REAL-TIME OPTIMIZATION OF A COMPLEX INDUSTRIAL GAS NETWORK

Yash Puranik and Nick Sahinidis (CMU)
Tong Li, Ajit Gopalakrishnan and Brian Besancon (Air Liquide)
GAS PIPELINE NETWORKS

Pre-existing network of gas pipelines connecting air separation units and consumers
SCOPE OF CURRENT WORK

• Consider operation of a network of 4 plants, 3 pipelines, and external sources

• Optimize operations under changing demands and fluctuating electricity prices

• Ensure small solution times for application as a real time optimizing tool
 – Select and tune solvers
 – Reformulate the model to be friendlier to solvers
 – Simplify the model if necessary to account for important interactions while maintaining reasonable complexity
RESULTS WITH DIFFERENT SOLVERS

<table>
<thead>
<tr>
<th>SOLVER</th>
<th>LOWER BOUND</th>
<th>UPPER BOUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antigone</td>
<td>6996</td>
<td>6996</td>
</tr>
<tr>
<td>AlphaECP</td>
<td>-</td>
<td>6075</td>
</tr>
<tr>
<td>LINDOGlobal</td>
<td>6169</td>
<td>6964</td>
</tr>
<tr>
<td>Scip</td>
<td>5086</td>
<td>-</td>
</tr>
<tr>
<td>Couenne</td>
<td>6105</td>
<td>6217</td>
</tr>
<tr>
<td>Sbb</td>
<td>unbounded</td>
<td></td>
</tr>
<tr>
<td>DICOPT</td>
<td>rminlp unbounded</td>
<td></td>
</tr>
<tr>
<td>BARON 12.7</td>
<td>infeasible</td>
<td></td>
</tr>
<tr>
<td>BARON 13.1</td>
<td>5692</td>
<td>-</td>
</tr>
</tbody>
</table>
MOTIVATION

• Numerical characteristics of the model proving a challenge to all solvers

• Difficult to use the results from a numerically unstable model in the RTO application

• It is necessary to develop global optimization facilities to deal with problems with many local solutions
ASSUMPTIONS OF THE MODEL

• Consider operation for a single time period
 – Implemented on a real time basis

• All demands are necessarily satisfied

• Demands and electricity prices revealed at start of the period

• No plant dynamics are considered, and pipeline dynamics will be added later

Previous experience at Air Liquide shows presence of multiple local minima. Global optimization techniques essential
NETWORK MODEL: NONCONVEX

- Model for a single column with 40 trays had size 320 differential equations, 1200 algebraic equations (Huang et al., 2013)

- Regression-based models developed at Air Liquide

- Nonconvex models necessary to capture system dynamics
NETWORK MODEL: COMBINATORIAL

• Logic conditions
 – Conjunctions: Certain equipment must be used in concert
 – Disjunctions: Certain equipment cannot be used together
 – Reformulations with binary variables lead to challenging combinatorial characteristics in the model

• Problem Size
 – ~150 binaries, ~600 continuous variables, ~800 equations
CONCLUSIONS

• Novelty of the work
 – Systematic treatment of infeasibilities narrows attention to a source of inconsistency in an infeasible model
 – Model reduction and dynamic scaling strategy to deal with numerical issues

• Impact for industrial applications
 – Systematic treatment of numerically challenging formulations that are ubiquitous in regression models for industrial applications