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Abstract

This work presents a novel nonlinear programming (NLP) formulation aimed at maximizing the
overall amount of CO; stored into deep saline aquifers in the long term. The goal is to optimally
determine CO; injection rates into vertical wells while properly managing bottom-hole pressures over
time. The reservoir may comprise several layers with heterogeneous physical properties. The
injection plan should meet the subsurface engineering policies for safe operations along with existing
technical constraints. The major challenge is to track the CO, migration across the reservoir to ensure
containment during the injection periods and also in the long term. The NLP formulation is based on
a discrete space and time representation of the reservoir, comprising pressure propagation and mass
balance equations between every pair of adjacent blocks in the grid. Results for several illustrative
case studies in two dimensions show the potential of the model to find optimal solutions in few
seconds. Injection plans suggested by the optimization model are efficient and have been validated
by accurate simulation runs. Based on these findings, the model has the potential to be extended to

three dimensions and adapted to real-world cases.

Introduction

There is international scientific consensus that anthropogenic emissions of carbon dioxide (CO5) need
to fall dramatically by 2030 if the aim is to eventually reach net zero around 2050. Achieving net zero
emissions by 2050 is an ambitious target that will require large-scale deployment of carbon capture,
utilization, and storage technologies (CCUS) (Air Products, 2024). It is essential to develop
technically sound, safe, and cost-effective CO; injection and well operation strategies. This involves

a sophisticated balance of various factors such as subsurface engineering, technical constraints, and



economic trade-offs. Optimization techniques are the best tools to manage this complexity and ensure
that CCUS projects are economically viable, while maintaining safety and environmental standards.
(Ismail and Gaganis, 2023).

For underground storage, companies frequently target deep saline formations and depleted oil and
gas fields (Pires et al., 2011). Saline formations are characterized by porous rock matrices saturated
with brine (over 10,000 ppm salinity), which are favored for their vast storage capacity and
widespread geographic availability. Estimates suggest that the U.S. possesses between 3,000-6,000
gigatons of storage capacity, with deep saline formations accounting for over 97-99% of this potential
(US Geological Survey, 2013). The porous rock layer typically features high-permeability sandstone
or limestone that facilitate CO- injection and storage, overlaid by a low-permeability caprock, which
acts as a geological containment that seals in the CO.. These storage formations often extend laterally
for many miles and are located more than 800 m below the surface, safely beneath fresh groundwater
deposits. At such depths, CO, remains in supercritical state, with temperatures exceeding 50°C and
pressures above 10 MPa, with a density around 600 kg/m?® (Zou and Durlofsky, 2023). Under these
conditions, it behaves as a dense fluid, occupying less space in the reservoir and thereby enhancing

storage efficiency.

The storage of CO; into deep saline aquifers mostly occurs at natural formation pressures. Reservoirs
are generally represented as open systems from which the brine can flow laterally, and make room
for the injected CO; that is trapped in the porous media (Nordbotten et al., 2005). Although pressure
build-up is not as relevant as for closed systems (e.g., depleted oil and gas reservoirs), pressure signals
during injection can propagate far beyond the CO, migration front (“plume”), on the scale of tens to
even hundreds of kilometers (Birkholzer et al., 2015). Continuous measurement, monitoring,
verification, and reporting during sequestration must be carefully recorded by companies, requiring
sophisticated simulation and optimization tools to make proper decisions. In practice, operators often
rely on empirical correlations and over-simplified extrapolation techniques to estimate CO;
sequestration capacities, and it is even more challenging to estimate the extent of CO, retention,

leakage, and spread within the reservoir over time (Hasan et al., 2022).

This work presents a novel mathematical programming model for the optimal planning of CO;
injection into deep saline aquifers, aiming at maximizing overall carbon sequestration in the long
term. We introduce a Nonlinear Programming (NLP) formulation based on a discrete space-time
representation of the reservoir, which is initially saturated with brine. The storage aquifer is assumed
to be heterogeneous, made up of multiple layers, and each block in the grid is characterized by specific

permeability and porosity estimations. CO; injection into the reservoir is performed through multiple



vertical wells whose geographical location and depth are given a priori. The prediction of reservoir
pressure gradients and CO, migration is proposed with simplified models to solve the optimization
problem by means of mathematical programming tools rather than using sampling and metaheuristic
strategies as has been reported in the literature (Cameron and Durlofsky, 2012; Sun and Dusrlofsky,
2019). More specifically, we seek to overcome limitations of previous contributions in the field that

require numerous simulations and do not guarantee optimality after very long time computations.

Compared to metaheuristics, mathematical programming benefits by the inclusion of boundary
constraints, such as CO; containment. While the former usually treat such constraints using penalty
functions and repair procedures, active set solvers for very large nonlinear programming (NLP)
models take advantage by searching along a feasible path, tight at the boundary. See Biegler (2010)
for a general review on NLP algorithms. Most active set, feasible path methods are based on the
generalized reduced-gradient (GRG) algorithm proposed by Abadie and Carpentier (1969), and more
recent extensions by Drud (1996), which generally perform better when solving models with many
equality constraints (mostly linear) and few bounds, like the model developed in this paper. The
feasibility of the intermediate points, satisfying thousands of material and pressure balances is

carefully preserved.

However, the development of a proper prediction model of reasonable dimensions for optimization
purposes is challenging. To build the model we rely on a discrete space-time representation, much
coarser than typical simulation models, including material balances and Darcy’s law equations
(Darcy, 1856) to track the CO- front over time. Buoyancy effects are also modeled with detail due
the significant difference of densities between water and supercritical CO; (Celia et al., 2015). Finally,
dynamic pressure propagation curves are also predicted from Darcy’s law applied to multiphase

flows, evaluating changes along the horizontal and vertical dimensions of the system.

The primary objective of this paper is to present the foundation of a mathematical programming
model capable of guiding operators in designing optimal CO- injection strategies for multiple vertical
wells. The aim is to address the most critical trapping mechanisms and transportation phenomena

while maintaining computational efficiency.

Previous works

Numerous studies have demonstrated that managing well injection greatly influences how the CO;
plume extends into reservoirs, as it affects the interplay of natural forces that govern this process
(Kumar, 2007; Shamshiri & Jafarpour, 2010). Difference of densities between the bulk phases leads

to gravitational forces that drive the CO, upward, towards the caprock. This retention mechanism is



known as stratigraphic or structural trapping, and is regarded as the least reliable because the CO;
remains mobile and may eventually surpass licensed region boundaries (Cameron & Durlofsky, 2012;
Massarweh & Abushaikha, 2024). Increasing the injection rate enhances viscous forces, resulting in
a flatter and more uniform CO; front. This facilitates horizontal movement, broadens the CO- plume,
and increases its interaction with brine. Such strategies promote solubility trapping (a fraction of the
CO- being dissolved in the brine), and residual trapping, which occurs due to hysteresis effects driven
by capillary pressure and the relationship between relative permeability and saturation of the involved
phases (Weir et al., 1995).

Many of these features are thoroughly reviewed by Kumar (2007), widely regarded as a pioneer in
the application of optimization tools to CO> sequestration. In this seminal work, the author leverages
advanced optimization techniques already established in other areas of reservoir engineering,
particularly in oil recovery operations such as waterflooding (Yeten et al., 2002). Using the conjugate
gradient method, the author seeks for the injection strategy that maximizes the proportion of CO;
stored through residual trapping, given a total amount of CO; to be injected. The objective function
is evaluated using a commercial numerical reservoir simulation (NRS) model. Based on successive
evaluations, gradients can be estimated using finite differences, which guide adjustments to the
control variables (valve settings). However, the algorithm is likely to converge to local optima,
particularly when the permeability distribution is highly heterogeneous. For this reason, multiple
optimization paths, each with a different starting point, are suggested to increase the likelihood of

identifying the actual optimum. Needless to say, a very large number of simulations are required.

Kumar (2007) advocates for the development of an integrated method to optimize the CO;
sequestration process. Such approach could overcome the inherent "black-box" nature of commercial
simulators, which hinders the precise determination of gradients. Nevertheless, subsequent
researchers have continued to favor simulation-based optimization (SBO), wherein the optimization
process is conducted iteratively, based on previous simulation results. Simulation and optimization
steps are repeated until convergence to a near optimal solution. The optimization approach may
involve gradient-based or derivative-free methods. While the former are generally recommended due
to their stronger convergence, SBO often encounters challenges in obtaining the necessary derivative
information, as an interface with the source code needs to be available. This limitation persists even

when the objective function and constraints are smooth (Kolda, 2003).

Shamshiri and Jafarpour (2010) employ the quasi-Newton BFGS method (Nocedal & Wright, 2006)
to enhance the sweep efficiency of the CO, plume within the reservoir. The authors reaffirm that

injection strategies can influence CO2 movement within the reservoir, encouraging a more uniform



front despite reservoir heterogeneities. Similarly, Cameron and Durlofsky (2012) aim to minimize
the mobile fraction of CO, to reduce the risk of leakage. In contrast to the previous studies, they apply
the Hooke-Jeeves Direct Search (HJDS) method (Hooke & Jeeves, 1961), a derivative-free
optimization technique. However, the absence of gradient information increases the number of
function evaluations compared to gradient-based approaches. Consequently, hundreds or even
thousands of simulations are required. Finally, the authors propose hybridizing HIDS with
probabilistic search algorithms to improve the robustness of the framework. In a similar line, Zhang
and Agarwal (2012) develop a genetic algorithm coupled with the multiphase numerical solver
TOUGH2 (Doughty, 2013) to improve CO; storage efficiency while simultaneously reducing plume

extension.

More recently, Zou and Durlofsky (2023) test the efficacy of two metaheuristic approaches to solve
this problem, namely Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995) and
Differential Evolution (DE) (Storn & Price, 1997), to determine both well placement and injection
rates. Metaheuristics guide the optimization process toward regions of interest within the search space
based on a predefined criterion (fitness function). Due to their probabilistic nature, metaheuristics
cannot guarantee convergence to the optimum within a finite time, but they are generally more likely
than other derivative-free methods to identify high-quality solutions (Yang, 2010). However,
metaheuristics require a large number of function evaluations, particularly when the number of
decision variables is large and of continuous nature. To reduce the effort, Zou and Durlofsky (2023)

propose a multi-fidelity approach, with three levels of grid resolution.

Data-driven modeling (DDM) is a more recent alternative to traditional NRS. These models are
trained using data generated by numerical simulations to eventually predict the responses of the
reservoir, while achieving execution times of just a few seconds (Zhang & Sahinidis, 2013; Ng et al.,
2023). Surrogate or proxy models are employed to guide metaheuristics toward the improvement of
the value function. If a high-fidelity proxy model is successfully developed, decision-making
processes can be significantly faster. However, training these models is inherently complex and time-
consuming. Furthermore, even after a surrogate model has been properly trained and validated, its
predictive accuracy may fail to generalize effectively to different reservoir characterizations. For that
reason, the DDM paradigm is predominantly applied to CO; injection into depleted oil fields (You et
al., 2020; Vo et al., 2020; Sun et al., 2021, Abhijnan et al., 2024) where a substantial amount of data
is typically available from previous production phases. Instead, CO; injection into deep saline
aquifers faces significant challenges due to the inherent uncertainty in reservoir properties (Miller et
al., 2014).



Interestingly, the simplified representation of reservoir dynamics by means of proxy models enables
the development of integrated simulation-optimization frameworks. These surrogate models can be
embedded as sets of linear or nonlinear equations within the mathematical formulation, depending on
the prediction method. For instance, Borda et al. (2017) analyze various methods for predicting
reservoir pressures to optimize CO; injection into the Nelson Field reservoir (Arizona, United States).
The optimization model accounts for key constraints, such as mitigating pressure build-up to preserve
reservoir integrity. Unlike metaheuristics, this framework seeks for the optimal solution while strictly
satisfying the constraints, provided that the surrogate models achieve sufficient predictive accuracy.
Nonetheless, this approach is limited to a single geophysical variable: pressure. Expanding the scope
to control multiple variables across broader domains introduces substantial complexity to train

surrogate models. This undermines computational efficiency and can also degrade the accuracy.

In contrast to all previous contributions, this work presents a novel mathematical programming model
for the optimal planning of CO; injection into deep saline aquifers through multiple wells as an
integrated simulation-optimization framework based on first-principle equations. To the best of our
knowledge, this optimization approach is the first to incorporate physics-informed equations to
predict complex, non-linear system evolution. In contrast to previous methods, this framework

overcomes the reliance on external numerical simulations and surrogate models.

Motivation

Mathematical programming emerges as a promising alternative to simulation-based optimization
methods. Constraints related to subsurface engineering and regulatory policies, such as pressure
management and CO; containment, can be incorporated directly into the model to ensure safe
conditions. This can also help solvers narrow the search space and provide valuable guidance in
derivative information. In contrast to metaheuristics and data-driven approaches, we argue that a
physics-informed model can better exploit the advantages of mathematical programming, also
leveraging interpretability. While the underlying system dynamics in reservoir simulation are
inherently complex (Voskov et al., 2017), simplifications can be introduced to represent the physics

without compromising accuracy to an unacceptable degree (Celia et al., 2015).

In this initial study, our objective is to capture the key reservoir dynamics to maintain the practical
applicability of the model for optimization purposes. By doing so, we aim to highlight the potential
of mathematical programming to address challenges in CO; injection planning and reservoir
management. However, as shown later in this work, NRS will still play a crucial role to validate

injection plans with more accuracy.



Problem statement

The optimization problem addressed in this work can be stated as follows. Given are the following
items:
(a) A deep saline aquifer with uniform width (dimension y), known extension (dimension x) and
depth (dimension z), to be used for carbon sequestration, also called the control volume.
(b) A setof different layers in the z dimension of the reservoir where CO, migration and trapping
mechanisms occur.
(c) A set of vertical wells with known location, comprising one or multiple injection points at
different layers into which carbon dioxide can be pumped in for storage.
(d) Reservoir characterization (permeability, porosity, saturation map and pressure constraints)
all across the control volume.
(e) A set of time periods comprising a multi-year planning and control horizon.

() Maximum amount of CO; flow available for injection in each time period.

The goal is then to determine the optimal multi-well injection plan that maximizes the total amount
of CO; stored in the long-term, given in terms of injection rates and bottom-hole pressures at each
well along the time horizon. The aim is to predict pressure propagation during injection and CO;

migration in the long-term to comply with injectivity and containment constraints.

Model assumptions

The design of a model that effectively balances computational efficiency with predictive accuracy
poses significant challenges. The model proposed in this work predicts the reservoir behavior over
time by means of a system of nonlinear algebraic equations and constraints. To build the model we
make the following assumptions:

a) For simplicity, the reservoir is represented by a 2D grid-based model (dimension x for length
and z for depth) so that the width (dimension y) of every block is fixed (see Fig. 1). Although
this assumption does not necessarily fit real-world reservoirs, it permits to setup a primary
optimization model that can be easily understood and eventually be extended to 3D. Extensions
to 3D will be addressed in a forthcoming article.

b) The reservoir is covered with a zero-permeability caprock, which acts as a structural
containment that prevents the CO; to flow to the surface. At the bottom of the deep-most layer
permeability is also assumed to drop to zero.

c) Porous space of any block in the reservoir can be occupied with only two components: CO, and

brine. At the reservoir conditions, CO- is in supercritical state. For simplicity, it is assumed that



d)

9)

h)

)

brine and CO; have constant densities across the reservoir at any time period. Furthermore,
miscibility and thermodynamic phenomena are omitted, for simplicity.

Mass transport properties of fluids (e.g., viscosity, density) and reservoir blocks (e.g., porosity,
permeability, effective permeability) are explicitly included in the model.

For CO: flow prediction, Darcy’s law is utilized based on saturation and pressure differences
between adjacent grid blocks.

Dynamic pressure propagation can be also modeled through Darcy’s law for multiphase flows,
based on average properties including rock permeability and fluid viscosity.

Injection management is performed through continuous variables only, with all equations
formulated in quadratic form, yielding a quadratically constrained program (QCP).

Actual relative permeability curves, derived from experimental data, are included in the model
in the form of fourth order polynomial equations.

The reservoir is assumed to be open in the x dimension, from which a pseudo-open system
representation is adopted. The number of blocks in the x dimension (columns) is finite, but those
blocks at the boundaries are treated in a particular manner. They can steadily receive material
from adjacent blocks within the control volume without building-up pressure. In other words,
they are considered as having an infinite volume at a constant pressure (the reservoir pressure).
Only residual and structural trapping mechanisms are accounted for. Since the time horizon
spans for few decades, mineral trapping is excluded from the analysis. Solubility trapping is
also omitted for simplicity. From experimental analysis, CO. solubility is usually below 50 g
per kg of brine at reservoir conditions (Massarweh & Abushaikha, 2024). Nevertheless, we plan
to extend the model to account for CO- solubility in future works.

X Well i
7 Columns {—}
c c2 cs3 c4 [ cé
Caprock
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Y C3€C;
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L2 T L2 € L;
L3
L4 = L4EL;

Fig. 1. Two-dimensional grid representation of the reservoir.



Mathematical formulation

This section presents the first Nonlinear Programming (NLP) mathematical formulation aimed at
maximizing the total amount of CO- injected through multiple wells into a deep saline aquifer to be
safely stored in the long term. The model is fully discretized in space and time domains, with indices
c and | standing for columns and layers, and t for time periods, respectively. Injection wells are
identified with the index i.

The constraints included in the model can be divided into two main categories: (i) those designed to
model the evolution of the reservoir over space and time, accounting for pressure propagation and
CO migration, and (ii) those dealing with operational limitations of the injection process itself,
ensuring safe and long-term containment of the CO, while maintaining reservoir integrity. The former
are usually given in terms of equalities (e.g., mass balances), while the latter are bound constraints in

the form of lesser-or-equal inequalities (e.g., maximum saturation).

Balance equations

Regarding reservoir dynamics, it is assumed that the reservoir starts fully saturated with brine.
Saturation is an important state variable of every block (c, 1) that needs to be tracked over time. It
stands for the fraction of a certain component (CO; or brine) relative to the total porous space. By

assumption, the miscible fraction of CO; into brine (solubility trapping) is omitted for simplicity.

Under these assumptions, Darcy’s law (1856), as presented in EqQ. 1, can be adapted to predict pressure
gradients and/or fluid flowrates in terms of finite difference equations. This is achieved by averaging
the physical properties of the fluids across the reservoir, yielding good estimations of the pressure
and flow variables. The volumetric flow rate Q is a function of the permeability of the porous medium
(k), the viscosity of the fluid u and the pressure gradient VP. Consistent with its physical
interpretation, higher permeability enhances fluid mobility within the medium, whereas viscosity has
the opposite effect. Lastly, a reduction in the magnitude of the pressure gradient directly reduces the

flowrate,
Q=-=vP )

Tracking pressures

To account for pressure variations across the reservoir, we introduce the concept of dynamic pressure
(DP) defined as the pressure increase (above static pressure sp) caused by well injection. Dynamic

pressure propagates throughout the reservoir, such that the total pressure P, ; , at a given block (c, I)



is the sum of the static pressure of layer I (given data) and the net dynamic pressure projected from
all injection points into layers I’ € L; along every well i. That summation is presented in Eq. 2,

.‘l[
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Without loss of generality, we assume that the dynamic pressure driven by CO> pumping will
dissipate along ng;ss blocks horizontally, which can be estimated from prior geological studies.
Given that the system representation is based on a pseudo-open domain, this parameter can be
adjusted when boundary blocks are reached. The complete dissipation of dynamic pressure is
enforced by Eq. 3. Note that column ¢ € ¢; determines the well location along dimension x.

PGP =0
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CO; injection flow according to the bottom-hole pressure

To estimate the amount of CO; directly injected into a block (c, I) adjacent to the injection point at
layer [ € L; (denoted by QT; .;.) we rely on Darcy’s law applied to a system of resistors in series
along every injection layer (see Fig. 2). This is applied for each direction, i.e. to the right (column c)
and to the left (column ¢ - 1) of the injection point, with well i placed at the left of column ¢ € ¢;. As
expressed by Egs. 4 and 5, the injection flow rates to the right and to the left, respectively, can be
estimated from the bottom-hole pressure BHP, reservoir permeability kh.; and average viscosity
pavg. . across the series of ng;ss blocks in the corresponding direction. Analogously to an electric
circuit, resistance (inverse of conductance) of subsequent blocks are summed along each horizontal
direction. As illustrated in Fig. 2, a higher CO; saturation yields a lower viscosity, resulting in smaller
pressure drops. Note that, by convention, the BHP of any well is measured at the same depth (deptho,

of layer I1), given that there may be multiple injection points along the vertical well.
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Fig. 2. Dynamic pressure propagation and CO2 migration in the horizontal direction, to the right of an injection point.
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For accuracy, an adjustment factor « slightly smaller than one is incorporated in the model to account
for the flow diversion in the vertical direction. More specifically, from the incompressibility
assumption, the total amount of CO; injected to the right (QT; ., ¢) will reduce to a™ QT; ., ; volume

units of a multiphase fluid (brine + CO.), n blocks at the right of the injection point.

As stated in Eq. 6, the average viscosity of the multiphase fluid is roughly calculated by weighting

the individual viscosities according to the CO; saturation S, , at block (c, I) at time t,

.uavgc,l,t = .uCOz Sc,l,t + Uprine (1 - Sc,l,t) Vc € C'l € L' teT (6)

Finally, the total injection into well i over period t, represented by the variable Y; ;, can be calculated

as in Eq. 7, summing CO- flows towards both directions, over all injection layers,

Yie = Y1er,(QTic—11e + QTicur) vielceC,teT (7)

Pressure propagation in the horizontal direction

To estimate the propagation of dynamic pressures along injection layers, the finite-difference form
of Darcy’s law (1856) in Eq. 1 is applied to adjacent blocks, based on the previously computed total
flow rate QT; ;.. Egs. 8 and 9 account for pressure drops along adjacent blocks, in both horizontal

directions (i.e., to the right and to the left, respectively),

v
ppGh — ppih  _ a ¢ QT; ., length pavge,: ®)
clt c—-1,Lt kh¢) area
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For blocks adjacent to injection points, where CO; is directly injected, one may also assume a
horizontal pressure drop provoked by half of the length of the corresponding block, assuming that

pressures are measured at the center of each element (c, I). Hence, to calculate the pressure gradient

11



necessary to reach the center of those blocks, Eqg. 10 can be incorporated into the model. For clarity,

Fig. 2 also provides a visual interpretation of the pressure gradient.
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Pressure propagation in the vertical direction

To further refine the modeling of dynamic pressure propagation to different layers within the

. S s . il
reservoir, we take the reference pressure at each column of the injection layer [’ (variable DPc(ll, t)

obtained from Egs. 8, 9 and 10) and assume a geometric dissipation in both directions along the

Uprine KV

vertical axis. More specifically, dynamic pressure is assumed to reduce by a factor of avg. . kh
clt cl

every time we move a layer up or down from the injection layer. As stated in Egs. 11 and 12,

respectively,

kvcrl

@ _ (il") _Bbrin
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Note that the factor kv, ,/kh., is the relationship between the vertical and horizontal permeability
of the block (c, 1), which in practice is usually small (in the order of 10-?). Besides, dissipation is
smoother if the fluid contained by the block is less viscous. From Eq. 6, the factor uyine/navge, ¢

P(i’l’)

satisfies 1 < fpyine/Havgcre < (1= Spmax) ™" = 5. Hence, DP, ),

typically reduces from 20 to
100 times per block in the vertical direction (depending on the saturation), rapidly going to zero and
favorably comparing to simulation experiments. Also note that nonlinear Egs. 11 and 12 can be

written to preserve the bilinear, quadratic form since pavg, ;. is a linear function of S, ; .

Extra pressure due to buoyancy at the top layer

Since the top layer of the reservoir (namely 11) is assumed to lie beneath an impermeable rock
formation, it is necessary to include an extra term for buoyancy pressure BP,, ¢ at the columns of
that particular layer. This term is added to accurately account for the upwards forces exerted by CO,

(typically lighter than brine) when reaching the caprock. In other words, buoyancy pressure arises at

12



the top layer due to the difference of densities between the components and plays a critical role in
modeling vertical pressure gradients. In particular, it is important to evaluate the stability of the
reservoir (maximum saturation) and the typical distribution of CO; in the form of an inverted “cone”
in the very long term. To incorporate this effect, Eq. 2 is rearranged as shown in Eq. 13. The
estimation of buoyancy pressure is directly related to saturation of the blocks below (c, 11). As
described in Eq. 14, this relationship is expressed as a weighted summation, where the weights
&; decrease with | and can be fitted to the results of simulation experiments,

”
Peyr = spy + Yier e, DPGL) + BP,

Lt vceClelLteT (13)

'l't|l:ll
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By combining all propagation mechanisms and directions, dynamic pressure is effectively mapped
across the reservoir, as illustrated in Fig. 3.

L} * . . . L] .

HOOOD--

Fig. 3. Dynamic pressure propagation within the reservoir from injection at block (c1, 14). The size of the circles

represents the magnitude of the pressure at each block.

CO; material balance

An accurate characterization of CO, migration across the reservoir is essential to update the
saturation map, which in turn allows the mathematical model to accurately represent the system’s
dynamic behavior according to pressure propagation. Additionally, the saturation of each block and
the CO, flows toward the reservoir boundaries are key variables to ensure compliance with
subsurface engineering policies during operation, as discussed later in this work. Given their
importance, greater rigor in the calculation of these variables enables the adoption of less
conservative injection strategies (which are very common in current industrial practice) ultimately

maximizing the storage efficiency.

13



Firstly, it is necessary to track the amount of CO; present in each block of the reservoir at every time
period t. This is achieved using the mass balance equation presented in Eq. 15, which is given in
volume units from the incompressibility assumption. In that equation, Q. ;. represents the total
amount of CO; (in volume units) contained into block (c, I) at time period t, and is defined as the
sum of the CO; present at the previous period plus the amount directly injected into that block from
an injection point (QT;. ¢, just for blocks adjacent to well injection points), also adding and

subtracting the horizontal and vertical flows entering from and exiting to adjacent blocks (@, .,

Qéerer Qlreare and QFy 1 ¢, respectively). Note that QfL; ¢ Qfer1 e Qlraane aNd QFyyo1y
are unconstrained variables that may take negative values. More specifically, outgoing flows yield
negative terms and are subtracted from the cumulative amount of CO. stored in the block. In Eq. 15,
At is the length of a time period, usually given in days.

_ H H v %
Qcre = Qepe—1 + At [XiciQTicuelecrrec; + Qy e — Qfcvrpe + Q¥rirne — Qbi—1e| (15)
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Vvce(CleLteT

CO. migration in the horizontal direction

Once again, Darcy’s law is applied to predict CO, migration in each direction; However, because
every block is saturated with a two-phase fluid, yielding a heterogeneous medium, a new variable
known as effective permeability must be incorporated into the analysis. As demonstrated in
numerous studies, the effective permeability of a reservoir to a certain component of the multiphase
fluid highly depends on its saturation (Ahmed, 2010). In our model, the effective permeability to
CO; is represented by means of a fourth degree polynomial function of the saturation, which

accurately fits experimental data. The correlation adopted is presented in Eq. 16. The adjustment of

4
the function to real data is illustrated in Fig. 4, where the factor (:Ci) is usually referred to as the

relative permeability,

4
KHT = khy, (ﬁ) veeCleLteT (16)

clt Smax

Note that relative permeability, and consequently CO, movement, remains negligible until a certain
threshold is reached. This threshold corresponds to approximately half of the maximum reachable
saturation. This behavior is closely related to capillary effects, which lead to the so-called residual
trapping. Since the reservoir is initially fully saturated with brine, a substantial amount of CO; is

required to initiate fluid displacement farther than the receiving blocks. Residual trapping is a safe
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storage mechanism that occurs as the CO, plume passes through porous rocks, leaving small amounts
of CO; immobilized within the pore spaces. Under this mechanism, the carbon saturation in the pore
space remains below the minimum threshold required to sustain mobility through an effective

permeability to CO>, substantially higher than zero (see Fig. 4).
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Fig. 4. Experimental data and polynomial correlation between relative permeability and saturation.
From the effective permeability in the horizontal direction (KHf"; {), Darcy’s law for heterogeneous
flow is applied to predict CO, migration to neighboring blocks in that direction. Such neighboring

blocks share the same layer and correspond to contiguous columns as stated by Eq. 17. By

H

convention, variable Q. .

takes a positive value if CO, migrates from ¢ to ¢’ = ¢ + 1 and negative
if it flows in the opposite direction. The flow direction will be determined by the difference of the

pressures of adjacent blocks, which are driven by the propagation of dynamic pressures from the
injection points of different wells.

eff
H KHC'” area (Pc,l,t - Pc’,l,t)

QC'Cl'l't N Kcoz length

(17)
VvceClC,c'=c+1,leEL,teT

CO. migration in the vertical direction

Similarly, effective permeability to CO; in the vertical direction is computed by Eg. 18 while Darcy’s
law is applied in Eqg. 19 to predict CO, migration along column c, from layer | to | — 1 (upwards). By
convention, variable QZL” takes a positive value if CO, migrates from I'to I’ = | — 1 and negative if

it flows in the opposite direction. As stated by Eq. 19, the first driver for vertical migration is the
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dynamic pressure gradient due to CO; injection at different layers of different wells. Nevertheless,
CO, upwards movement is further driven by buoyancy forces, which are accounted for by the
variable B, in Eq. 19.

4
eff _ Sclt
KV, = kv, (_smax) vcecCleLteT (18)
eff [(AD))] [(AD))]
y kvl area SierSuew, (PP —DPC‘I,’t) 5 L9
Qc,l,l',t - + oLl t ( )

Kcoz height
VvceC(ClelLl =1—-1t€eT

The vertical flow rate due to buoyancy is driven by static pressure difference between sequential
layers and is proportional to the difference of densities between CO; and brine. Since buoyancy does
not occur in a single slug, but is instead dispersed in bubbles (or small streamlines) across the entire
cross-sectional area of a block, each CO; bubble must overcome its own resistance. To account for
this, the parameter o << 1 is introduced in Eq. 20, which can be adjusted to fit simulation data,

ine— kvg 0 Scie—1 area
Bc,l,l',t — Pbrine=Pcoz (Spl _ Spl’) clOo¢lLt-1

- 20
Pbrine Ucoz height ( )

VceClelLl'=1l-1teT

Saturation of CO; at every block

Lastly, by knowing the void-volume of a block (avol.;) computed as in Eq. 21 from its porosity
®c,1, EQ. 22 calculates the CO; saturation S, ; . in each block (c, I) at time t. It should be noted that
the effective volume available for storage may vary with the porosity ¢, ;. Since boundary blocks in

columns ¢ € CB are assumed to have an infinite volume, saturation calculation is omitted for those
blocks.

avol.; = @, - length - height - width VceC—-CBlelL (21)

Seur = —okt VceEC—CBlELLET (22)

Subsurface operational constraints

Besides the set of equations proposed to model reservoir dynamics, additional constraints must be
included to ensure reservoir integrity and maintain safe operational conditions. Although subsurface
policies have been addressed in previous works, they are rarely implemented as strict constraints to
be satisfied during the optimization process. Instead, heuristic approaches often embed constraint

violations within the objective function, and subsequently refine the solution to better comply with
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them. With the development of a simplified yet accurate representation of reservoir fluid dynamics
in both space and time domains, these policies can now be directly incorporated as constraints within
the mathematical programming model, allowing for a more rigorous and integrated approach that can
effectively address operational safety and reservoir integrity.

Managing pressures

Managing the pressure build-up resulting from CO; injection is essential to prevent the occurrence of
fracture phenomena (Nicot, 2008). To address this, a maximum admissible pressure is imposed for
each block as defined in Eq. 23. This upper limit ensures operational safety and significantly
influences CO; injection dynamics. As demonstrated by Szulczewski et al. (2011), restricting pressure
build-up within the reservoir substantially impacts injection performance in the short term.

Poie < poi™ VvceCleLteT (23)

Moreover, the injectivity is also limited by the maximum admissible bottom-hole pressure (BHP) at
each well as stated in Eq. 24. Maximum BHPs promote predictable and safe behavior, not only within
the reservoir, but also in the operational equipment. Pressure constraints ensure that the injection
process remains within design parameters, reducing the risk of equipment failure and maintaining the

integrity of the storage system.

BHP;; < bhp[*** Viel,teT (24)

4

Managing saturation

In contrast to pressure constraints, porosity and resulting effective storage capacity play a more
significant role over the long term. Saturation level at each block is restricted by Eq. 25 to a given

maximum, which is typically set at values around 0.80,

SC,l,t S Smax Vc € C,l € L, teT (25)

Plume extension

Recognizing that the primary trapping mechanisms are of residual and structural types (Raza et al.,
2018), effective control at the grid boundaries is essential to ensure that the CO, plume does not
exceed the control volume limits. Eq. 26 imposes a small upper bound € on the total amount of CO;
that can move horizontally into the boundary cells over the long-term planning horizon. This is

typically defined by the relevant regulatory authority to threshold values close to zero.

ZceCB,leL QC,Z,T <¢ (26)

17



Note that during and even after injection, buoyancy forces continue to promote upward displacement
of CO,, which limits the horizontal spread of the CO; plume in deep layers, reducing its access to
fresh brine within the aquifer (Ismail & Gaganis, 2023). However, buoyancy provokes CO- spread
when reaching the top layer (caprock), which can compromise containment in the very long term. All
these aspects introduce a difficult trade-off to be solved while searching for the optimal injection
policy. The strategy must balance the safety of the trapping mechanisms against maximizing the

effective utilization of the storage volume over the time horizon.

CO; availability

Lastly, certain limitations on the CO; injection policy arise from capacity constraints in upstream
operations. One such limitation is CO; availability, as carbon must first be captured, prior to injection.
This model does not optimize over upstream carbon capture processes, but instead assumes a
predefined parameter co2*%* that represents the maximum amount of CO- available for injection
across the reservoir during each time period. Accordingly, an upper bound is imposed on the total
injection of CO- over all wells for every period t, as stated by Eq. 27,

Yier Vip < co2{"™ VieT (27)

In practice, the time horizon is divided into injection and passive phases. While balance equations
and migration constraints need to be tracked all along the time horizon, massive injection is only
allowed over the injection phase (first Tl periods). Therefore, CO- availability given by parameter
co2** is reduced to a relatively small value for later periods t > TI, with the only purpose of

maintaining the reservoir stability.

An important aspect to emphasize is that despite the large number of equations and variables required
to capture the complexity of the problem (in the order of thousands for a relatively small case), each
variable can ultimately be expressed as a function of the bottom-hole pressures in every well i up to
period t (BHP; .+, t" < t), making them the only true decision variables. Consequently, the problem
has relatively few degrees of freedom to manipulate in the search for the optimal solution. This
characteristic enhances the performance of reduced-gradient solvers, even when dealing with a highly
nonlinear model. However, it may also yield suboptimal solutions, such as the zero-injection scenario,
due to the limited flexibility in the decision space. Ongoing research is focused on developing more

robust approaches that improve convergence and can guarantee global optimal solutions.

Objective function
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An optimal injection strategy must carefully manage pressure increases and CO; containment
throughout the reservoir. This may involve strategically manipulating injection rates at different wells
to enhance pressure propagation toward the reservoir boundaries, thereby maximizing storage
efficiency while ensuring safe operations. Since safe storage conditions have been addressed through
the constraints previously discussed, the primary focus of the objective function, defined in Eq. 28,

is simply to maximize the total amount of CO injected into the reservoir over the time horizon,

Max z = Yie; Xeer Yie (28)

In summary, the NLP formulation aims to maximize Eg. 28 subject to the reservoir dynamics

equations (Egs. 2-22) and subsurface engineering policies (Eqgs. 23-27) that ensure safe operations.

Results and discussion

This section presents several instances of different case studies aimed at optimizing the CO; injection
plan for illustrative, two-dimensional reservoirs. The optimization results are obtained from the NLP
model developed in the previous section, whose goal is to maximize CO, storage efficiency while
adhering to operational and regulatory constraints. The mathematical model is implemented using
GAMS 45.3.0 (GAMS, 2023), and all NLP optimization runs are solved with CONOPTA4, the latest
version of CONOPT (Drud, 1996). Computations are performed on a system with an Intel Core i7
13" Gen CPU (1.7 GHz, 16 GB RAM), utilizing up to 12 threads for parallel processing. Note that
nonlinear equations can be expressed in quadratic terms, yielding a nonconvex QCP formulation.
However, for all the cases presented in this work, specific QCP global solvers like GUROBI cannot

find even a good feasible solution after hours of computation.

For illustrative purposes, the optimization model considers a 20-year horizon, discretized into annual
time periods, during which two vertical injection wells are operated. For the first 10 years, the CO;
injection rate into each well is considered as a decision variable, subject to an upper limit of 0.5 Mton
per year. This injection capacity corresponds to the annual CO; emissions of a small 100 MW coal-
fired power plant. Based on this fact, the selected rate is deemed appropriate, given that the reservoir
model provides a conservative estimation of the storage capacity by not fully accounting for its three-
dimensional nature. If the total available CO is injected, it would occupy approximately 2% of the
reservoir’s pore volume, which falls within the 1-4% range suggested by the Intergovernmental
Panel on Climate Change (Solomon, 2007).

During the injection phase, the primary constraints influencing the optimization procedure are

injectivity limitations and pressure build-up restrictions. To ensure operational safety, the bottom-
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hole pressure is constrained to a maximum of 30 MPa, which corresponds to approximately 1.5 times
the initial reservoir pressure. Additionally, the pressure in each grid block is limited to 35 MPa to
prevent potential reservoir fracturing or leakage.

After the injection phase, the model is also intended to keep track of the CO, plume extension over
the following 10 years. The optimization framework enforces containment constraints over the whole
time horizon, ensuring that the migration of CO, remains within the designated storage area.
Specifically, the model imposes a maximum threshold of 0.0015 Mton at the reservoir boundaries,
thereby mitigating the risk of unintended plume expansion beyond regulatory limits.

The rest of the section is structured as follows. First, we present a detailed description of an
illustrative reservoir with homogenous properties, including the necessary assumptions for its
implementation. Next, we analyze the results from an initial set of scenarios (Case 1), which involve
simplified well placement designs and reservoir representations. These preliminary scenarios
primarily serve to visualize the fundamental principles governing the model, and to conduct a basic
sensitivity analysis on the influence of injection rates and well depths. Following this, we extend our
analysis using a higher-fidelity model (Case 2), incorporating finer grid spatial resolution to improve
the accuracy of the results and validate the injection strategies. Finally, we apply the model to a
reservoir featuring a realistic permeability field (Case 3), allowing for a more comprehensive
assessment of the relationship between the reservoir’s geophysical characteristics and the

optimization strategy that maximizes CO; storage.
Reservoir representation

The illustrative reservoir is located 1200 meters below the surface, and extends over 4800 x 100 x
700 meters. Assuming a fixed, homogeneous porosity of 0.12, the total pore volume is estimated at

40.32 million cubic meters.

A grid block aspect ratio of 2 : 1 : 1 (length : thickness : height) is adopted. For Case 1 and Case 3
the model employs a spatial discretization of 24 x 1 x 7 grid blocks (see Fig. 5). In Case 2, a higher
fidelity model is introduced, refining the spatial resolution to 48 x 1 x 14. In Case 1 and Case 2, a
homogeneous permeability of 250 mD is assumed all across the field, with vertical permeability set
as 1% of the horizontal permeability. Subsequently, in Case 3, a synthetic heterogeneous permeability
field is introduced to resemble realistic reservoir conditions, allowing for a more accurate evaluation

of the CO- injection strategy.
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Fig. 5. Two-dimensional grid discretization for the optimization model.

Case study 1
Instance 1.1: Deep wells

This case emulates a criterion for injection planning that guides common industry practices. Based
on comments from our industry partner, well operators might favor deeper injection wells to slow
down buoyancy forces. In shallow wells, buoyancy drives CO, upward, increasing the risk of early
structural trapping and CO-, dispersion. Besides, during its ascent, CO; interacts with brine, enhancing
dissolution and residual trapping, which provide safer long-term storage. Therefore, prolonging the
vertical migration path until reaching the caprock can be one of the key objectives. On the other hand,
a balanced injection strategy is also standard practice, particularly in early-stage operations when
reservoir behavior is uncertain. Reducing variability in injection rates across wells simplifies CO;
migration forecasts, improving operational control. Based on practical considerations, Case 1
comprises two wells that are placed in the second-lowest reservoir layer (L6). Note that layer L7 is
kept within the model to track vertical migration, but is not used for injection to avoid boundary
effects. The first injection well (IW1) is positioned between columns C8 and C9, while IW2 is located
between C16 and C17. Additional constraints are included in the optimization model to ensure an

even distribution of injection rates among the wells over time.

The NLP model of Case 1.1 comprises 73,141 constraints and 71,161 variables, with 43,274 nonlinear
elements in the Jacobian matrix. Despite its large scale, the degrees of freedom remain limited to
bottom-hole pressures per well at each time step, from which injection rates are derived. Over the
first 10 years, the total amount of CO; injected reaches 0.14 Mton, storing merely 3% of the available
CO.. As demonstrated later in this section, this amount can increase significantly. One of the primary
reasons why the initial well placement strategy fails to maximize reservoir storage capacity, despite

following the general guideline of “the deeper, the better”, is the pressure interference between the
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wells. Since both wells inject simultaneously at similar rates, dynamic pressure buildup in the central
region limits injectivity to remain within regulatory pressure constraints, and forces CO, flows to
move toward the reservoir boundaries. As a result, the central section between the wells remains
mostly underutilized, preventing fresh brine from interacting with newly injected CO, thereby
hindering the activation of safe trapping.

Instance 1.2: Layer shifting

To evaluate a different design that can avoid pressure interference, the well placement strategy is
modified in Case 1.2 by relocating IW2 to a different injection layer. Since pressure propagation
predominantly occurs in the horizontal direction shifting IW2 to L4, while maintaining its original
column position reduces direct pressure overlap (see Fig. 6 for well placement illustration).

w1 w2
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z c1 c2 c3 ca Cc5 ce c7 cs cg Cl0O C1M C12 C13 Cl4 Ci5 Cl6 | CI7 Ci8 C19 C20 C21 C22 C23 C24

Layers Caprock
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Fig. 6. Well layout for Case 1.2.

After solving the NLP model proposed in this work, the revised design shows a significant
improvement in the storage efficiency. The optimization model now achieves a total injection of 1.25
Mton of COg, representing an eight-times increase compared to the initial design. More than 25% of
the total available CO, can be injected under these conditions. The results confirm that shifting
injection depths can enhance storage efficiency by minimizing pressure interference. Another key
observation from these results is that the primary limiting factor is not CO, plume extension, but
rather injectivity constraints. One indicator supporting this conclusion is the dominance of vertical
migration over horizontal spread. As previously discussed, when injection pressure is sufficiently
high, the CO; plume yields a flatter front, allowing viscous forces to overcome buoyancy and extend
further into the reservoir. However, due to the imposition of equivalent injection rates at both wells,
the system can never reach the threshold where viscous forces dominate over gravity-driven
migration. At this point, it becomes evident that injection strategies can greatly benefit from managing

different injection rates per well.
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Instance 1.3: Decoupling injection rates

Building upon the previous design, we conduct a final experiment (Case 1.3) in which the constraint
of balanced injection rates is lifted, favoring unrestricted optimization of injection rates per well. By
introducing this flexibility, the total CO, injection increases further to 2.23 Mton, representing nearly
45% of the available carbon. Note that the improvement in the objective function stems from the
implementation of alternating injection strategies as illustrated on Fig. 7. As shown by previous
authors (Zou and Durlofsky, 2023), alternating strategies can mitigate pressure interference leading
to high injection rates at specific periods to promote a more uniform CO; plume front, also enhancing
residual trapping. In real-world scenarios, this strategy would also favor dissolution trapping, which
was not explicitly considered in this version of the model. The results also reveal that alternate
injection allows CO; to redistribute, reducing pressure build-up and preventing local saturation from
reaching its upper limit.

A key observation from this case is that the primary limiting constraint has now shifted from
injectivity to plume containment, as CO; reaches the maximum regulatory threshold at the reservoir
boundaries. Fig. 8 illustrates CO; saturation maps at two critical time points: the end of the injection
phase (Year 10), and the end of the time horizon (Year 20). To provide better visualization, an
upscaled, smoother version of the saturation map is also shown in the same figure. As expected, once
injection ceases, dynamic pressure no longer dictates carbon movement, leaving vertical migration
due to gravity as the predominant transport mechanism.
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Fig. 7. Case 1.3 optimized CO: injection profiles (bars) and bottom-hole pressure (lines) for each well over injection
horizon.
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Fig. 8. Resulting saturation map for Case 1.3 at the end of injection phase (left) and end of control horizon (right).

Table 1. Model parameters and results for all case studies and instances

Case 1.1

Case 1.2 Case 1.3 Case 2 Case 3
Grid
. L 24X 1x7 24x1x7 24x1x7 48x1x14 24X 1x7
discretization
. IWL1.L6; IWL1.L6; IWL1.L6; IWL1.L6; IW1.L6;
Injection layers IW2.L6 IW2.L4 IW2.L4 IW2.L4 IW2.L4
Horizontal Constant Constant Constant Constant Lg?s_tr;iobrS::clily
permeability 250 mD 250 mD 250 mD 250 mD (420; 100) mD
Vertical
permeability 0.01 0.01 0.01 0.01 0.01
Kv/Kn
Constraints on Balanced Balanced
L ' S AP None None None
injection profile injection injection
Model size 73,061 const; 73,061 const; 73,061 const; 422,061 const; 73,061 const;
71,161 vars. 71,161 vars. 71,161 vars. 413,761 vars. 71,161 vars.
CPU Time [s] 12.27 23.28 111 2075 209
Obijective value
0.14 1.25 2.23 1.76 2.45
[Mton CO;]
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The resulting injection plan for Case 1.3 has been validated using commercial simulation software
(GEM, by Computer Modelling Group Ltd.) broadly used in the CCS industry. Using different grid
resolutions, results from the NRS favorably compare with predictions made by the optimization
model. Results and statistics from simulation are provided in the Supplementary Material.

Computational details for all instances of Case study 1 are presented in Table 1, while the full set of
results from the optimal solutions are presented in the Supplementary Material. Note that in all
instances of Case 1 the optimal solutions are obtained in less than two minutes of CPU time.

Case study 2

The aquifer model used in Case 1 has been intentionally designed with a relatively coarse grid to
ensure computational efficiency. To assess the impact of grid resolution on model sizes, CPU times
and optimal solutions, we now address the CO; injection planning under the same conditions of Case
1.3 but using a refined spatial discretization of 48 x 1 x 14, yielding a total of 672 grid blocks. This
refinement significantly increases model dimensions, expanding to 422,061 constraints and 413,761

variables, i.e. a fivefold increase after dividing the blocks in quarters.

In the optimal solution, the total amount of CO; that can be sequestered at the end of the injection
phase is 1.76 Mton, which is 20% smaller than the injection volume obtained using the coarse-grid
model. This outcome aligns with prior research findings, which indicate that coarse-grid
representations tend to underestimate plume migration, leading to an overestimation of storage
efficiency (Yamamoto et al., 2011; Zou and Durlofsky, 2023). The computational performance of
the NLP model is promising since even for a finer discretization, the solver finds the local optimal
solution in less than 35 minutes of CPU, as shown in Table 1. Details on the solution for Case 2 are

presented in the Supplementary Material.

Case study 3

For the first two cases we have assumed a homogeneous aquifer, which does not represent real-world
reservoir features accurately. In practice, geophysical properties vary spatially, influencing CO-
injection and migration dynamics. As a result, well injection performance is strongly dependent on
local reservoir characteristics, requiring smarter injection strategies that can adapt to heterogeneities.
Field engineers typically obtain subsurface data at discrete locations, and various interpolation and

simulation techniques allow for constructing data-driven geophysical realizations of the field. One
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widely applied method is Sequential Gaussian Simulation (SGS), which is used in this work to

generate a synthetic permeability map as shown in Fig. 9.

Fig. 9. 480 x 70 synthetic permeability field for Case 3 (left) and its aggregated 24 x 7 representation (right).

More specifically, the heterogeneous permeability field is generated using the built-in function
0s.SRF of the GSTools geostatistical Python framework (Mdiller et al., 2022). A spherical variogram
model is applied to a 480 x 70 two-dimensional grid, with correlation lengths of [,/L, = 0.6 and
l,/L, = 1 in the horizontal and vertical directions, respectively. Permeability follows a log-normal

distribution, with log- permeability mean of 420 and standard deviation of 100. The k, /k; ratio
remains fixed at 0.01, consistent with previous cases.
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Fig. 10. Optimized CO:z injection profiles (bars) and bottom-hole pressure (lines) for each well in Case study 3.

In short, the injection plan of Case study 3 is optimized under similar conditions as in Case 1.3, but
now based on the heterogeneous permeability field depicted at the right of Fig. 9. The optimal
solution from the NLP proposed in this work yields a total CO; storage of 2.45 Mton, which is
obtained after 209 s of CPU time (see Table 1). Fig. 10 presents the injection strategy and bottom-
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hole pressure profile for each well during the injection phase. Remarkably, the injection is
preferentially distributed (60-40%) toward IW2, which is shallower but located in a higher-
permeability zone, capped by low-permeability blocks at layer L1. An important observation is that
the interference of dynamic pressures from the two wells is more important than in Case 2, despite
the shift in depth. This occurs due to the presence of higher permeability paths between the injection
points. As a result, identifying the optimal solution becomes more complex, and cannot be easily
determined through manual adjustment or direct search methods. This highlights the advantage of
using an advanced optimization model to efficiently navigate problem complexities.

Another noteworthy point is that each well operates under a distinct active constraint. IW2 is limited
by plume migration because high permeability accelerates CO, movement toward the top-right
boundary of the aquifer (see Fig. 11). In contrast, IW1 is constrained by pressure buildup, requiring
longer pausing periods to allow the plume to redistribute and facilitate additional CO- injection in
the surrounding region. These findings reinforce that the dominant constraint (or set of constraints)

varies spatially, directly shaping the optimal injection strategy into heterogeneous reservoirs.

Year 10 w1 w2 Year 20 w1 w2

Fig. 11. Resulting saturation map for Case 3 at the end of injection phase (left) and end of control horizon (right).

One key aspect that is left for future work is the adjustment of the parameters of the optimization
model in order to accurately predict plume migration and pressure gradients, even when using coarse
grids. This could be done in sequential steps, by comparing with the results of simulation runs based

on much finer discretizations.

Conclusions

We have proposed an efficient mathematical programming model to optimize the storage of CO; into
deep saline aquifers in the long term. The NLP optimization model relies on well-known physics
models like Darcy’s law that allow to capture migration of CO> based on permeability, saturation and

pressure gradients. The NLP formulation is based on a time and volume discrete representation that

27



has been initially deployed in two dimensions, using finite-difference algebraic equations. The
computational results are quite promising since they suggest that the model may scale reasonably to
real instances and 3D configurations. For the optimization model to be practical, it must maintain fast
computational runtime, otherwise it offers little advantage over the metaheuristic methods discussed
in this paper, which rely on sequential, computationally expensive function evaluations via numerical
reservoir simulation. In fact, we have not sought to replicate the accuracy of NRS, but rather to guide
the development of injection strategies that can also enable field operators to rapidly explore different
well designs. While higher-fidelity models remain essential for final validation, our approach avoids
the need to evaluate hundreds or even thousands of candidate solutions as required by previous
approaches. Instead, only the optimal solution yielded by the mathematical model will be tested,

adjusted and eventually validated, thus reducing the overall computational cost significantly.

It is interesting to note that the results shown in this paper have been found using CONOPT4, a
generalized reduced-gradient local solver (Drud, 1996). It is not surprising to see that this active set,
feasible path solver yields very good results for an NLP model with thousands of equality constraints
and just a few bounds. Following a feasible path, it computes relevant derivatives, and therefore better
directions towards the optimal solution. The feasibility of the initial and intermediate points,
satisfying thousands of complex material and pressure balances is expensive, and thus, carefully
preserved by the solution strategy. Although the NLP model can be fully expressed in quadratic terms,
specific global solvers for QCP like GUROBI struggle to find even a good feasible solution in

reasonable CPU times.

Further experimentation, model adaptations to account for solubility trapping, and extensions to 3D
are ongoing work. The development of an iterative, self-adaptive optimization framework capable of

solving real-world instances in reasonable times is the final goal of this project.
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Nomenclature

Sets and subscripts

cecC
c €
c €CB
iel
lel
lel;
teT

columns (grid discretization in the x-direction)
column at the right of well i

columns located at the boundaries of the grid
injection wells

layers (grid discretization in the z-direction)
layers into which well i injects CO;

time periods

Parameters [units]

area
avol,,
bhp™**
co2]rax
depth,
depth,
g
height
kh,
kv,
length

Ngiss
max

pc,l
Smax

Spr
width

a
6,
At
€
P

Uprine

cross sectional area of a block [m?]

effective volume of cell (c, I) [m?]

maximum permissible bottom-hole pressure for each well i [MPa]
available CO- for injection in time period t [m?3/s]

depth at top of the reservoir [m]

depth at layer | [m]

gravitational acceleration [m/s?]

height of a grid block [m]

reservoir horizontal permeability of block (c, I) [mD]
reservoir vertical permeability of block (c, I) [mD]

length of a grid block [m]

number of blocks along which dynamic pressure is assumed to fully dissipate
maximum permissible pressure for each block [MPa]
maximum permissible CO; saturation for each block [-]
hydrostatic pressure in layer | [MPa]

width of a grid block [m]

horizontal flowrate fraction after vertical diversion [-]
weight for layer | to compute buoyancy pressure [MPa]
length of a time period [days]

maximum amount of CO, allowed to reach boundaries [m?]
porosity of block (c, I) [-]

viscosity of brine [puPa s]
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Kco, viscosity of CO; [uPa s]

Pco, density of CO; [kg/m?]

Pbrine density of brine [kg/m?]

o sparsity parameter for flow driven by buoyancy [-]

Variables [units]

Beri-1¢ vertical flow of CO; driven by buoyancy from block (c, I) to (c, I-1) at time t [m3/day]

BHP;, bottom-hole pressure (measured at the top of the grid) of well i at time period t [MPa]

BP.;; buoyancy pressure into the column c of the top layer, at time period t [MPa]

DPC(j:lt’) dynamic pressure at block (c, I) originated from injection into well i, layer /’, at time
period t [MPa]

KHS effective horizontal permeability for CO; in block (c, I) at time period t [mD]

KV;{_CZ effective vertical permeability for CO; in block (c, I) at time period t [mD]

Pt pressure of block (c, 1) at time period t [MPa]

Qcit amount of CO- in block (c, I) at time period t [m?]

QT; 1t flow of CO; injected into block (c, I) from well i during time period t [m3/day]

Qf,cﬂ,l,t horizontal flow of CO. from block (c, I) to block (c+1, I) during time period t [m3/day]

QZ_M_M vertical flow of CO; from block (c, I) to block (c, I-1) during time period t [m3/day]

Scit saturation of block (c, I) at time period t [-]

Yie total amount of CO- injected into well i at time period t [m?]

Z total amount of CO; injected in reservoir over the time horizon [mq]

Havgc ¢ average viscosity at block (c, I) during time period t [pPa s]
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