What are Markov Decision Processes (MDPs)?

- MDPs are a method for formulating and solving stochastic and dynamic decisions.
- MDPs are very flexible, which is an advantage from a modeling perspective but a drawback from a solution viewpoint (can’t take advantage of special structure).
- MDPs are pervasive; every Fortune 500 company uses them in some form or another.
- Particular success in inventory management and reliability.
Potential for MDPs in EWO

- The flexibility of MDPs may allow them to be useful for certain problems
- It is unlikely that they can work as stand-alone techniques
- Long history of successful applications
Outline

- Basic Components of MDPs
- Solution Techniques
- Extensions
- Big Picture – Potential Roles for MDPs
Outline – Basic Components

- Inventory Example

- MDP Vocabulary
 - 5 Basic Components
 1. decision epochs
 2. states
 3. actions
 4. rewards
 5. transition probabilities
 - value function
 - decision rule
 - policy
Inventory Example

- **Problem Statement**
 - Each month, the manager of a warehouse
 - observes current inventory on hand of a single product
 - decides how much additional stock to order from a supplier
 - Monthly demand
 - uncertain
 - probability distribution is known
 - Tradeoff between costs of
 - keeping inventory
 - lost sales
 - Objective
 - maximize expected profit over the next year

- **Simplifying Assumptions**
 - Instantaneous delivery
 - No backlogging, i.e. excess demand is lost
 - Warehouse capacity of M units
 - Product is sold in whole units only
 - Revenues, costs and demand distribution do not change from month to month
Inventory Level

\[s_{t+1} = s_t + a_t - \min\{D_t, s_t + a_t\} \]
Outline – Basic Components

- Inventory Example

- MDP Vocabulary
 - 5 Basic Components
 1. decision epochs
 2. states
 3. actions
 4. rewards
 5. transition probabilities
 - value function
 - decision rule
 - policy
1. Decision Epochs: t

- **Points in time at which decisions are made**
 - analogous to period start times in a “Markov Process”

- **Inventory example**
 - first day of month 1, first day of month 2, …, first day of month 12

- **In general: 1, 2, …, N**
 - N: length of the time horizon (could be infinite)

- **Also called**
 - periods
 - stages
2. States: s_t

- **Relevant information needed to describe the system**
 - analogous to states in “Markov Processes”
 - includes all information from the past relevant to the future

- **Inventory example**
 - amount of inventory on hand at the start of the month
 - $s_t, t = 1, \ldots, 12$
 - possible values – state space
 - $0, 1, 2, \ldots, M$
3. Actions: a_t

- **Means by which the decision maker interacts with the system**
 - permissible actions can be state dependent
 - no exact analogy to “Markov Processes”
 - the decision is usually modeled *outside* the Markov Process

- **Inventory example**
 - how much additional stock to order each month
 - denoted
 - a_t, $t = 1, \ldots, 12$
 - possible values
 - $0, 1, 2, \ldots, M - S_t$
Inventory Example

Start of month t

- Count stock on hand s_t
- Order new stock a_t

Order arrives; stock on hand is now $s_t + a_t$

Hold inventory; incur demand D_t

Holding cost $h(s_t + a_t)$

$\Pr(D_t = j) = p_j, j = 0, 1, 2, \ldots$

Fill demand; stock on hand is now $s_{t+1} = s_t + a_t - \min\{D_t, s_t + a_t\}$

Start of month $t+1$

Sales income

Time

Ordering cost $O(a_t) = \begin{cases} K + c(a_t) & a_t > 0 \\ 0 & a_t = 0 \end{cases}$

Fixed cost

Variable cost
4. Rewards: \(r_t(s_t, a_t) \)

- Expected immediate net income associated with taking a particular action, in a particular state, in a particular epoch
 - analogous to state utilities in “Markov Processes”

- Inventory example
 - expected income – order cost – holding cost
 - \(r_t(s_t, a_t) = E[\text{income in month } t] - O(a_t) - h(s_t + a_t), \ t = 1, 2, \ldots, 12 \)
 - \(E[\text{income in } t] = E[\text{income in } t \mid D_t \leq s_t + a_t] \Pr\{D_t \leq s_t + a_t\} + E[\text{income in } t \mid D_t > s_t + a_t] \Pr\{D_t > s_t + a_t\} \)
 \[= \sum_{j=0}^{s_t + a_t} f(j) p_j + f(s_t + a_t) \sum_{j=s_t + a_t + 1}^{\infty} p_j \]
 - in the last epoch, we assume that whatever is left over has some salvage value, \(g(.) \)
 - \(r_{13}(s_{13}, \cdot) = g(s_{13}) \)
 - in general \(r_{N+1}(s_{N+1}, \cdot) = g(s_{N+1}) \)
5. Transition Probabilities: $p_t(s_t, a_t)$

- Distribution that governs how the state of the process changes as actions are taken over time
 - depends on current state and action only, and possibly time
 - that is, the future is independent of the past given the present (The Markov Property)

- Inventory example
 - we already established that $s_{t+1} = s_t + a_t - \min\{D_t, s_t + a_t\}$

\[
\Pr\{s_{t+1} = j \mid s_t = s, a_t = a\} = \begin{cases}
 p_{s+a-j} & j \leq s + a \\
 \sum_{i=s+a}^{\infty} p_i & j = 0 \\
 0 & j > s + a
\end{cases}
\]

- depends on demand
 - end up with some leftovers if demand is less than inventory
 - end up with nothing if demand exceeds inventory
 - can’t end up with more than you started with
Value Function

- Collectively, decision epochs, states, actions, rewards, and transition probabilities form an MDP.

- But how do they fit together?

- Value function, \(v_t(s_t) \)
 - maximum total expected reward starting in state \(s_t \) with \(N-t \) decision epochs remaining
 - \(v_t(s_t) = \max_a \{ r_t(s_t,a_t) + E v_{t+1}(s_{t+1}) \} \)
 - \(r_t(s_t,a_t) \): expected immediate reward in period \(t \)
 - \(E v_{t+1}(s_{t+1}) \): expected remaining reward in periods \(t + 1, t + 2, \ldots N \)
Value Function

- Inventory example

\[v_{13}(s_{13}) = r_{13}(s_{13}, \cdot) = g(s_{13}) \]

\[v_{12}(s_{12}) = \max_{a_{12} \in \{0, 1, \ldots, M-s_{12}\}} \left\{ r_{12}(s_{12}, a_{12}) + \sum_{j=0}^{M} v_{13}(j) \Pr\{s_{13} = j \mid s_{12}, a_{12}\} \right\} \]

\[v_{11}(s_{11}) = \max_{a_{11} \in \{0, 1, \ldots, M-s_{11}\}} \left\{ r_{11}(s_{11}, a_{11}) + \sum_{j=0}^{M} v_{12}(j) \Pr\{s_{12} = j \mid s_{11}, a_{11}\} \right\} \]

\[\vdots \]

\[v_{2}(s_{2}) = \max_{a_{2} \in \{0, 1, \ldots, M-s_{2}\}} \left\{ r_{2}(s_{2}, a_{2}) + \sum_{j=0}^{M} v_{3}(j) \Pr\{s_{3} = j \mid s_{2}, a_{2}\} \right\} \]

\[v_{1}(s_{1}) = \max_{a_{1} \in \{0, 1, \ldots, M-s_{1}\}} \left\{ r_{1}(s_{1}, a_{1}) + \sum_{j=0}^{M} v_{2}(j) \Pr\{s_{2} = j \mid s_{1}, a_{1}\} \right\} \]

\[\vdots \]

maximum total expected reward starting in state \(s_{1} \) with 12 decision epochs remaining

expected immediate reward period 1

expected remaining reward in periods \((2, \ldots, N)\)
Decision Rule

- A rule, for a particular state, that prescribes an action for each decision epoch
 - $d_t(s)$ = action to take in state s in decision epoch t

- Inventory example - possible decision rules
 - $d_1(0) = 5$:
 if there are 0 items on hand at the beginning of month 1, order 5.
 - $d_2(1) = 3$:
 if there is 1 item on hand at the beginning of month 2, order 3.
Policy

- A collection of decision rules for all states

- Inventory example

\[
\begin{bmatrix}
 d_1(0) & d_2(0) & \ldots & d_{12}(0) \\
 d_1(1) & d_2(1) & \ldots & d_{12}(1) \\
 \vdots & \vdots & \ddots & \vdots \\
 d_1(M) & d_2(M) & \ldots & d_{12}(M)
\end{bmatrix}
= \begin{bmatrix}
 5 & 4 & \ldots & 1 \\
 4 & 3 & \ldots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \ldots & 0
\end{bmatrix}
\]

- Under a fixed policy, the process behaves according to a Markov chain.
Outline – Solution Techniques

- Finite-horizon MDPs
 - Backwards induction solution technique
- Infinite-horizon MDPs
 - Optimality criteria
 - Solution techniques
 - value iteration
 - policy iteration
 - linear programming
Various factors to consider in choosing the right technique

- Will rewards be discounted?
- What is the objective?
 - Maximize expected *total* reward, or
 - Maximize expected *average* reward
- Is the problem formulated as a finite or infinite horizon problem?
 - If finite horizon, solution technique does not depend on discounting or objective
 - For infinite horizon, technique does depend on discounting and objective
Outline – Solution Techniques

- Finite-horizon MDPs
 - Backwards induction solution technique
- Infinite-horizon MDPs
 - Optimality criteria
 - Solution techniques
 - value iteration
 - policy iteration
 - linear programming
Finite horizon problems

- We want to find a policy, \(\pi \), that maximizes:

\[
v_\pi(s) = E_{\pi,s} \left\{ \sum_{t=1}^{N} r(s_t, a_t) \right\}
\]

- The solution technique used is called “backwards induction”
Backwards Induction – Shortest Path Problem
Backwards Induction – Shortest Path Problem

Stage 1 Stage 2 Stage 3 Stage 4 Stage N
Backwards Induction – Shortest Path Problem
Backwards Induction – Shortest Path Problem
Idea behind backwards induction

- Envision being in the last time period for all the possible states and decide the best action for those states
- This yields an optimal value for that state in that period
- Next envision being in the next-to-last period for all the possible states and decide the best action for those states, given you now know the optimal values of being in various states at the next time period
- Continue this process until you reach the present time period
Formalization of Backwards Induction

- Assume N period horizon with the following parameters:
 - \(r(s,a) \): immediate reward for choosing action \(a \) when in state \(s \)
 - \(p(j|s,a) \): probability that system moves to state \(j \) at next time period given the current state is \(s \) and action \(a \) is chosen
 - \(g(s) \): salvage value of system occupying state \(s \) at final period \(N \)

- **Algorithm:**
 1. Let \(v_N(s) = g(s) \) for all \(s \)
 2. For \(t = N-1, N-2, \ldots, 1 \) and for all \(s \) at each period do:

 a. \(v_t(s) = \max_{a \in A} \left\{ r(s,a) + \sum_{j \in S} p(j|s,a) v_{t+1}(j) \right\} \)

 b. \(a_t(s) = \arg \max_{a \in A} \left\{ r(s,a) + \sum_{j \in S} p(j|s,a) v_{t+1}(j) \right\} \)
Infinite Horizon Problems

- The infinite horizon case is the limiting value of the finite case as the time horizon tends toward infinity.
 - Recall the finite horizon value function:
 \[v_{\pi}(s) = E_{\pi,s} \left\{ \sum_{t=1}^{N} r(s_t, a_t) \right\} \]
 - This is the infinite horizon value function:
 \[v_{\pi}(s) = \lim_{N \to \infty} E_{\pi,s} \left\{ \sum_{t=1}^{N} r(s_t, a_t) \right\} \]
 - This is the infinite horizon value function with discounting:
 \[v_{\pi}(s) = \lim_{N \to \infty} E_{\pi,s} \left\{ \sum_{t=1}^{N} \lambda^{t-1} r(s_t, a_t) \right\} \]
Important Factors for Infinite Horizon Models

- **Discount factor**
 - If we have a discount factor < 1, then total expected value converges to a finite solution
 - If there is no discounting, then total expected value may explode
 - However, if the system has an absorbing state with 0 reward, then even these may yield finite optimal values

- **Objective criteria**
 - Total expected value
 - Average expected value over the long run
 - More detailed analyses is required

- **When is a stationary optimal policy guaranteed to exist?**
 - If the state space and action space are finite
Previous applications of MDPs

- At the heart of every inventory management paper is an MDP
- Reliability and replacement problems
- Some routing and logistics problems (e.g. Warren Powell’s work in trucking)
- 50 years of successful applications (particularly inventory theory, which is widely applied)
Limitations of MDPs

- "Curse of dimensionality"
 - As the problem size increases, i.e. the state and/or action space become larger, it becomes computationally very difficult to solve the MDPs
 - There are some methods that are more memory-efficient than Policy Iteration and Value Iteration algorithms
 - There are also some solution techniques that find near-optimal solutions in a short time

- Enormous data requirements
 - For each action and state pair, we need a transition probability matrix and a reward function
Limitations of MDPs

- **Stationarity assumption**
 - In fact, transition probabilities may not stay the same over time
 - Two methods to model non-stationary transition probabilities and rewards
 1. Use a finite-horizon model
 2. Enlarge the state space by including time
Why do MDPs not Scale Well?

- Analogy in the deterministic world: DP vs. IP
- Any integer program can be formulated as a dynamic program
- However, DPs struggle with IPs that take branch-and-bound less than a second
- Why?
 - IP uses polyhedral theory to get strong bounds
 - DP techniques grow with the size of the problem
- Will this occur in the stochastic setting?
Finding the optimal policy is polynomial time in the state space size
- Linear programming formulation
- Sometimes too many states for this to be practical

Examples of approximate solution techniques
- State aggregation and action elimination
- Many AI techniques (reinforcement learning)
- Approximate linear programming (de Farias and van Roy)
- In the last 10 years this has become a very active area
Extensions of MDPs

- Thus far, we’ve discussed discrete-time MDP, i.e. the decisions are made at certain time periods

- Continuous time MDP models generalize MDPs by
 - allowing the decision maker to choose actions whenever the system changes
 - modeling the system evolution in continuous time
 - allowing the time spent in a particular state to follow an arbitrary probability distribution

- No one has considered a continuous time stochastic program
Extensions of MDPs

- Most models are completely observable MDPs, i.e. the state of the system is known with certainty at all time periods.

- Partially observable MDP models generalize MDPs by relaxing the assumption that the state of the system is completely observable.
Partially Observable MDPs (POMDPs)

- System state is not fully observable.
 - Decision maker receives a signal o which is related to the system state by $q(o|s)$

- Observation process, depends on the (unknown) state, generated from a probability distribution function

- Hidden variables form a standard MDP

- Applications
 - Medical diagnosis and treatment
 - Equipment repair
POMDPs- Formal Definition

- POMDPs consist of
 - State space S
 - Action space A
 - Observation space O
 - Transition matrix P
 - Rewards R
 - Observation process distribution $Q(o | s)$
 - Value function $V = V(y; \pi)$
 - Where $\pi: O \rightarrow A$ is a policy
POMDP - Contd

- Simple example
POMDP controlled by parameterized stochastic policy

- Dynamics of POMDP controlled by parameterized stochastic policies:
Constrained Markov Decision Process

- MDPs with probabilistic constraints
 - Typically linear in terms of the limiting probability variables

- Applications
 - Service level constraints in call centers
 - $P(\text{No delay}) \geq 0.5$
 - $E[\text{Number in queue}] \leq 10$

- Value iteration and Policy iteration algorithms do not extend. Linear Programming does.
CMDP: LP technique

- Can model constraint as a function of the variables

- Results in the optimal randomized policy
 - Optimal choice of action in some states can be randomized
 - Not practical
 - Difficult to obtain the actual randomization probabilities

- Why randomized?
 - Vertices of LP polytope without constraints correspond to non-randomized policies
 - Constraints create new vertices corresponding to randomized policies
Competitive MDPs

- Two (or more) players compete
- The actions of one player affects the state of the other
- May be interesting for modeling various oligopolistic relationships among competitors
- Still a nascent area
Why would I prefer an MDP to a Stochastic Program?

- MDPs are much more flexible – existing multistage SP models assume linear relations across stages
- If there is a recursive nature to the problem, MDPs are likely superior
- When the number of states/actions is small relative to the time horizon (e.g. inventory management) MDPs are likely to be superior
- The MDP may be easier to analyze analytically; e.g. the optimality of (s,S) policies in inventory theory
Why would I prefer a Stochastic Program to an MDP?

- When the action and/or state space has a (good) polyhedral representation
- When the set of decisions and/or states is enormous, or infinite
- When the number of stages is not critical relative to the detail required in each stage
Conclusions

- MDPs are a flexible technique for stochastic and dynamic optimization problems
- MDPs have a much longer history of success than stochastic programming
- Curse of dimensionality may render them impractical (e.g. for a VRP, action space is set of TSP tours)
- Approximate solution techniques appear promising
- Allow models that are unexplored in SP
 - Partial observability
 - Continuous time
 - Competition