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Abstract

We propose the formulation of convex Generalized Disjunctive Program-
ming (GDP) problems using conic inequalities leading to conic GDP
problems. We then show the reformulation of conic GDPs into Mixed-
Integer Conic Programming (MICP) problems through both the Big-M
and Hull Reformulations. These reformulations have the advantage that
they are representable using the same cones as the original conic GDP.
In the case of HR, they require no approximation of the perspective func-
tion. Moreover, the MICP problems derived can be solved by specialized
conic solvers and offer a natural extended formulation amenable to both
conic and gradient-based solvers. We present the closed-form of several
convex functions and their respective perspectives in conic sets, allowing
users to easily formulate their conic GDP problems. We finally implement
a large set of conic GDP examples and solve them via the traditional
and conic mixed-integer reformulations. These examples include applica-
tions from Process Systems Engineering, Machine learning, and randomly
generated instances. Our results show that the conic structure can be
exploited to solve these challenging MICP problems more efficiently.

Keywords: Mixed-Integer Nonlinear Programming, Conic Programming,
Generalized Disjunctive Programming, Perspective Function

1



Springer Nature 2021 LATEX template

2 Convex MINLP Derived from GDP using Cones

1 Introduction

A Mixed-Integer Nonlinear Programming (MINLP) problem involves nonlin-
ear algebraic inequalities describing the constraints and objectives, while the
variables are allowed to take either continuous or discrete values. MINLP is
a problem class of great interest, both theoretical [63] and practical [59, 77].
In particular, MINLP problems formulations allow modeling a wide range of
applications. Most industrial problems can be modeled using MINLP [62].

A particular class of MINLP problems is where the constraints are convex
functions. Although it is non-convex because of the nature of the discrete vari-
ables, this problem is known as convex MINLP [36, 56]. This class of MINLP
is a subject of interest given the many applications that it can represent.For
a review on convex MINLP, refer to Kronqvist et al. [56].

A convex MINLP problem is defined as

min
x,y

f(x,y)

s.t. g(x,y) ≤ 0,

yl ≤ y ≤ yu,

x ∈ Rnx
+ , y ∈ Zny ,

(MINLP)

where the objective function f : Rnx+ny → R ∪ {∞} is convex and the con-
straints g : Rnx+ny → (R ∪ {∞})J define a convex set F = {x ∈ Rnx

+ ,y ∈
Rny | g(x,y) ≤ 0}. Although it is not necessary, we will consider that each
constraint, gj(x,y) for j ∈ {1, . . . , J} = JJK, is a convex function. We con-
sider bounded integer variables y. Without loss of generality, we will assume
that the objective function is linear, which can be achieved through the epi-
graph reformulation [56]. Notice that, although the continuous relaxation of
the feasible region F is convex, the original convex MINLP feasible region is
non-convex given the discrete nature of variables y.

Among the solution techniques for convex MINLP, several have been
adapted from the Mixed-Integer Linear Programming (MILP), including
Branch & Bound [29] and Benders Decomposition [40]. In contrast, others gen-
eralize the solutions methods for convex continuous Nonlinear Programming
(NLP) problems, such as the Extended Cutting Plane methods [84]. A partic-
ularly successful approach to convex MINLP is the outer-approximation (OA)
method proposed by Duran and Grossmann [32], where an iterative solution of
a convex NLP and an MILP subproblems is performed. The MILP is derived
through first-order Taylor approximations, or gradient-based linearizations, of
the nonlinear constraints at the NLP solutions, and the NLPs stem from the
problems appearing when fixing the values of the discrete variables at the
MILP solution [32, 36]. Many of the current commercial tools to solve convex
MINLP rely on the OA method [56].

In continuous convex programming, solutions methods have also been
derived by generalizing Linear Programming (LP) notions and techniques.
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One of the most successful ones has been the proposal of convex optimization
problems as problems defined over cones, or Conic Programming (CP) prob-
lems [11]. CP is a numerically stable alternative for convex programming [11],
given that it exploits properties of the conic sets. Convex Programming prob-
lems described via algebraic convex nonlinear constraints of the form f(x) ≤ 0
can be equivalently posed as linear transformation of the variables belonging
to convex sets K, i.e., Ax − b ∈ K [11, 55]. A generalization of CP where
some variables are required to take discrete values is Mixed-Integer Conic Pro-
gramming (MICP). MICP problems are highly expressible and can represent
a wide range of optimization problem [67]. Many of these applications have
been gathered in the problem library CBLib [38].

The automatic identification and translation of the two equivalent descrip-
tions of convex sets is a crucial feature for the development of algorithmic
solution software, solvers. This is since the description of problems using
algebraic constraints is more natural for practitioners. However, the conic
description of the problem allows taking advantage of mathematical proper-
ties such as conic duality for more stable solution procedures. Generic solvers
have been designed to tackle CP problems, e.g., MOSEK [3], ECOS [31], and
Hypatia [26]. This translation is not trivial [34, 80, 86]. However, it has been
achieved for the quadratic case allowing for solution methods based on conic
programming to be used for these problems. An alternative to translating prac-
tical optimization problems into CP is via Disciplined Convex Programming
(DCP) [41], where strict rules of function definitions guarantee the problem’s
convexity and perform the translation such that they can be solved through
generic conic solvers.

In the mixed-integer setting, solvers have been designed to take as input
the MICP problem taking advantage of this form of the optimization prob-
lem structure, e.g., Mosek [3], and Pajarito [27, 65, 66]. Even for solvers that
do not necessarily consider the conic representation of convex problems, iden-
tifying such structures leads to improvements in its performance, such as in
SCIP [14, 82] and BARON [54]. There is a significant potential for MINLP
solvers to perform automatic reformulations once they identify correct struc-
tures [45]. An example of the automatic identification of conic structures is
Mixed-Integer Quadratically-constrained Quadratic Programming (MIQCQP)
problems can now be tackled through Mixed-Integer Second-Order Conic Pro-
gramming (MISOCP) methods in commercial solvers such as Knitro [83],
Xpress [9], Gurobi [47], and CPLEX [51].

The discrete nature of the integer variables in mixed-integer programming
problems has been exploited to derive efficient solution methods for these prob-
lems. In particular, deriving sets of extra inequalities, cutting planes or cuts,
has allowed a considerable speedup in the solution of these problems, see [28].
One of the key disciplines for deriving such cutting planes is Disjunctive Pro-
gramming [8], which considers the optimization over disjunctive sets such as
the one given by the domain of the discrete variables. In the convex nonlinear
setting, the conic structure has been exploited to derive special cutting planes
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for MICP solution methods [10, 21, 64]. A source of these problems are those
driven by indicator variables, that activate or deactivate sets of constraints [45],
see a review by Bonami et al. [16].

Generalized Disjunctive Programming (GDP) was proposed by Grossmann
and Lee [43] as an intuitive way of describing the logic behind applications.
In this setting, sets of constraints are activated with logical variables linked
to each other by logical constraints, including disjunctions. This mathematical
description of the problem can be tackled directly by logic-based optimization
methods [24], which generalize mixed-integer solution methods to the logical
domain. Another way of solving these problems is through reformulations into
mixed-integer programs, where the logical variables are mapped to binary or
indicator variables. Depending on the linearity of the constraints within the
GDP, the reformulations can yield a MILP or MINLP problem. The two most
common reformulations are: the Big-M reformulations, where a large coeffi-
cient is added to make the constraints redundant in the case their associated
indicator variable is inactive; and the Hull Reformulation (HR), where using
Disjunctive Programming theory, a set of constraints in an extended space are
derived such that their projection onto the space of the original variables is
the convex hull of the disjunctive sets. These two reformulations yield different
mixed-integer models, which can be characterized by size and tightness. The
tightness of a mixed-integer model is measured through the difference of the
optimal solution of the problem, ignoring the discrete constraints, known as
the continuous relaxation, and the original problem’s optimal solution [77]. The
Big-M and Hull reformulations offer a tradeoff between tightness and prob-
lem size. The HR is the tightest possible model, while the Big-M formulation
does not require any additional continuous variables and constraints. Both the
model size and tightness are relevant to the efficiency of solution methods of
mixed-integer programs [46].

For convex GDPs, the HR requires modeling the perspective function of the
convex functions in the disjunctions, which can be complex for nonlinear func-
tions given its non-differentiability at 0 [39, 46]. Perspective functions arise in
formulations of convex MINLP since they are in general part of the reformu-
lation of disjunctive programs. Moreover, the MINLP formulations involving
the perspective function can be used either directly in tight formulations of
convex disjunctive programs, either in the original variable space [16, 48] or
in a higher dimensional space [43, 60] , or indirectly through the generation of
valid cutting-planes [37, 75]. A recent computational study shows the positive
impact of perspective cuts in the MINLP framework [14]. The importance of
this perspective formulations and the challenges associated with their imple-
mentation have motivated its study, where customized versions have been
derived for special cases [1, 45, 48] or the proposal of ε-approximations for
general convex functions [39, 60].
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2 Generalized Disjunctive Programming

The framework of Generalized Disjunctive Programming (GDP) was intro-
duced by Raman and Grossmann [70]. This modeling paradigm extends the
usual mathematical programming paradigm by allowing Boolean variables,
logical constraints, and disjunctions to appear in the optimization problem
formulation. We define a GDP as follows:

min
x,Y

f(x)

s.t. g(x) ≤ 0∨
i∈Dk

[
Yik

hik(x) ≤ 0

]
, k ∈ K

Yi∈Dk
Yik, k ∈ K

Ω(Y) = True

xl ≤ x ≤ xu

x ∈ Rn

Yik ∈ {False, True}, k ∈ K, i ∈ Dk,

(GDP)

where constraints g(x) ≤ 0 are called global constraints, the set K represents
the possible disjunctions in the problem, and each element i of the set Dk

represents a disjunctive term, also called disjunct, in that disjunction. In the
disjunction k ∈ K, each disjunct i ∈ Dk has a set of constraints hik(x) ≤ 0
which are activated when a Boolean variable associated with the disjunct is
equals to True, i.e., Yik = True. Each disjunct may contain a different number
of constraints Jik, i.e., hik(x) = (hik1(x), . . . , hikJik(x)) = (hikJJikK(x)). These
constraints define set Cik = {x ∈ Rn | hik(x) ≤ 0}, to which the point x
belongs to when the disjunct is active, i.e., Yik = True. The disjuncts within
the disjunction are related through an inclusive-or operator ∨, which means
that at least one Boolean variable in every disjunction, Yik, k ∈ K, is set to
True. Each disjunction defines a disjunctive set, like the ones introduced in the
previous section. Ω(Y) represent logical propositions in terms of the Boolean
variables Y. These logical constraints can be written in Conjunctive Normal

Form (CNF), i.e., Ω(Y) =
∧
t∈T

[∨
Yik∈Rt

(Yik)
∨
Yik∈Qt

(¬Yik)
∨]

where for

each logical clause t ∈ T , the subset Rt ⊆ Y are non-negated Boolean variables
and the subset Qt ⊆ Y are the negated Boolean variables. We assume that
the exclusive-or operators among the Boolean variables for each disjunction
k ∈ K, i.e., Yi∈Dk

Yik, are included in Ω(Y) = True [44, 73]. It has been
proved that GDP is equivalent to Disjunctive programming in the case that
the constraints are linear [74] and convex [71].

Besides offering a more intuitive modeling paradigm of discrete problems
through disjunctions, a GDP model can be used to inform computational solu-
tion tools, i.e., solvers, of the original problem’s underlying structure, thus
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leading to improved solving performance. The tailored solution methods for
GDP are usually based on generalizing algorithms for MINLP, where the opti-
mization problems are decomposed, so the discrete variables are fixed and
allow to solve the problem only in terms of the continuous variables. Different
methods are used to select the combination of these discrete variables, includ-
ing branching across the different values the discrete variables can take, i.e.,
Branch & Bound (B&B), or solving a linear approximation of the original prob-
lem [56]. For GDP algorithms, contrary to the case in MINLP, these Nonlinear
Programming (NLP) subproblems only include the constraints that concern
the logical variable combinations. We encounter the Logic-based Branch &
Bound (LBB) and the Logic-based Outer-Approximation (LOA) among these
tailored algorithms. For more information on general GDP algorithms, refer
to [24].

Another route to solve these problems is through the reformulation to

Mixed-integer problems, where binary variables y ∈ {0, 1}
∑

k∈K Dk are added
to the problem in exchange of the Boolean variables and constraints within
the disjunction are enforced subject to the binary variables’ value. Notice that
these reformulations yield problems of the form MINLP. The logical propo-
sitions Ω(Y) = True can be easily reformulated as a set of linear inequality
constraints, Ey ≤ e, in terms of the binary variables [44, 70, 85]. In the
case that Ω(Y) is written in CNF, this reformulation is simply

∑
yik∈Rt

yik +∑
yik∈Qt

(1 − yik) ≥ 1, t ∈ T . An example is the exclusive-or constraint
Yi∈Dk

Yik reformulated as a partitioning constraint
∑

i∈Dk
yik = 1, k ∈ K.

These approaches take advantage of the more mature mixed-integer solvers
available commercially.

The Big-M reformulation is among the best-known reformulation for GDP
problems. In this case, each disjunction’s constraints are relaxed by adding
a large term, M , if its corresponding binary variable is equal to zero. The
formulation of the Big-M reformulation is as follows:

min
x,y

f(x)

s.t. g(x) ≤ 0

hikj(x) ≤Mikj(1− yik), k ∈ K, i ∈ Dk, j ∈ JJiK,∑
i∈Dk

yik = 1, k ∈ K

Ey ≤ e

xl ≤ x ≤ xu

x ∈ Rn

yik ∈ {0, 1}, k ∈ K, i ∈ Dk,

(Big-M)

where the coefficient Mikj has to be large enough to guarantee the enforcement
of the original GDP logic, i.e., yik = 1 → hik(x) ≤ 0, but small enough
to avoid numerical problems related to solving accuracy [77]. This can be
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accomplished by setting Mikj = maxx∈{x:hik≤0} hikj(x), j ∈ JJiK. Although
traditionally used, the Big-M reformulation is well-known for its often weak
continuous relaxation gap, i.e., the difference in the optimal objective function
when solving the problem considering yik ∈ [0, 1] ⊂ R, k ∈ K, i ∈ Dk compared
to the original problem’s optimal objective.This is particularly important for
solution methods based on B&B, where this continuous relaxation gives the
first node in the search tree.

Another valid transformation of problem GDP into a mixed-integer prob-
lem is the Hull Reformulation (HR). This reformulation uses the same mapping
of Boolean into binary variables as in Big-M. On the other hand, it introduces
copies of the x variables, vik for each disjunct k ∈ K, i ∈ Dk and uses the
closure of the perspective function to enforce the constraints when their cor-
responding binary variable is active. The formulation for the HR of a GDP is
as follows:

min
x,v,y

f(x)

s.t. g(x) ≤ 0

x =
∑
i∈Dk

vik, k ∈ K(
cl h̃ik

)
(vik, yik) ≤ 0, k ∈ K, i ∈ Dk∑

i∈Dk

yik = 1, k ∈ K

Ey ≤ e

xlyik ≤ vik ≤ xuyik

x ∈ Rn

vik ∈ Rn, k ∈ K, i ∈ Dk

yik ∈ {0, 1}, k ∈ K, i ∈ Dk.

(HR)

The problem formulation HR is derived by replacing each disjunction with
set H{0,1} (A22), presented in Section A.3. Notice that in order to guarantee
the validity of the formulation, the condition on (A23) is enforced implicitly
by having the bounds over x included in each disjunct, leading to constraint
xlyik ≤ vik ≤ xuyik.

In general, for GDP, no convexity assumptions are made for the functions
f,g,hik or the sets within the disjunctions Ci. This means that the continuous
relaxation of either Big-M or HR might not have convex feasible regions. We
refer the interested reader to the review by Ruiz and Grossmann [72] that
covers the techniques to solve these challenging optimization problems.

In order to use the theory from Conic Programming and Disjunctive pro-
gramming, covered in Appendices A.1 and A.3, respectively, we assume here
that functions f,g,hik are convex, hence the sets Ci are convex too. These are
known as convex GDP problems [79].

For a literature review on GDP, we refer the reader to Grossmann and Ruiz
[44].
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3 Conic Generalized Disjunctive Programming

The first step towards defining easily solvable convex MINLP problems via
conic programming is to define a GDP with conic constraints. As mentioned
in Section A.1, we can use the tautological reformulation in (A14) to write any
convex GDP of form GDP as follows:

min
x,Y

f(x)

s.t. g(x) ≤ 0∨
i∈Dk

[
Yik

Aikx <Kik
bik

]
, k ∈ K

Ω(Y) = True

xl ≤ x ≤ xu

x ∈ Rn

Yik ∈ {False, True}, k ∈ K, i ∈ Dk.

(GDP-Cone)

Since the objective function f(x) and the global constraints g(x) ≤ 0
are convex we can reformulate them to a conic program via (A14) as in
problem (MINLP-Cone). The sets defined within each disjunct

Pik := {x ∈ Rn : Aikx <Kik
bik} (1)

are convex sets, where for every disjunct Aik ∈ Rmi×n, bik ∈ Rmi , and Kik is
a proper cone.

Although the derivation of specific solution algorithms for problem GDP-
Cone is a subject of active research, we focus on the reformulation of the
given problem into Mixed-integer Programming problems. These convex GDP
problems can be reformulated into a convex MINLP problem, which in turn
can be written down as a MICP problem.

The first trivial reformulation is the Big-M reformulation, which yield the
following problem:
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min
x,y

f(x)

s.t. g(x) ≤ 0

Aikx <Kik
bik +Mik(1− yik), k ∈ K, i ∈ Dk,∑

i∈Dk

yik ≤ 1, k ∈ K

Ey ≤ e

xl ≤ x ≤ xu

x ∈ Rn

yik ∈ {0, 1}, k ∈ K, i ∈ Dk,

(Big-M-Cone)

To derive the Hull Reformulation of GDP-Cone, we need to characterize
the convex hull of the disjunctive set (A20) in the case that each convex and
bounded set is defined using cones as in 1.

Theorem 1 [64] Let Pi = {x ∈ Rn : Aix <Ki
bi} for i ∈ I, where Ai ∈ Rmi×n,

bi ∈ Rmi , and Ki is a proper cone, and let

P =



x =
∑
i∈I

vi,∑
i∈I

λi = 1,

Aivi <Ki
λibi, i ∈ I,

vi ∈ Rn, i ∈ I,
λi ∈ R+, i ∈ I


. (2)

Then conv(
⋃
i∈I Pi) ⊆ projx(P) and:

1. if Pi 6= ∅,∀i ∈ I, then projx(P) ⊆ cl conv(
⋃
i∈I Pi)

2. if Pi = Si + W,∀i ∈ I, where Si, i ∈ I is a closed, bounded, convex,
non-empty set and W is a convex closed set, then

conv

(⋃
i∈I

Pi

)
= projx(P) = cl conv

(⋃
i∈I

Pi

)
.

Proof Proof:See [11, Proposition 2.3.5]. �

Using the characterization of the convex hull of the union of convex sets defined
by cones, we can define the Hull Reformulation of the GDP-Cone as follows:
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The formulation for the HR of a GDP is as follows:

min
x,v,y

f(x)

s.t. g(x) ≤ 0

x =
∑
i∈Dk

vik, k ∈ K

Aikvik <Kik
yikbik, k ∈ K, i ∈ Dk∑

i∈Dk

yik = 1, k ∈ K

Ey ≤ e

xlyik ≤ vik ≤ xuyik

x ∈ Rn

vik ∈ Rn, k ∈ K, i ∈ Dk
yik ∈ {0, 1}, k ∈ K, i ∈ Dk.

(HR-Cone)

This problem is of the form of MICP, and more notably uses the same cones
within the disjunctions, Kik in the extended formulation. Contrary to problem HR,
problem HR-Cone does not require an approximation of the perspective function.
Considering the HR reformulation as an optimization problem defined over con-
vex cones allows exploiting the tight continuous relaxation of these problems while
efficiently addressing the perspective reformulation’s exact form.

To show several functions that appear in the normal context of convex MINLP
that can be reformulated as the standard cones described in Section A.1, as well
as their perspective function, we include Table 1. The conic representations in
Table 1 are not unique and are given as a practical guide for implementing con-
vex constraints using cones. Notice that applying the perspective reformulation, we
recover the results found by several authors on stronger formulations for convex con-
straints activated through indicator variables. Such examples include the epigraph
of quadratic functions [45] and the epigraph of power functions with positive ratio-
nal exponents [4]. The conic reformulation gives a natural and systematic procedure
to perform extended reformulations [65], which have proved to be helpful in solution
methods for mixed-integer convex programs [48, 76].

To use the HR reformulation of GDP using conic constraints, it suffices to perform
the take the perspective on its cones, i.e., for variables z defined over the cone K its
perspective becomes (y z

y ) ∈ K. This has a considerable advantage, given that the
HR reformulation is representable in the same cones like the ones used within the
disjunctions.

4 Computational results

The computational results in this manuscript include the comparison of different
mixed-integer reformulations of GDP problems. The sources of these GDP prob-
lems are applications in Process Systems Engineering (PSE) and Machine Learning
(ML), besides some randomly generated instances to benchmark the different solu-
tion methods. Each different reformulation was tackled using MINLP solvers. All the
problems were implemented in the General Algebraic Modeling Software GAMS [19]
28.2. The solvers used for this comparison are BARON [76] 19.7, CPLEX [51]
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12.9, and KNITRO [83] 11.1 for convex MINLP. We also use as a MICP solver
MOSEK [3] 9.0.98, using two different algorithms implemented within it for solv-
ing relaxations of the conic problems, either an interior-point solution or through
an outer-approximation approach (MSK IPAR MIO CONIC OUTER APPROXIMATION set as
MSK OFF or MSK ON), denoted MOSEK-IP and MOSEK-OA, respectively. Given the
sophistication of these solvers, the effects of the different problem formulations can
be shadowed by the use of heuristics within them. To better observe the performance
difference given by the problem formulation, we use the Simple Branch & Bound
SBB [17] implementation in GAMS and solve the respective continuous subproblems
using gradient-based interior-point NLP solver KNITRO [83] 11.1, and MOSEK [3]
9.0.98 for the conic subproblems. All experiments were run on a single thread of an
Intel Xeon CPU (24 cores) 2.67 GHz server with 128GB of RAM running Ubuntu.
The termination criteria were a time limit of 3600 seconds or a relative optimality
gap of εrel = 10−5. Unless otherwise stated, the conic reformulation of the con-
straints was written explicitly, meaning that the auxiliary variables required by the
reformulation were introduced to the problem directly. This is a weakness identified
in the conic programming interface in GAMS, where the conic structure identifica-
tion is not made automatically. The definition of the cones, although trivial, had to
be done manually.

For all these GDP problems, the Big-M and HR reformulations are presented.
When neccesary, the conic representations for both cases, i.e., Big-M-Cone and HR-
Cone, are presented separately from the algebraic description, i.e., Big-M and HR.
The algebraic description of the HR included the ε-approximation (A19) proposed
in [39] to avoid numerical difficulties, denoted HR-ε. We use the recommended value
of ε = 10−4 for all the cases presented herein. We also implemented the perspective
function directly and used the ε-approximation (A18). However, the results proved
that, in general, the numerical challenges associated with the perspective function
were better handled using the approximation in (A19). Hence, we do not include the
results of the direct implementation of the perspective function or the approximation
given by (A18), and only present those from using the approximation in (A19) in
this manuscript. However, the interested reader can find the complete results in the
online repository.

The mixed-integer Big-M and Hull reformulations of some of these instances are
present in the benchmarking libraries MINLPLib [18] and MINLP.org [42]. They
have been widely used for MINLP solver benchmarks [13, 15, 39, 56]. This applies in
particular for the PSE applications, Constrained Layout (CLay*), Process Networks
(proc*), and Retrofit Synthesis instances (RSyn* and Syn*). This motivates the study
on these well-known instances.

Moreover, there has been recent interest from the Machine Learning (ML) com-
munity in using rigorous methods for non-convex optimization, contrary to heuristics
based on convex relaxations. Even considering the performance cost of the rigorous
methods, the optimal solution to the original non-convex optimization problem is
informative and valuable within an ML framework [35]. Finding the optimal values
of the parameters of a probability distribution such that a likelihood estimator is
maximized, i.e., training, is known as Expectation-Maximization (EM) in ML [25].
When the data labels are incomplete, the general problem can be stated as learning
from weakly labeled data [61]. While performing the training, the assignment of the
labels is naturally representable through disjunctions, giving rise to mixed-integer
programs. For example, there has been a recent interest in tackling the clustering
problem using mixed-integer programming [35]. Optimally guaranteed solutions to a
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problem similar to 6 leads to better results measured by the performance of the ML
model arising from the clustering compared to local-optimization approaches to the
EM problem. The ML instances on k-means clustering (kClus*) and logistic regres-
sion (LogReg*) are inspired on problems proposed in the literature but are randomly
generated for this manuscript.

The following results are presented in two subsections, one considering
“quadratic” problems that can be formulated using second-order and rotated second-
order cones, and the second one with problems modeled through the exponential
cone. Each formulation includes linear constraints, which can be managed by both
gradient-based and conic mixed-integer convex programming solvers. All the results
from this manuscript are available in an open-access repository1.

It is worth mentioning that we report the nodes required by each solver. The
definition of a node might vary for every solver, and a detailed description of each case
is not widely available. To better control these reports, we compare SBB as a central
manager for the branching procedures. In this last procedure, we can guarantee that
each node is the solution to a continuous convex optimization problem.

4.1 Quadratic problems

The three families of instances presented herein are the Constrained Layout problem,
a k-means clustering optimization problem, and randomly generated instances. All
these problems share the characteristic that the constraints within the disjunctions
are representable via second-order and rotated second-order cones.

The mixed-integer reformulations of these problems were implemented as in Big-
M and HR, both the HR-ε and HR-Cone. Notice that in the case of second-order
cone, the explicit definition of the cone can be replaced by the inequality [45]

x2 − ty ≤ 0 ⇐⇒
√

(2x)2 + (y − t)2 ≤ y + t, (3)

that avoids the variable multiplication ty and improves the performance of gradient-
based solvers like IPOPT and KNITRO. When implementing this alternative to
the exact representation of the perspective function, it improves the performance of
KNITRO slightly, at the expense of a significant decrease in BARON’s performance.
Therefore, the implementation results are left out of this manuscript, although they
are included in the repository for reference.

The examples in this section had constraints in their disjunctions directly identi-
fied as a cone by MOSEK in the GAMS interface. This might not be the general case,
with the cones needing to be explicitly written for MOSEK to process them. This
allowed the Big-M instances to be written in their algebraic form. Simultaneously,
the HR reformulation required the explicit introduction of additional constraints for
the conic form to be accepted by the GAMS-MOSEK interface. CPLEX, on the other
hand, can identify and transform certain general quadratic constraints into general
and rotated second-order cones automatically.

Below we present the examples considered as convex quadratic GDPs.

4.1.1 Constrained layout problem

The constrained layout problem is concerned with the minimization of the connection
costs among non-overlapping rectangular units. These units need to be packed within

1https://github.com/bernalde/conic disjunctive

https://github.com/bernalde/conic_disjunctive
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a set of fixed circles. It can be formulated as the following convex GDP [73]:

min
δx,δy,x,y,W,Y

∑
i,j∈N

cij(δxij + δyij)

s.t. δxij ≥ xi − xj i, j ∈ N, i < j

δxij ≥ xj − xi i, j ∈ N, i < j

δyij ≥ yi − yj i, j ∈ N, i < j

δyij ≥ yj − yi i, j ∈ N, i < j[
Y 1
ij

xi + Li/2 ≤ xj − Lj/2

]
∨

[
Y 2
ij

xj + Lj/2 ≤ xi − Li/2

]

∨

[
Y 3
ij

yi +Hi/2 ≤ yj −Hj/2

]
∨

[
Y 4
ij

yj +Hj/2 ≤ yi −Hi/2

]
i, j ∈ N, i < j

∨
t∈T



Wit

(xi + Li/2− xct)2 + (yi +Hi/2− yct)2 ≤ r2
t

(xi + Li/2− xct)2 + (yi −Hi/2− yct)2 ≤ r2
t

(xi − Li/2− xct)2 + (yi +Hi/2− yct)2 ≤ r2
t

(xi − Li/2− xct)2 + (yi −Hi/2− yct)2 ≤ r2
t


i ∈ N

Y 1
ij Y Y

2
ij Y Y

3
ij Y Y

4
ij i, j ∈ N, i < j

Y
t∈T

Wit i ∈ N

0 ≤ xi ≤ xui i ∈ N
0 ≤ yi ≤ yui i ∈ N
δxij , δyij ∈ R+ i, j ∈ N, i < j

xi, yi ∈ R i ∈ N

Y 1
ij , Y

2
ij , Y

3
ij , Y

4
ij ∈ {False, True} i, j ∈ N, i < j

Wit ∈ {False, True} i ∈ N, t ∈ T

,

(4)
where the coordinate centers of each rectangle i ∈ N are represented through vari-
ables xi, yi, the distance between two rectangles i, j ∈ N, i < j is given by variables
δxij and δyij , and cij is the cost associated with it. The first disjunction allows for
the non-overlapping of the rectangles, while the second one ensures that each rect-
angle is inside of one of the circles t ∈ T , whose radius is given by rt and center
specified by coordinates (xct, yct).

The constraints in the second disjunction are representable through a quadratic
cone as follows:

(xi ± Li/2− xct)2 + (yi ±Hi/2− yct)2 ≤ r2
t

⇐⇒ (rt, xi ± Li/2− xct, yi ±Hi/2− yct) ∈ Q3.
(5)

Seven different problem instances are defined through the variation of the number
of circular areas to fit in the rectangle T and the number of possible rectangles N ,
which each instance being denoted CLay|T||N|.



Springer Nature 2021 LATEX template

Convex MINLP Derived from GDP using Cones 15

4.1.2 k-means clustering

The k-means clustering problem is an optimization problem that appears in unsu-
pervised learning. This problem minimizes the total distance of a set of points to
the center of k clusters, varying the center’s position and the assignment of which
center determines the distance to each point. This problem is solved usually through
heuristics, without guarantees of the quality of the solution.

Recently, Papageorgiou and Trespalacios [69] proposed a GDP formulation for
the k-means clustering problem, also used in [58]. The problem formulation reads as
follows:

min
c,d,Y

∑
i∈N

di

s.t. ck−1,1 ≤ ck,1, k ∈ {2, . . . , K }

∨
k∈K

 Yik

di ≥
∑
j∈D

(pij − ckj)2

 , i ∈ N, k ∈ K

Yk∈K Yik, i ∈ N

d ∈ R
N

+

c ∈ R K × D

Yik ∈ {False, True}, i ∈ N, k ∈ K,

(6)

where N is the set of points given in D dimensions, whose coordinates are given by

p ∈ R N × D . The variables are the center coordinates c, and the squared distances
of each point to its closest center are denoted by d. The first constraint is a symmetry-
breaking constraint. An arbitrary increasing ordering in the first dimension is taken
for the centers. The disjunctions determine with which center k will the distance to
point i be computed, given that Yik = True.

The constraint for each disjunction i ∈ N, k ∈ K is naturally representable as a
rotated second-order cone

di ≥
∑
j∈D

(pij − ckj)2 ⇐⇒ (0.5, di, pi1 − ck1, . . . , p
i D
− c

k D
) ∈ Q

2+ D
r . (7)

We vary the number of clusters K ∈ {3, 5}, the number of given points
N ∈ {10, 20}, and the dimensions of those points D ∈ {2, 3, 5} leading to instance
kClus K N D x. x in this case denotes one of the random instances generated. For
this problem, we include 10 instances for each case varying the point coordinates
pij ∈ U [0, 1], i ∈ N, k ∈ K.

4.1.3 Random examples

We generate random quadratic GDP problems to test further the reformulations
proposed in this manuscript. The random quadratic GDP problems are of the form,
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min
x,Y

c>x

s.t.
∨
i∈Dk

 Yik∑
j∈JnK

(
a
′

ijkx
2
j + a

′′

ijkxj

)
+ a

′′′

ik ≤ 1

 , k ∈ K

Yi∈Dk
Yik, k ∈ K

xl ≤ x ≤ xu

x ∈ Rn

Yik ∈ {False, True}, k ∈ K, i ∈ Dk,

(SOCP-rand-GDP)

where the lower and upper bounds of variables x, xl and xu, are set at -100 and 100,
respectively.

The constraint in each disjunct is representable as a rotated second-order cone,∑
j∈JnK

(
a
′

ijkx
2
j + a

′′

ijkxj

)
+ a

′′′

ik ≤ 1

⇐⇒
(

0.5, t,
√
a
′
ijkxj , . . . ,

√
a
′
inkxn

)
∈ Qn+2

r ; t+
∑
j∈D

a
′′

ijkxj + a
′′′

ik ≤ 1.

(8)

The different random instances were generated by varying the number of dis-
junctions K ∈ {5, 10}, the number of disjunctive terms at each disjunction
Dk ∈ {5, 10}, and the dimensions of the x variables n ∈ {5, 10} leading to instance
socp random K Dk n x. x denotes the index of the random variable generated. 10
instances are generated for each case varying the parameters within bounds [l, u] by

sampling the random uniform distributions U [l, b] as follows: a
′

ijk ∈ U [0.01, 1], a
′′

ijk ∈
U [−1, 1], a

′′′

ik ∈ U [−1, 1], cj ∈ U [−1000, 1000], i ∈ Dk, k ∈ K, j ∈ JnK. We also include
instances socp random 2 2 2 x, that represent the illustrative example in [69].

Notice that the k-means clustering formulation is a particular case of these ran-

domly generated GDPs. In particular, if we set a
′

= 1,a
′′

= 2p,a
′′′

= p>p, c = 1
we recover the k-means clustering problem.

4.1.4 Results

We generate a total of 217 GDP problems, which are transformed through a Big-M
and HR, this last using both HR-ε and HR-Cone. The main results are presented in
Table B1, where the solution times and nodes for the Big-M, HR, and HR-Cone
reformulations using different commercial solvers are included. Consider that the
HR-ε formulation introduces non-linearities in the formulation, preventing CPLEX
and MOSEK from addressing it.

In general, we can observe that CPLEX applied to the Big-M reformulation has
the best performance for the CLay* and kClus* instances when considering runtime.
BARON applied to the same Big-M formulation returns the optimal solution with
the least number of explored nodes for the constrained layout problems. This shows
how the mature solvers for mixed-integer programming have implemented useful
heuristics to work with Big-M formulation; the ubiquity of these formulations among
practitioners motivates their development of techniques to work with these problems
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efficiently. An example is that CPLEX identifies the Big-M formulation and inter-
nally treats its constraints through specialized branching rules derived from indicator
constraints [51]2.

When comparing only the Big-M formulation solution, BARON solves all the
problems with the least number of nodes for all instances. This corresponds to the
main focus of BARON on solving more “meaningful” nodes for the problem. However,
it might incur a performance cost [54]. This observation also appears when comparing
all the HR formulation results, where BARON required the fewest number of nodes.
This applied to the HR-ε and the HR-Cone formulations.

In terms of runtime, when comparing the HR formulations, we observe that
CPLEX is the fastest solver for the CLay* instances, while MOSEK-IP is the one for
the kClus* and socp random* problems. Notice that either of these solvers could be
applied to the HR-ε formulation, proving that using a conic formulation of the HR
problem opens the possibility of using solvers that can better exploit the problem
structure. Even for general nonlinear solvers, such as BARON, the use of the conic
reformulation provides a performance improvement, given that the lifted reformu-
lation can be exploited for tighter relaxations within the solver [76]. On the other
hand, solvers based on nonlinear B&B, where each node is solved with a general NLP
algorithm such as interior-point methods, such as KNITRO, can worsen their per-
formance when using the conic reformulation. The non-differentiability of the cones,
together with the larger subproblem sizes, can cause such a negative impact. This can
be alleviated by taking advantage of the conic structure, something that KNITRO
has implemented as part of their presolve capabilities [83]3.

A better view of the general performance of the different solvers is given in
Figure 1. These figures present performance profiles accounting for the number of
problems solved to a given gap of the optimal solution (0.1% in this case) within a
time or node limit. In general, as seen in the node profile of Figure 1, the perfor-
mance concerning nodes is superior for all solvers when using the HR, except for
BARON. This is expected given the tightness of this formulation. Moreover, in terms
of solution time, both algorithms used in MOSEK improve their performance when
using a HR compared to the Big-M case. This shows that when modeling disjunctive
conic programs, the Hull reformulation is preferable for this solver. The other solvers
worsen their performance when using the extended formulations in terms of solution
time.

Of the total 217 instances, the solver that solved the most instances to within
0.1% of the best-known solution was MOSEK-IP with 191, both using the Big-M
and HR-Cone formulations. The alternative that solved the fewest instances was
KNITRO applied to the HR-Cone formulation, solving 160.

4.2 Exponential problems

As examples of problems representable using the exponential cone Kexp, we present
four families of problems: Process networks, Retrofit Synthesis Problems, Logis-
tic Regression, and randomly generated instances. The GAMS-MOSEK interface
does not directly identify the exponential cone; therefore, we include algebraic
and extended conic formulations, Big-M and Big-M-Cone respectively for Big-M.
HR and HR-Cone are also tested for these problems, denoted as HR-ε using the
approximation in (A19) and HR-Cone formulation through the extended formulation

2https://www.ibm.com/docs/en/icos/12.9.0?topic=optimization-best-practices-indicator-constraints
3https://www.or2018.be/workshops/2/dl ws pdf

IBM documentation
KNITRO v11 presentation
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Fig. 1 Time (left) and nodes (right) performance profile for quadratic instances using the
different GDP reformulations and commercial solvers.

required by MOSEK for the exponential cones to be correctly identified. The solver
CPLEX was not used for these experiments since it has no capabilities to handle
general nonlinear constraints beyond quadratics or exponential cones.

4.2.1 Process Networks

In the process network problem, we seek to maximize the profit from a process by
deciding the equipment to be installed to fabricate some valuable product subject to
material flows between the equipment pieces. The total cost is computed from the
cost of raw materials and equipment subtracted from the product’s sales. Alternative
equipment pieces might induce a trade-off in terms of cost and production, defining
the problem’s constraints. This classical problem in process design usually considers
complex models describing each equipment piece. For this simplified case [71, 78],
we assume input-output correlations for each equipment described by an exponential
function. This is a simplification that still accounts for the non-linearity inherent
to chemical processes. The constraint considered here is a relaxation of the original
equality constraints involving nonlinear terms, which is still valid given the direction
of the optimization [71, 78]. The problem can be modeled through the following
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convex GDP:

min
c,x,Y

∑
k∈K

ck +
∑
j∈J

pjxj

s.t.
∑
j∈J

rjnxj ≤ 0, n ∈ N

∨
i∈Dk


Yik∑

j∈Jik

dijk(exj/tijk − 1)−
∑
j∈Jik

sijkxj ≤ 0

ck = γik

 , k ∈ K

Yi∈Dk
Yik, k ∈ K

Ω(Y) = True

ck, xj ∈ R+, j ∈ Jik, i ∈ Dk, k ∈ K
Yik ∈ {False, True}, i ∈ Dk, k ∈ K.

(Proc)

In problem Proc, ck is the cost associated to the equipment chosen in disjunction
k ∈ K. The flow quantity xj is defined for each possible stream j ∈ J , with an
associated profit. The global mass balances are described for each node in the process
n ∈ N by the linear constraint

∑
j∈J rjnxj ≤ 0, where rjn is the coefficient of

the mass balance for flow j. Each disjunction k ∈ K presents the choice between
i ∈ Dk equipment alternatives. When choosing each alternative (Yik = True) the
corresponding input-output constraint in terms of the flows j ∈ Jik and parameters
dijk, tijk, sijk is active, and the cost associated to that disjunction ck takes the value
γik. The topology of the superstructure and extra logical constraints are included in
Ω(Y) = True.

An interesting alternative is where the sets Dk yield a single element, and there
is a Disjunction for every equipment piece. This yields the following formulation:

min
c,x,Y

∑
k∈K

ck +
∑
j∈J

pjxj

s.t.
∑
j∈J

rjnxj ≤ 0, n ∈ N


Yk∑

j∈Jk

djk(exj/tjk − 1)−
∑
j∈Jk

sjkxj ≤ 0

ck = γk

 ∨
 ¬Yk
xj = 0, j ∈ Jk

ck = 0

 , k ∈ K

Ω(Y) = True

ck, xj ∈ R+, j ∈ Jk, k ∈ K
Yk ∈ {False, True}, k ∈ K.

(Procb)
This case allows several pieces of equipment to be built within each alternative as long
as the objective is maximized. The fact that it represents the disjunction of a convex
set and a single point means that the HR formulation will yield the convex hull of
the union of these sets without requiring an extended formulation [45, Corollary 1].
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The exponential input-output constraint can be formulated in conic form as
follows:∑
j∈J

dj(e
xj/tj−1)−

∑
j∈J

sjxj ≤ 0 ⇐⇒
∑
j∈J

djuj−
∑
j∈J

sjxj ≤ 0; (tjuj+1, tj , xj) ∈ Kexp.

(9)
We include 5 variants of the process problem with K ∈ {21, 31, 36, 48, 100}

possible units. The first four cases are taken from [71, 73, 79]. The last case was
generated for this manuscript, given that commercial solvers can trivially solve the
smaller cases. The instances are denoted process K or process K b when implement-
ing problems Proc and Procb, respectively. For the new instance, the parameters
are chosen from the uniform distributions dijk ∈ U [1, 1.2], tijk ∈ U [1, 1.3], sijk ∈
U [0.8, 1.2], γik ∈ U [2, 3]

4.2.2 Simultaneous Retrofit and Synthesis problems

A generalization of the process network problem is the simultaneous retrofit and
synthesis problem. In this problem, there is an existing process network that needs to
be upgraded. To do so, one can consider either installing new equipment or improving
the existing one. The potential of this process is to be maximized given a budget
constraint. This problem was first proposed by Jackson and Grossmann [52] and its
GDP implementation was done by Sawaya [73]. In the synthesis problem, the problem
is equivalent to Proc with an extra index for the time periods when the problem
is considered. The retrofit synthesis problem contains additional linear constraints
and disjunctions to represent the conditions associated with retrofitting the existing
process units. The complete formulation is available in [39].

The instances solved here are parametric to the number of synthesis processes
S ∈ {5, 10, 15, 30, 40}, the number of retrofit units R ∈ {8} and the number of time
periods considered T ∈ 1, 2, 3, 4, leading to instances Syn S M T and RSyn R S M T .

4.2.3 Logistic Regression

Logistic regression is a training technique for binary classification. In this training
task, given a set of D-dimensional points pi ∈ RD, i ∈ I we will assign a binary
classifier y ∈ {0, 1} to each point in the case that they lie above or below a hyperline
given by θ>pi. This line needs to be determined such that the logistic cost function

is minimized. The logistic cost function log(1/(1 + e−θ
>pi+θ0)) can be interpreted

as the probability of a point belonging to the class given by y = 1. This problem can
be modeled as a GDP by encoding the binary classifier y in a Boolean variable Y
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and writing the constraints within the disjunctions as follows:

min
θ,t

∑
i∈I

ti

s.t.


Yi

ti ≥ log
(

1 + e−θ
>pi+θ0

)
θ>pi ≥ 0

 ∨


¬Yi

ti ≥ log
(

1 + eθ
>pi+θ0

)
θ>pi ≤ 0

 , i ∈ I

Ω(Y) = True

ti ∈ R+, i ∈ I
θ0 ∈ R
θj ∈ R, j ∈ JDK
Yk ∈ {False, True}, i ∈ I,

(LogReg)

where the logical constraints Ω(Y) = True can enforce symmetry-breaking con-
straints to help in the solution process or other additional constraints related to the
regression task.

The logistic regression constraint can be expressed as the following conic
inequality:

t ≥ log
(

1 + eθ
>pi+θ0

)
⇐⇒ u+v ≤ 1; x = θ>pi+θ0; (v, 1,−t) ∈ Kexp; (v, 1, x−t) ∈ Kexp,

(10)
and equivalently for the complementary disjunction.

In the examples presented herein, we generate ten random instances for each
one of the following settings. We set the value of the points’ dimensions within
D ∈ {2, 5, 10}, I = 20, and we choose to generate 2 clusters of normally distributed
points being at a Mahalanobis distance [30], i.e., a distance metric between points
and distributions, such that the points are at most σ ∈ {1, 2} standard deviations
away from the center of the distributions. This is computed via an inverse χ-squared
distribution with D degrees of freedom computed at probabilities {0.68,0.95} corre-
sponding to Mahalanobis distances of σ ∈ {1, 2} in the one-dimensional case. This
distance is then divided in 2

√
D, such that we place the centers of the distributions

at opposite corners of the D-dimensional hypercube. As mentioned in [35], a natural
advantage of the mathematical programming approach to the training tasks in ML,
compared to the heuristics, is that additional constraints can be enforced through the
problem formulation. In this case, within Ω(Y) = True, we force the split between
the data points to be within 45% and 55% and also force the farthest two points in the
set from the origin to belong to opposite classes as a symmetry breaking constraint.
Instances generated by this method are denominated LogReg D I σ x.

4.2.4 Random examples

Besides the applications-related instances listed above, we generate random instances
whose disjunctive constraints can be represented using Kexp. The form of the GDP
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is:

min
x,Y,z

c>x

s.t.
∨
i∈Dk

 Yik

a
′

ik exp
∑
j∈JnK

a
′′′′

ijkxj ≤ a
′′

ikz + a
′′′

ik

 , k ∈ K

Yi∈Dk
Yik, k ∈ K

xl ≤ x ≤ xu

z ≤ zu

x ∈ Rn

z ∈ R
Yik ∈ {False, True}, k ∈ K, i ∈ Dk,

(EXP-rand-GDP)

where the upper and lower bounds of variables x, xl and xu, are set at 0 and 10,
respectively. An upper bound for z is given by

zu = max
i∈Dk,k∈K

a′ik exp
∑
j∈JnK a

′′′′

ijkx
l
j − a

′′′

ik

(a
′′
ik)2

 . (11)

The exponential constraint can be written equivalently as a logarithmic constraint
and in a conic form as follows:

a
′

ik exp
∑
j∈JnK

a
′′′′

ijkxj ≤ a
′′

ikz + a
′′′

ik

⇐⇒ log(a
′

ik) +
∑
j∈JnK

a
′′′′

ijkxj ≤ log(a
′′

ikz + a
′′′

ik)

⇐⇒ a
′

ikvik ≤ a
′′

ikz + a
′′′

ik;

vik, 1, ∑
j∈JnK

a
′′′′

ijkxj

 ∈ Kexp.
(12)

The generation of the random exponential GDPs use the same parameters as
the random quadratic GDPs, i.e., K ∈ {5, 10}, Dk ∈ {5, 10}, and n ∈ 5, 10.
Ten instances, denoted exp random K Dk n x, are generated for each combina-
tion, besides a simple case with exp random 2 2 2 x and the extra parameters

are drawn from uniform distributions as a
′

ik ∈ U [0.01, 1], a
′′

ik ∈ U [0.01, 1], a
′′′

ik ∈
U [0.01, 1], a

′′′′

ijk ∈ U [0.01, 1], cj ∈ U [−1,−0.01], i ∈ Dk, k ∈ K, j ∈ JnK.

4.2.5 Results

We solve 208 GDP instances that are representable through the exponential cone.
These instances are transformed through Big-M and HR. Since the exponential cone
is not automatically identified through the constraints defining them, the explicit
description of the cone was required, giving rise to two different versions of each
reformulation. The Big-M results are summarized in Table B2 and the HR results
are included in Table B3 in the Appendix.

Depending on the family of instances, a given combination of solver and reformu-
lation was the best in runtime. For the LogReg* and RSyn* instances, MOSEK-OA
was the best solver when applied to the HR-Cone formulation. The other algorithm
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for MOSEK, MOSEK-IP, was the best performance solver for the proc* instances,
with the outstanding solution of the proc 100 problems in less than 5 seconds when
most other approaches could not solve it within the 1-hour time limit. The closest
non-conic approach was BARON applied to the original Big-M formulation. A ≈ 80x
and 6x speedup was obtained with instances proc 100 and proc 100b, respectively.
BARON applied to the Big-M formulation was the best among all solvers for the
Syn* instances. This approach was the fastest for the exp random* instances, with a
pretty similar performance achieved when applied to the Big-M-Cone formulation.
This was not the case in general, where the conic formulation of the Big-M problem
led to considerable performance degradation for BARON when solving the LogReg*

and Syn* instances. When considering the Big-M-Cone formulation, we see that both
KNITRO and MOSEK-IP time out for most instances.

When considering the HR, using a conic formulation severely affected the
performance of BARON and KNITRO. This was a sign of the challenges that
gradient-based methods encounter when facing exponential constraints such as the
ones appearing in the conic reformulation. As an example, in instance RSyn0805M02,
the HR-Cone formulation led to KNITRO failing to evaluate the gradients at every
B&B node, given function overloads by the evaluation of exponential functions.
BARON, running its default version with a dynamic NLP subsolver selection, could
not find a solution to this problem either, while a solver that takes advantage of the
exponential cone such as MOSEK solved the problem in 2 seconds.

As with the quadratic instances, the most efficient solver in terms of nodes
explored to find the optimal solution is BARON, both in the Big-M and HR.

Performance profiles are presented in Figure 2 for the exponential instances. In
the time performance profile in Figure 2, we observe a clear dominance of both
MOSEK algorithms applied to the HR-Cone formulation, particularly within the
first seconds. Towards the end of the time limit, BARON applied to both the Big-
M and HR formulations solves more instances to optimality. BARON applied to the
HR-ε approximation can solve all the exponential problems within the time limit.
Except for BARON, all solvers improve their performance when comparing the Big-
M and HR formulations. Having mentioned that, both BARON and KNITRO have
difficulties when solving the HR-Cone formulation, with the extreme case of BARON
failing on all instances.

When observing the node performance profile for the exponential instances in
Figure 2, the HR formulations require fewer nodes than the Big-M formulations,
except for BARON. BARON proves that it generates strong relaxation nodes, requir-
ing fewer to solve the problems, clearly dominating in this sense the other solvers. A
similar observation was made regarding the quadratic instances.

4.3 Controlling the Branch & Bound search

The implementations of modern solvers include an arsenal of heuristic methods to
tackle more efficiently the challenging optimization problems at hand. Although this
leads to performance improvements, it obscures the effect of better formulations
when solving the optimization problems. To that end, we consider using the Sim-
ple Branch& Bound (SBB) implementation in GAMS and solve the subproblems
using both KNITRO and MOSEK. These subproblems are continuous optimization
problems, while SBB manages the discrete variables’ exploration. We present below
two performance profiles in Figure 3 for all the problems solved in this manuscript,
mainly including results of SBB-KNITRO and SBB-MOSEK.
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Fig. 2 Time (left) and Nodes (right) performance profile for exponential instances using
the different GDP reformulations and commercial solvers.

In Figure 3 we observe the performance profiles of the SBB implementation
against the number of continuous convex subproblems solved. The first observation
is that the HR tight formulation allows a more efficient exploration of the subprob-
lems solves than the Big-M formulation. The conic formulation of HR affects the
performance of KNITRO when addressing the subproblems, leading to poor perfor-
mance in this case. Moreover, given the same branching rules, the Big-M and HR
formulations require approximately the same number of subproblems solved using
the original or the extended formulations arising from the conic description of the
problems. This is an expected result given that the extended formulation does not
require additional binary variables.

Although the number of solved subproblems is similar, the time required to solve
them varies depending on the chosen solver, as observed in Figure 3. In this figure,
we include the time performance profiles for the SBB alternatives. For reference, we
include the best commercial alternative to each reformulation. This corresponds to
BARON for the Big-M and HR-ε and MOSEK-IP for the HR-Cone formulations. The
solver that solved the most instances was BARON applied to the Big-M formulation,
solving 393 out of the 425 problems, followed by MOSEK-IP applied to the HR-Cone
formulation solving 390 problems. In general, MOSEK is more efficient at solving the
convex subproblems compared to KNITRO. The difference is exacerbated in the HR
formulation. An interesting observation is that the gap in time performance between
SBB and the best alternative is smaller for HR-ε than for HR-Cone. This indicates
that the efficient exploitation of the conic constraints, in this case from MOSEK,
can yield considerable performance advantages together with a tight reformulation
of disjunctive constraints.

5 Conclusions, discussion and future work

This work presents the formulation of convex Generalized Disjunctive Programming
(GDP) problems using conic sets. The convex GDP problem can be solved through
a reformulation into convex Mixed-Integer Nonlinear Programming (MINLP) prob-
lems. Two of those reformulations are covered in this manuscript, the Big-M and
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Fig. 3 Time (left) and Solved subproblems (right) performance profile for all instances
using the different GDP reformulations and solvers through SBB. For the time profiles we
include the best performing commercial solver results for each reformulation.

Hull Reformulations. The Hull reformulation of a convex GDP problem requires
implementing a perspective function, whose algebraic form is challenging for gradient-
based nonlinear optimization solvers. We present the Big-M and Hull reformulations
into Mixed-Integer Conic Programming (MICP) problems through the conic formu-
lation of the problem. The MICP problems can be efficiently tackled using specialized
conic solvers, which take advantage of the properties of the conic programs. We pro-
vide a guide to reformulate common convex constraints through conic programming.
If those constraints appear inside disjunctions, we also provide a conic representation
of its perspective, allowing the exact representation of the Hull reformulation.

These reformulations were tested using a large set of convex GDP problems
stemming from Process Systems Engineering, Machine Learning, and randomly gen-
erated instances. These instances were classified as quadratic and exponential and
solved through different reformulation alternatives and solvers. Our results show how
the conic reformulation gives a systematic and natural extended formulation of the
convex MINLP problems stemming from GDP. These can be exploited by solvers,
allowing a more efficient solution to these problems. Among the tested approaches,
we identified that BARON solving the Big-M formulation and MOSEK solving the
HR-Conic formulation, either with IP or OA, were the most efficient solvers to tackle
these convex GDP reformulated problems. In general, we show how the conic repre-
sentation of convex constraints within disjunctions can result in an exact and more
efficiently solvable mixed-integer representation of a convex GDP.

The results in this paper also point to specific improvement opportunities. In the
first place, the automatic reformulation of the convex constraints into cones is a task
worth pursuing. Previous success in the quadratic case allows commercial solvers
such as CPLEX or Gurobi to automatically detect conic structures and address those
more efficiently. An extension of these routines to exponential cones is therefore of
interest. Modeling extensions that allow for disjunctive programming are the natural
place to include these automatic reformulations. Approaches have been made at the
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modeling language level, e.g., in GAMS [81] Pyomo [24] 4, and Julia 5. These could
also be made at the solver level, with indicator constraints such as in CPLEX [51] and
MOSEK [3]. These techniques have also shown potential for the global optimization
of non-convex GDP or MINLP [68], motivating further research into it.

Interesting future directions are the exploration of conic formulations in more
advanced reformulations of GDPs, such as intermediate Big-M / Hull formula-
tions [58] and basic steps reformulations [71]. Moreover, conic programming tools can
be used in more advanced solution methods of GDP than the recasting of the prob-
lem into MINLP. Examples of those methods are Lagrangean decomposition based
on the disjunctive structure of the problem [69] or logic-based algorithms [24]. The
use of conic programming has already shown the potential speedup for mixed-integer
programming solutions [27], and expanding those findings to GDP is of great interest.
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Appendix A Background

In this manuscript we use a similar notation to the one used by Alizadeh and Gold-
farb [2], Ben-Tal and Nemirovski [11]. We use lower case boldface letters, e.g., x, c, to
denote column vector, and uppercase boldface letters, e.g., A,X, to denote matrices.
Sets are denoted with uppercase calligraphic letters, e.g., S,K. Subscripted vectors
denote xi denote the ith block of x. The jth component of the vectors x and xi are
indicated as xj and xij . The set {1, . . . , J} is represented by the symbol JJK. More-
over, the subscript JJK of a vector x is used to define the set xJJK := {x1, . . . ,xJ}.
We use 0 and 1 for the all zeros and all ones vector, respectively, and 0 and I for
the zero and identity matrices, respectively. The vector ej will be the vector with
a single 1 in position j, and its remaining elements being 0. The dimensions of the
matrices and vectors will be clear from the context. We use Rk to denote the set of
real numbers of dimension k, and for set S ⊆ Rk, we use cl(S) and conv(S) to denote
the closure and convex hull of S, respectively.

For concatenated vectors, we use the notation that “,” is row concatenation of
vectors and matrices, and “;” is column concatenation. For vectors, x,y and z, the
following are equivalent.x

y
z

 = (x>,y>, z>)> = (x; y; z). (A1)

The projection of a set S ⊆ Rk onto the vector x ∈ X ⊆ Rn, with n ≤ k is
denoted as projx(S) := {x ∈ X : ∃y : (x; y) ∈ S}.

If A ⊆ Rk and B ⊆ Rl we denote their Cartesian product as A× B := {(x; y) :
x ∈ A,y ∈ B}.

For A1,A2 ⊆ Rk we define the Minkowski sum of the two sets as A1 + A2 =
{u + v : u ∈ A1,v ∈ A2}.

A.1 Cones

For a thorough discussion about convex optimization and conic programming, we
refer the reader to [11]. The following definitions are required for the remainder of
the manuscript.

The set K ⊆ Rk is a cone if ∀(z, λ) ∈ K×R+, λz ∈ K. The dual cone of K ⊆ Rk is

K∗ =
{
u ∈ Rk : uT z ≥ 0, ∀z ∈ K

}
, (A2)

and it is self-dual if K = K∗. The cone is pointed if K∩(−K) = {0}. A cone is proper
if it is closed, convex, pointed, and with non-empty interior. If K is proper, then its
dual K∗ is proper too. K induces a partial order on Rk:

x <K y ⇐⇒ x− y ∈ K, (A3)

which allows us to define a conic inequality as

Ax <K b, (A4)

http://ampl.com/MEETINGS/TALKS/2015_01_Richmond_2E.2.pdf
http://ampl.com/MEETINGS/TALKS/2015_01_Richmond_2E.2.pdf
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where A ∈ Rm×k, b ∈ Rm, and K a cone.
When using a cone that represents the Cartesian product of others, i.e., K =

Kn1 × · · · × Knr with each cone Kni ⊆ Rni , its corresponding vectors and matrices
are partitioned conformally, i.e.,

x = (x1; . . . ; xr) where xi ∈ Rni ,

y = (y1; . . . ; yr) where yi ∈ Rni ,

c = (c1; . . . ; cr) where ci ∈ Rni ,

A = (A1; . . . ; Ar) where A ∈ Rm×ni .

(A5)

Furthermore, if each cone Kni ⊆ Rni is proper, then K is proper too.
A Conic Programming (CP) problem is then defined as:

min
x

c>x

s.t. Ax = b,

x ∈ K ⊆ Rk.

(CP)

Examples of proper cones are:

• The non-negative orthant

Rk+ =
{
z ∈ Rk : z ≥ 0

}
. (A6)

• The positive semi-definite cone

Sk+ =
{
Z ∈ Rk×k : Z = ZT , λmin(Z) ≥ 0

}
, (A7)

where λmin(Z) denotes the smallest eigenvalue of Z.
• The second-order cone, Euclidean norm cone, or Lorentz cone

Qk =

z ∈ Rk : z1 ≥

√√√√ k∑
i=2

z2
i

 . (A8)

• The exponential cone [23]

Kexp = cl
{

(z1, z2, z3) ∈ R3 : z1 ≥ z2e
z3/z2 , z1 ≥ 0, z2 > 0

}
=
{

(z1, z2, z3) ∈ R3 : z1 ≥ z2e
z3/z2 , z1 ≥ 0, z2 > 0

}⋃
R+ × {0} × (−R+)

=
{

(z1, z2, z3) ∈ R3 : z1 ≥ z2e
z3/z2 , z2 ≥ 0

}
.

(A9)

Of these cones, the only one not being self-dual or symmetric is the exponential cone.
Other cones that are useful in practice are
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• The rotated second-order cone or Euclidean norm-squared cone

Qkr =

z ∈ Rk : 2z1z2 ≥

√√√√ k∑
i=3

z2
i , z1, z2 ≥ 0

 , (A10)

This cone can be written as a rotation of the second-order cone, i.e.,

z ∈ Qk ⇐⇒ Rkz ∈ Qkr with Rk :=

√2/2
√

2/2 0√
2/2 −

√
2/2 0

0 0 Ik−2

,

or by a linear transformation of the second-order cone, i.e., Qkr ={
z ∈ Rk : (z1 + z2, z1, . . . , zk) ∈ Qk+1

}
.

• The power cone, with l < k,
∑

i∈JlK αi = 1,

Pα1,...,αn

k =

z ∈ Rk :

l∏
i=1

zαi
i ≥

√√√√ k∑
i=l+1

z2
i , zi ≥ 0 i ∈ JlK

 . (A11)

This cone can be decomposed using a second-order cone and l − 1 three-
dimensional power cones

Pα3 =
{

(z1, z2, z3) ∈ R3 : zα1 z
1−α
2 ≥ z3 , z1, z2 ≥ 0

}
, (A12)

through l − 1 additional variables (u, v1, . . . , vl−2),

z ∈ Pα1,...,αn

k ⇐⇒


(u, zl+1, . . . , zk) ∈ Qk−l+1,

(z1, v1, u) ∈ Pα1
3 ,

(zi, vi, vi−1) ∈ P ᾱi
3 , i = 2, . . . , l − 1,

(zl−1, zl, vl−2) ∈ P ᾱl−1

3 ,

(A13)

where ᾱi = αi/(αi + · · · + αn) for i = 2, . . . , l − 1. Pα3 can be represented
using linear and exponential cone constraints, i.e., limα→0(z1, z2, z2 +αz3) ∈
Pα3 = (z1, z2, z3) ∈ Kexp
Most, if not all, applications-related convex optimization problems can be rep-

resented by conic extended formulations using the these standard cones [3], i.e., in
problem CP, the cone K is a product K1×· · ·×Kr, where each Ki is one of the recog-
nized cones mentioned above. Equivalent conic formulations for more exotic convex
sets using unique cones can be formulated with potential advantages for improved
solution performance [26].

As mentioned in the introduction, an alternative to a convex optimization prob-
lem’s algebraic description as in problem MINLP is the following Mixed-Integer Conic
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Programming (MICP) problem:

min
z,y

cT z

s.t. Az + By = b,

yl ≤ y ≤ yu,

z ∈ K ⊆ Rk, y ∈ Zny ,

(MICP)

where K is a closed convex cone.
Without loss of generality, integer variables need not be restricted to cones, given

that corresponding continuous variables can be introduced via equality constraints.
Notice that for an arbitrary convex function f : Rk → R ∪ {∞}, one can define a
closed convex cone using its recession,

Kf = cl{(z, λ, t) : λf(z/λ) = f̃(z, λ) ≤ t, λ > 0}, (A14)

where the function f̃(z, λ) is the perspective function of function f(z), and whose
algebraic representation is a central piece of this work. Closed convex cones can also
be defined as the recession of convex sets. On the other hand, a conic constraint is
equivalent to a convex inequality,

Ax <K b ⇐⇒ g(x) ≤ 0, (A15)

for appropriately chosen smooth convex functions g(x) [12, 21].
We can therefore reformulate problem MINLP in the following parsimonious

manner [65]:

min
x,y,sJJK
xf ,yf ,tf ,
xJJK,yJJK

tf

s.t. x = xf ,y = yf ,

((xf ; yf ), 1, tf ) ∈ Kf ,
x = xj,y = yj,(

(xj; yj), 1, sj
)
∈ Kgj , sj ∈ R+, j ∈ JJK,

yl ≤ y ≤ yu,

x ∈ Rnx
+ , y ∈ Zny ,

(MINLP-Cone)

where copies of the original variables x and y are introduced for the objective function
and each constraints, xf ,yf ,xj,yj, j ∈ JJK, such that each belongs to the recession
cone of each constraint defined as in (A14). Each conic set requires the introduction
of an epigraph variable t and a recession variable λ. The epigraph variable from the
objective function, tf , is used in the new objective, and the ones corresponding to
the constraints are set as non-negative slack variables sj . The recession variables λ
in (A14) are fixed to one in all cases.

Notice that problem MINLP-Cone is in MICP form with K = Rnx+J
+ × Kf ×

Kg1×· · ·×KgJ . As mentioned above, the case when K = K1×· · ·×Kr where each Ki
is a recognized cone is more useful from practical purposes. Lubin et al. [65] showed
that all the convex MINLP instances at the benchmark library MINLPLib [18] could
be represented with these recognized cones.
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A.2 Perspective function

For a convex function h(x) : Rn → R∪{∞} its perspective function h̃(x, λ) : Rn+1 →
R ∪ {∞} is defined as

h̃(x, λ) =

{
λh(x/λ) if λ > 0

∞ otherwise
(A16)

The perspective of a convex function is convex, but not closed. Hence, consider
the closure of the perspective function (clh̃)(x, λ) defined as

(
cl h̃

)
(x, λ) =


λh(x/λ) if λ > 0

h′∞(x) if λ = 0

∞ otherwise

, (A17)

where h′∞(x) is the recession function of function h(x)[50, Section B Proposition
2.2.2], and which in general does not have a closed-form.

The closure of the perspective function of a convex function is relevant for convex
MINLP on two ends. On the one hand, it appears when describing the closure of the
convex hull of disjunctive sets. On the other hand, as seen above, it can be used to
define closed convex cones K, that determine the feasible region of conic programs.
Relying on amenable properties of convex cones, conic programs can be addressed
with specialized algorithms allowing for more efficient solution methods.

The closure of the perspective function presents a challenge when implementing it
for nonlinear optimization models, given that it is not defined at λ = 0. Modeling this
function becomes necessary when writing the convex hull of the union of convex sets,
as seen below. This difficulty has been addressed by several authors in the literature
through ε-approximations. The first proposal was made by Lee and Grossmann [60],
where (

cl h̃
)

(x, λ) ≈ (λ+ ε)h

(
x

λ+ ε

)
. (A18)

This approximation is exact when ε → 0. However, it requires values for ε, which
are small enough to become numerically challenging when implemented in a solution
algorithm.

Furman et al. [39] propose another approximation for the perspective function
such that(

cl h̃
)

(x, λ) ≈ ((1− ε)λ+ ε)h

(
x

(1− ε)λ+ ε

)
− εh(0)(1− λ), (A19)

which is exact for values of λ = 0 and λ = 1, is convex for h(x) convex, and is
exact when ε → 0 as long as h(0) is defined. Using this approximation in the set
describing the system of equations of the closed convex hull of a disjunctive set also
has properties that are beneficial for mathematical programming.

This approximation is used in software implementations when reformulating a
disjunctive set using its hull relaxation [24, 81]. Notice that even with its desirable
properties, the approximation introduces some error for values ε > 0; hence it is
desirable to circumvent its usage. As shown in [46] and the Section 4, using a conic
constraint to model the perspective function allows for a more efficient solution of
convex MINLP problems.
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A.3 Disjunctive Programming

Optimization over disjunctive sets is denoted as Disjunctive Programming [5, 8].
A disjunctive set is given by the system of inequalities joined by logical opera-
tors of conjunction (∧, “and”) and disjunction (∨, “or”). These sets are non-convex
and represent usually the union of convex sets. The main reference on Disjunctive
Programming is the book by Balas [8].

Consider the following disjunctive set

C =

x ∈ Rn : x ∈
∨
i∈I
Ci

 =
⋃
i∈I

{
x ∈ Rn : x ∈ Ci

}
, (A20)

where I is finite. Each set defined as Ci := {x ∈ Rn | hi(x) ≤ 0} is a con-
vex, bounded, and non-empty set defined by a vector valued function hi : Rn →
(R ∪ {∞})Ji . Notice that is it sufficient for Ci to be convex that each component
of hi, hij , j ∈ {1, · · · , Ji}, is a proper closed convex function, although it is not a
necessary condition.

Ceria and Soares [20] characterize the closure of the convex hull of C, cl conv(C),
with the following result.

Theorem 2 [20] Let Ci = {x ∈ Rn | hi(x) ≤ 0} 6= ∅, assume that each component
of hi, hiJJiK, is a proper closed convex function, and let

H =



x =
∑
i∈I

vi,∑
i∈I

λi = 1,

(
cl h̃i

)
(vi, λi) ≤ 0, i ∈ I,

vi ∈ Rn, i ∈ I,
λi ∈ R+, i ∈ I


. (A21)

Then cl conv(
⋃
i∈I Ci) = projx(H).

Proof Proof:See [20, Theorem 1] and [16, Theorem 1]. �

Theorem 2 provides a description of cl conv(C) in a higher dimensional space,
an extended formulation. This Theorem generalizes the result by [5–8] where all the
convex sets Ci are polyhedral. Even though the extended formulations induce growth
in the size of the optimization problem, some of them have shown to be amenable
for MINLP solution algorithms [49, 57, 65, 76].

A similar formulation was derived by Stubbs and Mehrotra [75] in the context of
a Branch-and-cut method for Mixed-binary convex programs. These authors notice
that the extended formulation might not be computationally practical, hence they
derive linear inequalities or cuts from this formulation to be later integrated into
the solution procedure. Similar ideas have been explored in the literature [37]. In
particular cases, the dimension of the extended formulation can be reduced to the
original size of the problem, e.g., when there are only two terms in the disjunction,
i.e., I = 2, and one of the convex sets Ci is a point [46]. A description in the
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original space of variables has also been given for the case when one set C1 is a box
and the constraints defining the other C2 is defined by the same bounds as the box
and nonlinear constraints being isotone [48]. This has been extended even further
by Bonami et al. [16] with complementary disjunctions. In other words the activation
of one disjunction implies that the other one is deactivated, in the case that the
functions that define each set h{1,2} are isotone and share the same indices on which
they are non-decreasing. The last two cases present the formulation in the original
space of variables by paying a prize of exponentially many constraints required to
represent cl conv(C).

In the case that Ci is compact, its recession cone is the origin, i.e., Ci∞ := {x ∈
Rn | h′i∞(x) ≤ 0} = {0} [50, Section A, Proposition 2.2.3]. This fact, together
with (A17) and Theorem 2, forces that for a compact Ci, a value of λi = 0 implies
vi = 0. This fact has been used to propose mixed-integer programming formulations
for expressing the disjunctive choice between convex sets, by setting the interpolation
variables to be binary λi ∈ {0, 1}, i ∈ I [53, 60], i.e.,

H{0,1} =



x =
∑
i∈I

vi,∑
i∈I

λi = 1,

(
cl h̃i

)
(vi, λi) ≤ 0, i ∈ I,

vi ∈ Rn, i ∈ I,
λi ∈ {0, 1}, i ∈ I


. (A22)

An interesting observation is that using the approximation of the closure of
the perspective function from Furman et al. [39], for any value of ε ∈ (0, 1),
projx(H{0,1}) = C when hi(0) is defined ∀i ∈ I and{

x ∈ Rn : hi(x)− hi(0) ≤ 0
}

= {0}, ∀i ∈ I (A23)

see [39, Proposition 1].
The condition on (A23) is required to ensure that if λi = 1, then vi′ = 0, ∀i′ ∈ I \

{i}. This condition is not valid in general for a disjunctive set C, but it is sufficient to
have a bounded range on x ∈ Ci, i ∈ I. Moreover, when these conditions are satisfied,
C ⊆ projx(H) using the approximation in (A19) for ε ∈ (0, 1), with cl convC =
projx(H) in the limit when ε→ 0 [39, Proposition 3].

Appendix B Detailed computational results
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