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An MINLP Model for Integrated Optimization of
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Jingyao Hu, Jinming Xu, Wenchao Meng, Qinmin Yang and Ignacio E. Grossmann

Abstract—The optimal design of layout and cable routing
is crucial in maximizing the financial returns of wind farms.
Traditionally, the Wind Farm Layout Optimization (WFLO) and
Wind Farm Cable Routing (WFCR) problems are addressed
separately or using heuristic methods, leading to suboptimal
solutions. In this paper, we propose a Mixed-Integer Nonlinear
Program (MINLP) formulation for the integrated optimization
of layout and cable routing, incorporating a nonlinear wake
model, to maximize the Net Present Value (NPV) of wind farms.
Moreover, we employ two reformulation methods: a Big-M
reformulation of the MINLP and a reformulation as an Mixed-
Integer Quadratically Constrained Program (MIQCP), while
improving computational efficiency and ensuring tractability. The
global optimum can be guaranteed by solving the Big-M MINLP
formulation with BARON, ANTIGONE, and SCIP and by solving
the MIQCP formulation with Gurobi. Furthermore, experimen-
tal results demonstrate that our proposed model significantly
improves the NPV compared to existing models employing a
simplified linear wake model or two-stage optimization.

Index Terms—Wind farm, Layout, Cable routing, Integrated
optimization, MINLP

I. INTRODUCTION

The global community is shifting from fossil fuels to sus-
tainable energy to reduce environmental pollution and green-
house gas emissions. According to recent statistics, global CO5
emissions from energy consumption and industrial processes
have increased steadily, rising from 2.0 Gt in 1990 to 37.6
Gt in 2024, with an average annual growth rate of 10.38%
[1]. As a result, wind energy, one of the most abundant
renewable energy resources with its high commercialization
and pollution-free nature in the electrical generation process,
has recently attracted significant attention [2], [3].

In the initial design stage of wind farms [4], two pri-
mary challenges are encountered: i) the Wind Farm Layout
Optimization (WFLO) problem [5], and ii) the Wind Farm
Cable Routing (WFCR) problem [6]. Traditionally, WFLO and
WEFCR problems are solved separately in a sequential manner
[7], which leads to suboptimal solutions. WFLO problems
focus on the strategic placement of wind turbines to maximize
energy production while accounting for wake effects. The
wake effect refers to the region of slower wind speed caused
by upstream turbines’ aerodynamic interactions, which reduces
the energy yield of the downwind turbines. Heuristic optimiza-
tion algorithms such as genetic algorithms (GA) [8], particle

J. Hu, J. Xu, W. Meng and Q. Yang are with the College of Control
Science and Engineering, Zhejiang University, Hangzhou, China. E-mails:
{jingyao_hu, jimmyxu, wmengzju, qmyang } @zju.edu.cn

IE. Grossmann are with the Department of Chemical Engineering, Carnegie
Mellon University, Pittsburgh, USA. E-mails: grossmann@cmu.edu

swarm optimization (PSO) [9], [10], or hybrid GA-PSO [11]
are commonly employed to solve WFLO problems with ana-
lytical wake models. Also, mathematical programming models
are employed to formulate Mixed-Integer Linear Programming
(MILP) models for WFLO problems with linearized wake
effects [12]. WFCR is usually performed after the layout
of the wind farm is finalized, wherein the cost of electrical
cable accounts for 15%-30% of the total capital expendi-
ture [13]. Existing approaches solving the WFCR problems
can be categorized into three main streams: graph theory-
based algorithms, such as Prim’s algorithm [14]; heuristic
optimization techniques, including GA [15] and PSO [16];
and mathematical programming approaches, such as MILP
[17], [18]. In real-world applications, one needs to consider
physical constraints, such as the presence of obstacles [19]
and the no-cable-crossing rule [20].

However, the above two-stage optimization of WFLO and
WEFCR is suboptimal, as WFLO tends to disperse turbines to
minimize wind interference among them, resulting in longer
and more costly cables in the subsequent WFCR stage. There
have been several works attempting to employ integrated
optimization of WFLO and WFCR to enhance wind farm
design. For instance, in [21], an MILP model is developed that
accounts for pairwise wake effects, and imposes a number of
additional inequalities to strengthen its linear programming re-
laxation. Likewise, another MILP model considering the com-
bined wake effect is proposed to maximize power generation
while minimizing costs and energy loss [22]. Although MILP
models can provide relatively efficient solutions, simplifying
wake effects to linear models and assuming the property of su-
perposition linearity can result in inaccurate power generation
estimates. Heuristic methods are thus typically employed for
models incorporating more precise nonlinear wake equations.
For instance, a novel heuristic method has been introduced
that integrates a local search strategy to concurrently optimize
both WFLO and WFCR, leading to an increase of up to 12
million euros in the Net Present Value (NPV) of wind farms
[23].

Additionally, a hybrid technique, integrating an improved
colony algorithm with the genetic algorithm, the dual simplex
method, and Kruskal’s algorithm, has been developed for
joint optimization of turbine placement and cable routing with
obstacle avoidance in challenging terrains [24]. A combined
framework based on the Non-dominated Sorting Genetic Algo-
rithm IT (NSGA-II) and the MILP [25] has also been proposed
to optimize the layout of wind turbine locations, connection
points, and cable paths. Furthermore, A bilevel non-uniform
optimization approach is proposed [26] to conduct integrated
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optimization to minimize the levelized energy cost (LCOE).
A nonlinear mathematical programming model with a 3D
Gaussian wake model is proposed [27] to optimize the turbine
locations and cable layouts with initial solutions obtained via
GA and the Prim algorithm. However, due to the use of heuris-
tic methods, all the abovementioned studies cannot guarantee
the global optimal solution for the integrated optimization.

In this paper, we present a Mixed-Integer Nonlinear Pro-
gram (MINLP) formulation for the integrated optimization of
WFLO and WFCR, incorporating a more accurate nonlinear
wake model to maximize NPV. To ensure computational
efficiency and tractability, we reformulate the model through
two methods: a Big-M reformulation of MINLP and a refor-
mulation as an MIQCP. As a result, the global optimal solution
can be guaranteed by solving the reformulated problems
using BARON [28], ANTIGONE [29], and SCIP [30] for the
Big-M MINLP formulation, and using Gurobi [31] for the
MIQCP formulation. The main contributions of this work are
summarized as follows:

o We establish an MINLP formulation with a more accurate
nonlinear wake model for the integrated optimization of
layout and cable routing for wind farms.

o The Big-M reformulation method is proposed to make the
original MINLP problem into a tractable form, enabling
solution by state-of-the-art global optimization solvers
such as BARON [28], ANTIGONE [29], and SCIP [30].

e The further reformulation as an MIQCP is proposed
to effectively improve the computation efficiency and
guarantee the global optimal result by Gurobi [31].

o The solution comparisons with optimization without
wake effect, integrated optimization with simplified lin-
ear wake model, and two-stage optimization, show that
our proposed model leads to improvements of 33.64%,
22.8%, and 7.5% of the NPV, respectively.

The remainder of this paper is organized as follows. The
problem statement is given in Section II, followed by the
detailed mathematical formulation of the WFLO and WFCR
integrated optimization problem in Section III. Section IV
includes the computational comparison with other solvers and
other models. We conclude this article in Section V.

II. PROBLEM STATEMENT

In this work, we address the integrated optimization of
layout and cable routing within a predefined geographic area
and given potential positions for turbine installation. The
objective is to maximize the overall economic benefit of
the wind farm, while satisfying a set of engineering and
operational constraints.

As illustrated in Fig.1, the gray dots represent potential
locations for wind turbine installation, denoted by a discrete
set V. For each candidate site ¢ € V/, a binary decision variable
z; 18 defined to indicate whether a turbine is installed at that
location (z; = 1) or not (z; = 0). In addition to turbine
placement, the electrical cable connections between turbines
and the substation are modeled using two types of binary
variables: y;;» indicates whether there is a cable installed
between location ¢ and 4/, and %, indicates whether the cable

k
P xbn =0
k /
P xi =1
—
costj;  cap;
k
p;’
zp =1 °
¢ Yir =0
zi=0
Fig. 1. Example of a layout and cable routing optimization problm

type ¢ is used to connect location "’ and s, where s refers
to substation’s location. Besides, ,4’,4", " represent different
possible locations for wind turbines. A set of cable typest € T
are available, each characterized by a specific installation cost
costﬁ;- for connecting nodes ¢ and j, and a maximum capacity
cap, denoting the maximum current capacity it can support.

To reflect the physical constraints of power generation and
transmission, continuous variables are introduced to model the
power output of wind turbines and power flow through cables.
Specifically, p% represents the power generated by a turbine at
location 4’ under wind scenario k € K, while f%,, denotes the
power flow between locations ¢’ and "’ under the scenario k.
Each wind scenario k is defined by a specific combination of
wind direction GZV and wind speed Ufo, derived from historical
wind data. These variations influence the wake effects among
turbines, affecting their power generation outputs. Besides, the
variable pf is non-zero only if a turbine is installed at location
i, and both pf, and fi’?i// can be used to guarantee the current
balance and cable capacity constraints, which will be detailed
in the subsequent section.

Moreover, the optimization model incorporates other key
constraints, including bounds on the number of turbines,
minimum separation distance between turbines, and topol-
ogy requirements, among others. Considering all the above
components, the optimization model seeks to determine the
optimal number and spatial configuration of wind turbines,
as well as the cable types and routing strategy for electrical
connections. The resulting formulation is an MINLP problem,
which captures the combinatorial nature of turbine siting and
cable selection and the nonlinearities arising from wake effects
and power flow dynamics.

III. MATHEMATICAL FORMULATION

In this section, the wake model is first introduced, and
the analytical expression for the wake decay coefficient is
derived. Subsequently, distinct power generation strategies
for wind turbines operating in different wind speed regions
are presented with the Generalized Disjunctive Programming
(GDP) approach to handle the piecewise function in power
output calculation [32]. Following this, the formulation of
the Mixed-Integer Nonlinear Programming (MINLP) model is
described. Finally, the proposed reformulation methods are de-
rived, leading to the Big-M MINLP model and Mixed-Integer
Quadratically Constrained Programming (MIQCP) model.
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A. Wake effect model

Since the position of upstream wind turbines can signifi-
cantly influence the downstream aerodynamic performances,
thereby affecting the power output of downstream wind tur-
bines, the wake effect is a critical factor in evaluating the
overall power generation efficiency of a wind farm. The
Park model is one of the most widely used wake models
as it works well in balancing fidelity and computational cost
[33]. In this study, a Park-based multi-variable coupling wake
model is used to predict the power generation [34]. As the
paper is focused on the layout and cable design optimization,
the optimization of the control variables is not considered.
Therefore, a greedy control is assumed for every turbine in
a wind farm [35]. This means the yaw angle is designed
to guarantee that the blade disk planes are perpendicular to
the wind direction. Furthermore, the axial induction factor
(AIF) is designed to guarantee the power maximization of each
turbine by adjusting the blade pitch and generator torque. In
the following analysis, «; and o; refer to the AIF and the yaw
angle of wind turbine ¢, respectively.

Fig. 2. Wake behind a single turbine

When the wind blows through the disk plane of wind turbine
7, the wake effect scale in Fig.2 is measured by a distance d
and radius . The wind speed behind the wind turbine j is
expressed as follows:

u(d7 T, aj) = (1 - 5“’(d7 T, aj))Uoca (1)

where Uy, is the ambient wind speed. du(d, r, a;) is the wake
decay coefficient given by the following expression:

20, (#5)", < R(d
5U(d,7’,0¢j): @ (W) ’ orany 7 = ()7

0, for any r > R(d),

2

where I; is the radius of turbine j, equal to the half value of
the diameter D; in Fig. 2, and R(d) = R; 4+ xd with x being
a wake expansion parameter.

Next, we introduce the wake decay coefficient of wind
turbine ¢ influenced by an upstream turbine j, denoted as du ;.
The yaw angle of the upstream turbine reduces the area of the
rotor surface perpendicular to the wind flow, so a modification
with the cosine function is considered. duj; is also related
to the overlapping area between the wake of the upstream
wind turbine and the blade disk planes of the downstream

turbine, which is denoted as A‘;V_iriap . In this way, the equation
is formulated as follows:

R. 2 Aqverl_ap
—1
duji(az,05,0") = 2a; cos(vo) (R n mdj» »(GW)> A,
J ij (3

3)

where « is the parameter controlling the sensitivity of the
yaw angle, 8" is the wind direction, A; is the area of blade
disk planes of downstream turbine, and d;;(0"V) represents the
projection distance of the upstream and downstream turbines
along the ambient wind direction #"V. Fig.3 clearly shows
the relationship between the overlapping area and the other
parameters.

overlap
A

turbine j

Fig. 3. Diagram of the effect of upstream turbine on downstream turbine

For a wind turbine ¢ influenced by the wake effect of
variable upstream wind turbines, the wake decay coefficient
is expressed as follows:

sui({a;,05}jen:,0")

= [ D (Builaj,0;,6™))?

JEN;
2
R\
=2 a;j cos(y04) < J ) ! .
jgj\:/i < I I Rj + mdij(HW) Al

“)
Finally, the wind speed before the downstream wind turbine
is expressed as follows:

Ui = (1 — 5Ui({aj70j}jEM,70W))Uoo- (5)

It is worth noting that under the greedy control strategy, the

control variables are set to o = 0 and o = %

B. Power generation model

According to the standard wind turbine power curve shown
in Fig. 4, there are typically four distinct regions, each
representing a different operational behavior depending on the
available wind speed. For the cut-in region, the wind speed is
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Fig. 4. Example of standard wind turbine power curve

below the cut-in speed, which is too low to generate usable
power; it remains stationary or idle. For the partial load region
(available wind speed is between the cut-in and rated speed),
the following equation is widely used for evaluating the power
generation considering the wake effect [36]:

1
Pi = *pAC i(ai,oi)Uf
i , ©
= 5/)14010,1'(%0@‘)((1 — oui({e, 05 jen, 0" ))Us)?,

where p and A denote the air density and the rotor area,
respectively, U; represents the wind speed captured by wind
turbine ¢, and U; = U, when there is no wake effect. C) ; is
the power coefficient expressed as follows:

Cp,i(ai, Oi) = 40@(008(601') — Ozi)Q, (7)

where [ is the coefficient representing the influence of the yaw
angle on power generation. For the greedy control strategy
with 0; = 0 and «; = %, the value of power coefficient can
be determined by C),; = 16/27.

The turbine operates at its maximum rated capacity for the
full load region (available wind speed is between the rated and
cut-out speed). Control mechanisms such as pitch regulation
or generator torque control, maintain constant output despite
increasing wind speed.

The turbine is shut down for the cut-out region to prevent
mechanical damage and to ensure safety. No power is gen-
erated in this region. To sum up, the power generation of a
turbine is expressed by the following piecewise function:

U, = Uoo(l_5ui({aj70j}j€Ni79W))u (®)
0, Uz < Uim
%pACpUi?’, Uin S Uz < Uratea

P = ©)
%pACp Ur:zgate’ Urate < Uz < U0u17

O, Uz 2 Uouta

where Uiy, Urae, Uoue represent the cut-in, rated, and cut-out
speeds of wind turbines, respectively.

C. Model formuation

In this section, a Mixed-Integer Nonlinear Program
(MINLP) formulation is proposed for the integrated optimiza-
tion of layout and cable routing. It determines a feasible
allocation of turbines and cable connections between all wind
turbines and the given substations, maximizing the economic
benefit. The model considers the following constraints:

(a) There is a limit for the number of installed turbines with
a minimum N,,;, and a maximum N ax.

(b) There is a minimum separation distance D,,;;, between
any pair of installed turbines, which avoids the safety problem
of blade clash or strong turbulence.

(c) There is a maximum number of incoming arcs in the
substation, Ciax,s, Which denotes the corresponding limit for
substation s.

(d) There are different maximum current capacities that
different cable types can support. cap, denotes the maximum
current capacity of cable type t.

(d) The topology of the built cables must be rooted at the
substation, with exactly one cable exiting each turbine.

Moreover, the model involves the following parameters:

o V, the set of possible positions for wind turbine construc-

tion.

e K, the set of possible wind scenarios with different

combinations of (6}, UL ).

e S, the set of positions for substations; s denotes the

substation, s € S.
o T, the set of different cable types; ¢ denotes the cable
type, t € T

e H, one year’s average of effective power generation time

of the wind farm.

o 7", the probability of wind scenario k, k € K.

o OPEX, the maintenance cost per MW of a wind

turbine

o dist;;, the distance between positions ¢ and j.

e COSty, the unit investment cost for one wind turbine.

. costﬁj, the cost of connecting positions ¢ and j, which
is calculated by multiplying the unit cost of cable ¢ and
diStij.

e Diwh, the unit electricity price.
Furthermore, the binary variables z;, y;;, xgj and nonnega-
tive continuous variables fi]g-, P} are defined for the proposed

MINLP model:

e 2z;: = 1 if a turbine is located at position ¢, and = 0
otherwise. By definition, z; = 1, means a substation is
located at position s.

e yi;: = 1 if the directed connection (4, j) is built, and = 0
otherwise.

t

o x;;: = 1 if the directed connection (i, ) is built with a

cable type t, and = 0 otherwise;

. Z’E the electrical current that flows on the directed cable
connection (i, j) for wind scenario k;

o PF: the power generation of position i for the wind

scenario k € K.
In order to maximize the economic benefit, the net present
value (NPV) is used to estimate the net profit earned by a wind
farm over its operational life. The NPV is composed of the
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annual energy production (AEP), the operating expenditure
(OPEX), and the capital expenditure (CAPEX). Based on
Equations (4) and (6), and considering the selection of wind

turbine installation, PF is expressed as follows:

UF = Us[1— |3 (ut 7], (10
jeVv
O7 Uik < Uin»
X %pACpUik3Z¢, Uin S Uzk < Urale7
P (11

%pACp Urite Ziy Urate S Ulk < Uouta

07 Uik Z Uout 9

where 5u§i refers to the wake decay coefficient of wind turbine
1 influenced by turbine j for wind scenario k. The piecewise
function (11) can be formulated as the disjunction (12) in

Generalized Disjunctive Programming (GDP) [37], [38]:

B},
UF < U
PF=0
- Bﬁg
v Uin < Uzk < Urate
| Pl =1pAC, U5
[ Bfg (12)
v Urate < Ulk < Uoul
L Pik = % pACP Ur:?ite Zj
- Bﬁ’4
V| UF>Uy |,i€V,keK,
| PF=0
Bf; € { True, False },j = 1,2,3,4.
The AEP of a wind farm is expressed as follows:
AEP=H-Y %) pPf. (13)

keK eV

The OPEX in a wind farm refers mainly to the annual
maintenance cost, and is defined as follows:

OPEX = OPEXyy - H - P- Z 2,
eV

(14)

where P, is the rated power.
The CAPEX in a wind farm is mainly composed of the
investment cost of the wind turbines and the cable installation:

CAPEX = ) costy -z + > 3 costt -al,.

2% i,jEVUS teT

15)

The NPV is estimated by calculating the annual net income,
which is discounted through the interest rate 7, and then
subtracting the CAPEX. To maximize the NPV, the objective
function is given as follows:

L

maxZ = NPV = 3 AEP - piwn — OPEX
m=1

(L 4r)m

— CAPEX,
(16)

where L and r represent the estimated lifetime of the wind
farm and the interest rate, respectively.

For a wind turbine built in position i € V (z; = 1), the
outcoming current equals the incoming current plus the power
generation of turbine i. The current balance constraint is then
formulated as follows:

>

kE _
ij —
JEVUS,j#i JEVUS,j#i

k+PFVieVike K. (17)

The following cable capacity constraint ensures that enough
cable capacity is installed to support the current in each
connection:

ikj < anptx’;j,w,j ceVuSkekK.
teT

(18)

Equation (19) enforces single-cable-type selection per con-
nection, while Equation (20)-(21) generate radial topology
by restricting outdegrees. Note that the out-degree of every
installed turbine is set to 1, or O otherwise, and the out-degree
of every substation is set to 0.

Yij = Zﬁj,w,j eVus. 19)
teT
E:%jéaAﬁeMjeVuS. (20)
J
21

Yy =0Ys€SieVUS

The following Equation introduces Chax,s as a quantifiable
threshold for substation inflow, integrating grid stability into
topology design.

Zyis < Cmax,s,vs € s.
eV

(22)

The limit on the number of installed turbines is imposed to
balance cost and redundancy:

Nmin S Zzz S Nmax-
eV

(23)

The minimum distance between wind turbines ¢ and j is
ensured by the following constraint::

2y + Zj < 1,VZ,] S ‘/,Z < j, diStij < Duiin. 24)

The following constraint avoids any crossover between two
cables, where the set X stores pairs of crossover cables

{(27])7 (h7 l)}'
Yij +Yji +ym +yin < 1,{(4,7),(h, D)} € X.
The remaining constraints define all the binary and contin-

uous variables, and fix to the zero value of part of them when
they correspond to infeasible choices.

(25)

x; €{0,1},Vi,j e VUS,teT. (26)
2 €{0,1},Vie V. (27)

yij € {0,1},Vi,j € VUS. (28)
F>0,Vi,jeV,keK. (29)
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k _ rk t ot _

g7 = Jsip T = Vi = Ty = Usj = 0, 30)

Vse S,jeSuVteT keK.
i];'v'rgj =Yij = 0,

o : €2V
VZ,] S ‘/,t S T,k e K: dlStzJ S Dmin-

It is worth noting that the Big-M reformulation is one of
the common strategies to reformulate the disjunction as a
mixed-integer programming equation [38]. In this study, the
model is formulated in Python and is based on the open-
source algebraic modeling language Pyomo [39]. Thus, the
disjunction (12) can be transformed by Pyomo.GDP extension
to mixed-integer linear and nonlinear constraints [40]. To
summarize, the mathematical formulation of the layout and
cable optimization problem, given by Equations (10)-(31), is
a nonconvex MINLP problem.

D. Model reformulation

The original MINLP problem cannot be solved directly
by solvers because of its complex structure. Therefore, we
propose the following reformulations to enhance the model’s
tractability and computational efficiency.

Analyzing Equations (10) and (12), it is clear that they
involve nonconvexities due to the multiplication of binary vari-
ables times continuous variables. Therefore, the Big-M method
is adopted to avoid the multiplication of binary variables z;
with nonlinear functions. Thus, the expression of P} during
the partial load region (U, < Uf < ULaee ) 1s transformed into
the following two inequalities:

PF <

pAC, U3 UM + M;(1 — z), (32)

N =

0 < PF < Mz, (33)

where M, is a sufficiently large parameter. When z; = 1, the
inequality (32) becomes active as P} takes the largest value
for power generation through maximization of the objective
function (16); otherwise when z; = 0, Equation (33) is active
as Pik is forced to 0. Thus, Equation (12) is transformed as
follows:

B},
[Jin S Uzk < Urate
P < LpACUSUR + My(1 - )
0< PF< Mz
r (34)
B4
Urate S Ulk < Uoul
Pik = % pACP Urzte 2
Bf,
V| UF > Usu
L Pz‘k =0
k .
Bj; € { True, False },j =1,2,3,4.

Therefore, the Big-M MINLP reformulation is defined with
the objective function (16), subject to the constraints (10),

1<

1<

siteVike K,

(13)-(15), (17)-(31), (34). Equation (34) can be transformed by
Pyomo.GDP to mixed-integer linear and quadratic constraints,
and then the Big-M MINLP model can be solved by global
solvers, for example, BARON [28], ANTIGONE [29], and
SCIP [30].

However, for medium or large-scale problem sizes, ob-
taining the global optimum is computationally expensive. To
further enhance the optimization efficiency, the Big-M MINLP
model is reformulated as an MIQCP, which can be solved more
effectively using commercial solvers such as CPLEX [41] and
Gurobi [31]. This transformation aims to formulate an exact
optimization model that leverages its inherent mathematical
structure to enhance computational performance.

In order to derive the quadratic constraints, we first define
a new positive continuous variable Z; that replaces all the
square root terms in Equation (32). It is worth noting that
ey (0uf)?z; = 37,y (0uf;)?27. Then, the following con-
straint is formulated:

7Z? < Z(&u?i)zzj,w eV.
jev

(35)

In order to avoid the remaining cubic term in Equation
(32), positive continuous variables X; and Y; are introduced
to define the following two constraints.

X, <1—-2Z;,VieV.
Vi<(l-2)(1-2)VieV.

(36)
(37)
Thus, Equation (12) is transformed as follows:

Bl
Ulk S Uin
Pik =0
_ Bf;Q
Uvin S Ulk < Urate
PF < $pACUS XY, + M;(1 — 2;)
0 < PF < Mz
- sz’s
Urate S Uzk < Uout
Pik = % pACP Urzle Zi
Bf,
V| U > U
| PF=0
k ;o
B;j; € { True, False },j =1,2,3,4.

To sum up, the MIQCP is defined with the objective function
(16), subject to the constraints (10), (13)-(15), (17)-(31), (35)-
(37),(38).

1<

(38)

1<

aeVke K,

IV. COMPUTATIONAL RESULTS

This section first presents information about the wind farm
and then compares the optimization results with different
sizes and with different solvers. We also demonstrate the
superiority of our established model over the other three
models. All models are formulated in Python and are based on
the open-source algebraic modeling language Pyomo. Besides,
the wake model is implemented in PyTorch, allowing efficient
computation of wake decay coefficients between turbines by
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leveraging tensor-based modeling. In addition, all examples
are implemented on a Linux server running Ubuntu, equipped
with 125GB of RAM and an Intel(R) Xeon(R) Silver 4410Y
processor. The system has 24 physical cores and 48 logical
processors, utilizing up to 8 threads.

A. Wind farm parameters

1) Wind farm set-up: The planning size of the wind farm is
5000 m x 5000 m. Moreover, we consider the Vestas V80 2-
MYV turbines, each with a diameter of 80m and a hub height
of 70m. The distance limit between turbines, D,,;,, which
is about three to five rotor diameters for a typical turbine,
is set to three rotor diameters in this study [21]. The cut-in,
rated, and cut-out speeds of the Vestas V80 2-MV turbines
are 4m/s, 16m/s, 24m/s, respectively. Moreover, we consider
the greedy control strategy of every turbine, which means the
control variables are set to o = 0 and @ = 1/3 during
simulation. The air density p is set as 1.225 kg/m? like
most offshore wind farms. For the parameters related to the
wake effect, we refer to the value already optimized based on
data from the original paper: x = 0.0381,~ = 1.5800,v¢ =
0.0453, andT = 0.5931 [34].

2) Wind resource information: The statistical parameters of
the wind direction and the wind speed distribution are shown in
Table 1 [42]. The probability mass function Pr(#}") represents
the relative occurrence of the discretized wind directions 6}".
The corresponding wind speed distribution PDF (U6}") is
modeled using the Weibull distribution [43]. We divide the
wind speed into six intervals, and based on the parameters in
Table I, we can obtain the probability of wind scenario 7",
k € K, |K| = 72. The results are plotted as a wind rose map
shown in Fig. 5.

3) Other Parameters: The other parameters considered in
the model are mainly obtained from the literature and are
appropriately adjusted for our model to ensure that the sim-
ulation closely reflect real-world conditions [18], [22], [27].
The main economic parameters used in the objective function
are given in Table II. We assume that two kinds of cables and
two substations have already been installed. The corresponding
parameters are shown in Tables III and IV, respectively.

TABLE I
STATISTICAL WIND DATA AT THE TARGET SITE.

k o ) Pr6}) PDF (U|6})
Scale factor A\,  Shape factor I',

1 0 0.066 9.98 2.55
2 30 0.044 8.15 2.35
3 60 0.043 8.86 2.05
4 90 0.051 8.65 2.11
5 120 0.096 10.55 2.28
6 150 0.114 11.27 2.29
7 180 0.111 10.94 2.28
8 210 0.121 11.08 2.23
9 240 0.115 11.50 2.40
10 270 0.087 11.28 2.63
11 300 0.065 10.96 2.74
12 330 0.089 11.35 2.81

90°

. 0-4m/s
. 4-8m/s
. 8-12m/s
 12-16 m/s
16-24 m/s
24-0 m/s

180¢p

270°

Fig. 5. Wind rose map for wind distribution

TABLE II
PARAMETERS RELATED TO COST

Average effective generation OPEX it Turbine investment costy
time H (h/year) ($/KWh) (MUSD/each)
4000 0.02 2.5
Electrical Price pgwh Project Length L Interest Rate r
(8/KWh) (year) (%)
0.15 25 3
TABLE III

PARAMETERS RELATED TO CABLES

Cable type  Capacity (KW)  Price ($/m)
1 2000 135
8000 250
TABLE IV

PARAMETERS RELATED TO SUBSTATIONS

Substation index  Chax,s Location (m)
1 4 (% * 5000, 1 % 5000)
2 3 (5 #5000, £ + 5000)

B. Comparison of different scale cases

As a benchmark, we evaluate three problem sizes (small,
medium, and large) for the integrated optimization problem.
Each case varies in: (1) the number of possible turbine
positions (25, 49, and 81, respectively), and (2) the maximum
number of installable turbines (5, 10, and 15, respectively),
while maintaining a minimum installation of 5 turbines. Ta-
ble V displays the complete problem dimensions. Since the
reformulation as an MIQCP introduces additional continu-
ous variables, the number of continuous variables and the
number of constraints are reported separately for the Big-M
MINLP/MIQCP cases.

The Big-M MINLP model can be solved by specialized
global optimization solvers such as BARON [28], ANTIGONE
[29], and SCIP [30]. However, these solvers are computa-
tionally expensive and typically only feasible for small-scale
problems. Our further reformulation as an MIQCP model
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TABLE V
THE PROBLEM SIZE OF THREE CASES

Parameters Casel (small)  Case2 (median) Case3 (large)
Possible Positions 25 49 81

Max Turbines 5 10 15

Cont. Vars * 11,749/16,249 37,093/45,913 92,389/106,969
Disc. Vars 8,212 19,612 40,188
Constraints * 35,007/39,507 83,811/92,631 172,183/186,763

* Size of Big-M MINLP/MIQCP.

combined with GUROBI [4] can also guarantee globally
optimal solutions. We set the relative optimality gap to 0.01
and limit the maximum runtime to 24 hours. The comparative
results of these global solvers are presented in Table VI.

For Case 1 with small size, all methods obtained optimal
solutions. GUROBI required only 9.1 seconds, demonstrat-
ing significant improvements compared to 51.5 minutes for
BARON, 25.3 minutes for ANTIGONE, and 116.8 seconds for
SCIP. However, when the MIP gap was set to 0.01, GUROBI’s
solution quality was slightly inferior to that obtained by
BARON and SCIP, indicating room for further improvement.
Consequently, we included an additional configuration with
GUROBT’s optimality gap tightened to 0.001, which achieved
the optimal solution within 9.4 seconds. For Case 2 with
medium size, neither BARON nor ANTIGONE could return
feasible solutions within the 24-hour time limit. While SCIP
successfully obtained the optimal solution, it required 21 hours
of computation time, whereas GUROBI completed the task in
just 21.3 minutes. In Case 3 with large size, which represents
real-world scenarios, only GUROBI proved capable of solving
the problem. With MIP gaps set to 0.01 and 0.001, the
obtained objective values are 12.3389 MUSD and 12.3730
MUSD, requiring 18 hours and 19.7 hours of computation
time, respectively.

In summary, our proposed Big-M MINLP model can solve
minor problems. Further reformulation as an MIQCP can
guarantee global optimality and significantly enhance compu-
tational efficiency, making it feasible to address practical-scale
wind farm layout and cabling planning problems.

C. Integrated optimiztaion with nonlinear wake model

Integrated optimization enables a balanced trade-off be-
tween initial investment and long-term power generation rev-
enue, maximizing the wind farm’s overall profit. In our study,
we employ a nonlinear wake model that more accurately

captures both the intensity of the wake effects and their
cumulative effects, allowing for a more precise estimation of
energy output. To further demonstrate the significance and
practical value of this study, we compare the results of the
following four modeling strategies based on the large-scale
Case 3 mentioned above.

e Model 1 Integrated optimization without wake effect.
If the wake effect is neglected, it is assumed that all
wind turbines can fully utilize the ambient wind speed
U through the optimization process. Thus, the power
generation is calculated as follows:

0, Uk < U,

A %pACproSZi, Uin < Ufc < Uralea
P = ( (39)
%pACp U3 Zis Urate S Uglfc < Uouta

rate
0, UL > U

o Model 2 Integrated optimization with simplified linear
wake model. To establish an MILP model, the wake
effect is assumed to be linearized and cumulative in [7],
[21]. The equation of AEP is expressed as follows:

AEP =H -3 b (3T PF =3T3 1y, (40

keK eV i€V jev

where PJ is calculated by Equation (39), and If; rep-
resents the interference experienced by wind turbine j
when a turbine is installed at site ¢ under the wind
condition scenario k. In order to ensure the fairness of
the comparative study, the following equations are used

to calculate Ii’;:
0, Uso < Up,

15 = pAC, (Usouiy)?, Ui < Uso < Unae, (A1)

O’ Urate S UOO'

o Model 3 Two-stage optimization with nonlinear wake
model. The optimization problem is solved in two stages.
In the first stage, the optimal turbine layout is determined
based on simulations that account for nonlinear wake
effects. In the second stage, the cable routing is optimized
using the fixed turbine positions obtained from the first
stage.

o Model 4 Integrated optimization with nonlinear wake
model. Based on the optimization model proposed in

TABLE VI
PERFORMANCE COMPARISON OF GLOBAL OPTIMIZATION SOLVERS

Solver Case 1 Case 2 Case 3

Time NPV (MUSD) Gap Time NPV (MUSD) Gap Time NPV (MUSD) Gap
BARON ! 51.5min 4.2478 0.01 24h No feasible sol. / 24h No feasible sol. /
ANTIGONE ! 25.3min 3.9703 0.01 24h No feasible sol. / 24h No feasible sol. /
ScCIp ! 116.8s 4.2478 0.01 21.3h 8.3613 0.01 24h No feasible sol. /
GUROBI ? 9.1s 4.2200 0.01 21.0min 8.3236 0.01 18h 12.3389 0.01
GUROBI 2 9.4s 4.2478 0.001  21.3min 8.3614 0.001  19.7h 12.3730 0.001

T"Big-M MINLP; > MIQCP;
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Fig. 6. Optimzal design for Layout and cable rounting result by different models

TABLE VII
RESULTS OF FOUR DIFFERENT MODELS

Model AEP (kWh) OPEX (MUSD) CAPEX (MUSD) NPV (MUSD)
1 Integrated optimization without wake effect 33,469,458 2.3316 38.6555 8.1653
2 Integrated optimization with simplified linear wake model 33,985,351 2.3316 38.6689 9.4994
3 Two-stage optimization with nonlinear wake model 35,294,702 2.3316 40.2060 11.3823
4 Integrated optimization with nonlinear wake model (Proposed) 35,269,949 2.3316 39.2182 12.3054

this study, the integrated optimization is performed while
accounting for the accurate nonlinear wake model.

To ensure a fair comparison, the results of the four models
were evaluated under the same nonlinear wake model and
with identical parameter settings. The final metrics, including
AEP, OPEX, CAPEX, and NPV, are presented in Table VII.
The visualization of the wind turbine layout and cable routing
results is shown in Fig.6. Since Model 1 neglects wake effects,
and the simplified linear wake model in Model 2 tends to
underestimate the actual wake effects, the results from Model
1 and Model 2 are similar. Ignoring wake interactions leads to
lower-than-expected energy outputs. Although a more compact
turbine layout may reduce some CAPEX, the resulting NPV is
ultimately lower. The tighter turbine arrangements depicted in
Figures 6(a) and 6(b) align with the expectations derived from
these two models. Model 3 employs a two-stage optimization.
In the first phase, which focuses solely on maximizing power
generation, the results tend to favor layouts with turbines

spaced farther apart, where wake effects are less significant (as
shown in Figure 6(c)). Consequently, it achieves the highest
AEP of 35,269,949 kWh, along with the highest CAPEX
of 40.206 million USD compared to the other models. Our
proposed Model 4 strikes a better balance between revenue
and investment, resulting in the optimal NPV, 12.3054 MUSD,
which is 33.64%, 22.8%, and 7.5% higher than Models 1, 2,
and 3, respectively. Additionally, the OPEX values across all
four models are identical, which is consistent with the fact
that the final optimized turbine count reaches the maximum
constraint of approximately 15 turbines in each case. To sum
up, the integrated optimization of layout design and cable
routing, coupled with a nonlinear wake model, is essential
for enhancing the economic efficiency of the wind farm.

V. CONCLUSION

In this paper, we have investigated the integrated optimiza-
tion of the WFLO and the WFCR problems in the wind
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farm design stage. Firstly, an MINLP model is formulated by
incorporating a nonlinear wake model. In order to enhance the
model’s tractability, we proposed a Big-M MINLP reformula-
tion. Further reformulation as an MIQCP makes the problem
more efficiently solvable with Gurobi, yielding the optimal
global solution. Thus, this represents a significant advancement
in addressing the integrated design optimization problem with
a nonlinear wake model for wind farms.

In future research, we intend to apply decomposition tech-
niques to the existing models to determine the optimal layout
and cable routing for large-scale wind farms.
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