reservoirs where a number of wells can be drilled and 
exploited for oil in every reservoir during the planning 
horizon. The field infrastructure can be composed of 
Floating Production Storage and Offloading (FPSO) 
(Fig. 12) and/or Tension Leg Platform (TLP) (Fig. 13) 
facilities. The FPSO facility can be either a small FPSO, 
converted from a retiring oil tanker, or a large FPSO, a 
newly constructed grassroots facility. An FPSO facility 
can process, store and offload the processed oil to other 
tankers. Unlike FPSO, a TLP facility cannot process oil; 
it possesses only drilling and oil recovering capability. 
TLP and FPSO facilities can be connected to each other 
through risers and sub-sea pipelines. There are two 
options for drilling wells. Each well can be drilled either 
as a sub-sea or a TLP well. Drilling ships are used to 
drill sub-sea wells, so there is no need to have a facility 
present to drill a sub-sea well. Unlike sub-sea wells, a 
TLP well has to be drilled by a TLP facility.  

The problem involves making investment and 
operation decisions over the planning horizon. 
Investment decisions are selection of the number, type 
and capacity of facilities and installation schedule of 
these facilities, as well as selection of types of wells and 
drilling schedule of wells. Operation decisions are 
amount of oil production for each time period given the 
limitations of the reservoirs. The goal was to maximize 
the expected net present value of the project 

 

 Fig. 11: A Typical oil field infrastructure. 

In order to account for these decision-dependent 
uncertainties, Tarhan et al. (2009) proposed a multistage 
stochastic programming model that incorporates nonlinear 
reservoir behavior. The proposed solution algorithm relies on 
a duality-based branch-and-bound method involving 
subproblems as nonconvex mixed-integer nonlinear 
programs that are solved to global optimality with BARON 
(Tarhan et al., 2009). 

 

Figure12. A typical FPSO facility 
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Figure 13. A typical TLP facility 

 

Figure 14. Nonlinear reservoir model 

In one of their examples, Tarhan et al (2009) 
considered an offshore oil field having a single reservoir 
over a 10-year horizon. The uncertainties in initial 
maximum oil flowrate, the size of the reservoirs and 
water breakthrough time were represented by discrete 
distributions consisting of two values (high and low). 
These uncertainties were incorporated into the model 
using eight different scenarios in Table 5.  

Table 5: Representation of scenarios using 
uncertain parameter 

 
 
Given the eight scenarios over the 10-year horizon, 

the expected value solution using mean values proposes 
building 4 small FPSOs, 3 TLP in the first year and start 
drilling 12 TLP wells in year 2. These decisions resolve 
the uncertainty in initial productivity and size in year 3. 
The production starts at year 3 and after all the scenarios 
become distinguishable at year 4, different decisions are 
implemented for the rest of the time horizon to 
maximize the net present value. This expected value 

approach gives an objective function value of $3.76x109. The 
optimal multistage stochastic programming solution yields 
an expected net present value of $4.59x109 which is 22% 
higher profit than the expected value solution. The solution 
proposes building 2 small FPSO, 1 TLP facility and drilling 
9 sub-sea wells initially. Drilling these 9 wells will resolve 
the uncertainty in initial oil flowrate and reservoir size. In 
year 2, for scenarios 1 and 2 there is no further investment, 
while in scenarios 3 and 4 3 TLP wells are drilled. For 
scenarios (5-6) the solution proposes building 4 small FPSO 
facilities, 5 TLP facilities and drilling 12 sub-sea wells. For 
scenarios (7-8), the solution proposes building 4 small FPSO 
facilities, 3 TLP facilities and drilling 6 TLP wells and 6 
sub-sea wells. 

 Fig.15 compares the net present values of the expected 
value solution (columns in pattern) and the stochastic 
programming solution (columns in black) over the 8 
scenarios in the 10 year horizon. As it can be seen the 
expected value approach can lead to losses in two of the 
scenarios. Thus, stochastic programming not only generates 
solutions with higher expected net present values, but also 
more robust solutions since in all cases the NPV is positive. 

 
 Figure 15. Comparison of net present values 
 

The corresponding MINLP model involved 800 0-1, 800 
integer variables, 869 continuous variables and 8088 
constraints. The best feasible solution proposed by the 
algorithm after 120 hours is guaranteed to be within 12% 
optimality gap. A total of 14 nodes were traversed and the 
best feasible solution was found after 90 hours at Node 6 of 
the duality-based branch-and-bound method. The CPU time 
was subsequently reduced to 5 hours with a strategy that 
reduced the number of times a global optimization problem 
had to be solved (Tarhan et al, 2010). 

Example 5 

You and Grossmann (2008) addressed the optimization 
of supply chain design and planning under the criteria of 
responsiveness and economics with the presence of demand 
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uncertainty. The supply chain consists of multi-site 
processing facilities and corresponds to a multi-echelon 
production network with both dedicated and 
multiproduct plants. The economic criterion was 
measured in terms of net present value, while the 
criterion for responsiveness accounts for transportation 
times, residence times, cyclic schedules in multiproduct 
plants, and inventory management. By using a 
probabilistic model for stockout, the expected lead time 
was proposed as the quantitative measure of supply 
chain responsiveness. The probabilistic model can also 
predict the safety stock levels by integrating stockout 
probability with demand uncertainty. These were all 
incorporated into a multi-period mixed-integer nonlinear 
programming (MINLP) model, which takes into account 
the selection of manufacturing sites and distribution 
centers, process technology, production levels, 
scheduling and inventory levels. The problem was 
formulated as a bi-criterion optimization model that 
maximizes the net present value and minimizes the 
expected lead time. The model was solved with the ε-
constraint method and produces a Pareto-optimal curve 
that reveals how the optimal net present value, supply 
chain network structure and safety stock levels, change 
with different values of the expected lead time. 

You and Grossmann (2008) considered a large scale 
problem that was motivated by a real world application 
in which various locations for suppliers, plants, 
distribution centers and customers were considered as 
seen in Figure 16. The plants involve a dedicated plant 
for producing styrene (Plant I), and two plants for 
producing two grades of solid polystyrene (Plant II) and 
three grades of expandable polystyrene (Plant III). The 
potential supply chain network (Figure 17) includes 
three possible ethylene suppliers located in Illinois, 
Texas and Mississippi, and three potential benzene 
suppliers located in Texas, Louisiana, Alabama. Four 
potential manufacturing sites can be located in 
Michigan, Texas, California and Louisiana. The 
Michigan manufacturing site can set up all the three 
types of plants, the Texas manufacturing site can only 
install Plant I, the California manufacturing site can only 
set up Plants II and III, and the Louisiana manufacturing 
site can only set up Plants I and II. The supply chain can 
have five distribution centers, located in Nevada, Texas, 
Georgia, Pennsylvania and Iowa. Customers are pooled 
into nine sale regions across the country based on their 
geographical proximity. The corresponding 
superstructure of the supply chain network is given in 
Figure 17.  

The problem was solved assuming that the demands 
follow triangular distributions, and with consideration of 
safety stock and without it. Both instances consist of 215 
binary variables, 8,216 continuous variables and 14,617 
constraints and they were solved with a bi-level 
decomposition algorithm by using GAMS/BARON. Six 
points in the Pareto optimal curve require 15,396 CPU 

seconds for Instance 1 (with safety stock) and 16,927 
seconds for Instance 2 (without safety stock). The Pareto 
optimal curves are given in Figure 18. The Pareto curve 
ranges from 1.6 to 5 days in the expected lead time and from 
$409 million to $683 million for NPV. The Pareto curve 
without safety stock) ranges from 4.3 to 5 days. This 
example shows the importance of establishing trade-offs 
between responsiveness and economics in the design and 
planning of a process supply chain network.  
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Figure 16. Location map for Example 5 
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Figure 17. Potential process supply chain 
network superstructure for Example 2 

Concluding Remarks 

This paper has provided an overview of the area of 
Enterprise-wide Optimization that is driven by needs of the 
process industries for reducing costs and remaining 
competitive in the global marketplace. A brief review was 
presented of the relevant mathematical programming 
techniques. Some of the major issues and challenges in their 
application to EWO problems have been highlighted, and 
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several examples presented to illustrate the nature of the 
applications and the problems that are faced.  
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Figure 18. Pareto curve for Example 2 with 
safety stock and without safety stock 

(Instance 1 and 2 of Example 2) 

It is hoped that this paper has shown that EWO has 
become a reality and that has industrial relevance. 
Nevertheless, it is clear as was discussed, that some of 
the major issues and challenges involve handling of 
nonlinearities, multiscale temporal and spatial 
integration, anticipating uncertainties, selecting between 
commercial vs. tailored solutions, and effective solution 
of industrial-sized problems. In addition to these issues, 
there are three major outstanding challenges that remain 
to be addressed and are worth of future research efforts. 
In particular: 

Optimizing entire supply chains. It is clear that 
while important progress has been made in modeling 
and optimizing major components of supply chains, the 
optimization of entire supply chains still remains an 
elusive problem, especially if the objective is to 
integrate planning with scheduling in these supply 
chains. The difficulty is in part due to the very large size 
of the resulting models. But it is in fact also due to the 
somewhat distinct nature of the major components in a 
supply chain. For instance, in the petroleum supply 
chain it is not be very obvious how to integrate the 
models for upstream exploration, marine transportation, 
crude oil delivery unloading and refinery optimization 
since they often rely on different representations (Kelly, 
2006; Shah et al., 2011). 

Integrating control with planning and scheduling. 
While the pyramid of decision-making in process 
operations contains the three elements, it is clear that 
most of the attention has been devoted to the integration 
of planning and scheduling, there is still relatively little 
work that has been reported on the integration of these 
activities with control (e.g. Bhatia and Biegler, 1996; 
Perea et al., 2003). While conceptually this should be a 

logical extension (Harjunkoski et al., 2009), major barriers 
are the complexity and large size of the resulting MIDO 
optimization problem, which will require significant progress 
for effective solution methods. 

Design and operation of sustainable supply chains. 
Sustainability is clearly becoming a major concern in the 
process industries, and therefore it would be natural to 
consider it as part of EWO. As pointed by Hugo and 
Pistikopoulos (2005) mathematical programming methods 
have been employed to account for environmental concerns 
and ecological footprint in process design problems that 
focus on single plants. However, their application to the 
entire supply chain networks under a multi-objective 
optimization framework has been rather limited. A recent 
review on this topic can be found in Grossmann and Guillen-
Gozalbez (2010), which clearly indicates scope for further 
work in this area. 

Finally, it is hoped that this article will promote interest 
in addressing the outstanding challenges in EWO. It is clear 
that the challenges are non-trivial, but the payoff is that it is 
highly relevant as it can greatly help to strengthen the 
process industry. 
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