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Abstract 

This work presents a novel nonlinear programming (NLP) formulation aimed at maximizing the 

overall amount of CO2 stored into deep saline aquifers in the long term. The goal is to optimally 

determine CO2 injection rates into vertical wells while properly managing bottom-hole pressures over 

time. The reservoir may comprise several layers with heterogeneous physical properties. The 

injection plan should meet the subsurface engineering policies for safe operations along with existing 

technical constraints. The major challenge is to track the CO2 migration across the reservoir to ensure 

containment during the injection periods and also in the long term. The NLP formulation is based on 

a discrete space and time representation of the reservoir, comprising pressure propagation and mass 

balance equations between every pair of adjacent blocks in the grid. Results for several illustrative 

case studies in two dimensions show the potential of the model to find optimal solutions in few 

seconds. Injection plans suggested by the optimization model are efficient and have been validated 

by accurate simulation runs. Based on these findings, the model has the potential to be extended to 

three dimensions and adapted to real-world cases.   

 

Introduction 

There is international scientific consensus that anthropogenic emissions of carbon dioxide (CO2) need 

to fall dramatically by 2030 if the aim is to eventually reach net zero around 2050. Achieving net zero 

emissions by 2050 is an ambitious target that will require large-scale deployment of carbon capture, 

utilization, and storage technologies (CCUS) (Air Products, 2024). It is essential to develop 

technically sound, safe, and cost-effective CO2 injection and well operation strategies. This involves 

a sophisticated balance of various factors such as subsurface engineering, technical constraints, and 
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economic trade-offs. Optimization techniques are the best tools to manage this complexity and ensure 

that CCUS projects are economically viable, while maintaining safety and environmental standards. 

(Ismail and Gaganis, 2023).  

For underground storage, companies frequently target deep saline formations and depleted oil and 

gas fields (Pires et al., 2011). Saline formations are characterized by porous rock matrices saturated 

with brine (over 10,000 ppm salinity), which are favored for their vast storage capacity and 

widespread geographic availability. Estimates suggest that the U.S. possesses between 3,000–6,000 

gigatons of storage capacity, with deep saline formations accounting for over 97–99% of this potential 

(US Geological Survey, 2013). The porous rock layer typically features high-permeability sandstone 

or limestone that facilitate CO2 injection and storage, overlaid by a low-permeability caprock, which 

acts as a geological containment that seals in the CO2. These storage formations often extend laterally 

for many miles and are located more than 800 m below the surface, safely beneath fresh groundwater 

deposits. At such depths, CO2 remains in supercritical state, with temperatures exceeding 50°C and 

pressures above 10 MPa, with a density around 600 kg/m3 (Zou and Durlofsky, 2023). Under these 

conditions, it behaves as a dense fluid, occupying less space in the reservoir and thereby enhancing 

storage efficiency.  

The storage of CO2 into deep saline aquifers mostly occurs at natural formation pressures. Reservoirs 

are generally represented as open systems from which the brine can flow laterally, and make room 

for the injected CO2 that is trapped in the porous media (Nordbotten et al., 2005). Although pressure 

build-up is not as relevant as for closed systems (e.g., depleted oil and gas reservoirs), pressure signals 

during injection can propagate far beyond the CO2 migration front (“plume”), on the scale of tens to 

even hundreds of kilometers (Birkholzer et al., 2015). Continuous measurement, monitoring, 

verification, and reporting during sequestration must be carefully recorded by companies, requiring 

sophisticated simulation and optimization tools to make proper decisions. In practice, operators often 

rely on empirical correlations and over-simplified extrapolation techniques to estimate CO2 

sequestration capacities, and it is even more challenging to estimate the extent of CO2 retention, 

leakage, and spread within the reservoir over time (Hasan et al., 2022). 

This work presents a novel mathematical programming model for the optimal planning of CO2 

injection into deep saline aquifers, aiming at maximizing overall carbon sequestration in the long 

term. We introduce a Nonlinear Programming (NLP) formulation based on a discrete space-time 

representation of the reservoir, which is initially saturated with brine. The storage aquifer is assumed 

to be heterogeneous, made up of multiple layers, and each block in the grid is characterized by specific 

permeability and porosity estimations. CO2 injection into the reservoir is performed through multiple 
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vertical wells whose geographical location and depth are given a priori. The prediction of reservoir 

pressure gradients and CO2 migration is proposed with simplified models to solve the optimization 

problem by means of mathematical programming tools rather than using sampling and metaheuristic 

strategies as has been reported in the literature (Cameron and Durlofsky, 2012; Sun and Dusrlofsky, 

2019). More specifically, we seek to overcome limitations of previous contributions in the field that 

require numerous simulations and do not guarantee optimality after very long time computations.  

Compared to metaheuristics, mathematical programming benefits by the inclusion of boundary 

constraints, such as CO2 containment. While the former usually treat such constraints using penalty 

functions and repair procedures, active set solvers for very large nonlinear programming (NLP) 

models take advantage by searching along a feasible path, tight at the boundary. See Biegler (2010) 

for a general review on NLP algorithms. Most active set, feasible path methods are based on the 

generalized reduced-gradient (GRG) algorithm proposed by Abadie and Carpentier (1969), and more 

recent extensions by Drud (1996), which generally perform better when solving models with many 

equality constraints (mostly linear) and few bounds, like the model developed in this paper. The 

feasibility of the intermediate points, satisfying thousands of material and pressure balances is 

carefully preserved.  

However, the development of a proper prediction model of reasonable dimensions for optimization 

purposes is challenging. To build the model we rely on a discrete space-time representation, much 

coarser than typical simulation models, including material balances and Darcy’s law equations 

(Darcy, 1856) to track the CO2 front over time. Buoyancy effects are also modeled with detail due 

the significant difference of densities between water and supercritical CO2 (Celia et al., 2015). Finally, 

dynamic pressure propagation curves are also predicted from Darcy’s law applied to multiphase 

flows, evaluating changes along the horizontal and vertical dimensions of the system. 

The primary objective of this paper is to present the foundation of a mathematical programming 

model capable of guiding operators in designing optimal CO2 injection strategies for multiple vertical 

wells. The aim is to address the most critical trapping mechanisms and transportation phenomena 

while maintaining computational efficiency. 

Previous works 

Numerous studies have demonstrated that managing well injection greatly influences how the CO2 

plume extends into reservoirs, as it affects the interplay of natural forces that govern this process 

(Kumar, 2007; Shamshiri & Jafarpour, 2010). Difference of densities between the bulk phases leads 

to gravitational forces that drive the CO2 upward, towards the caprock. This retention mechanism is 
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known as stratigraphic or structural trapping, and is regarded as the least reliable because the CO2 

remains mobile and may eventually surpass licensed region boundaries (Cameron & Durlofsky, 2012; 

Massarweh & Abushaikha, 2024). Increasing the injection rate enhances viscous forces, resulting in 

a flatter and more uniform CO2 front. This facilitates horizontal movement, broadens the CO2 plume, 

and increases its interaction with brine. Such strategies promote solubility trapping (a fraction of the 

CO2 being dissolved in the brine), and residual trapping, which occurs due to hysteresis effects driven 

by capillary pressure and the relationship between relative permeability and saturation of the involved 

phases (Weir et al., 1995). 

Many of these features are thoroughly reviewed by Kumar (2007), widely regarded as a pioneer in 

the application of optimization tools to CO2 sequestration. In this seminal work, the author leverages 

advanced optimization techniques already established in other areas of reservoir engineering, 

particularly in oil recovery operations such as waterflooding (Yeten et al., 2002). Using the conjugate 

gradient method, the author seeks for the injection strategy that maximizes the proportion of CO2 

stored through residual trapping, given a total amount of CO2 to be injected. The objective function 

is evaluated using a commercial numerical reservoir simulation (NRS) model. Based on successive 

evaluations, gradients can be estimated using finite differences, which guide adjustments to the 

control variables (valve settings). However, the algorithm is likely to converge to local optima, 

particularly when the permeability distribution is highly heterogeneous. For this reason, multiple 

optimization paths, each with a different starting point, are suggested to increase the likelihood of 

identifying the actual optimum. Needless to say, a very large number of simulations are required. 

Kumar (2007) advocates for the development of an integrated method to optimize the CO2 

sequestration process. Such approach could overcome the inherent "black-box" nature of commercial 

simulators, which hinders the precise determination of gradients. Nevertheless, subsequent 

researchers have continued to favor simulation-based optimization (SBO), wherein the optimization 

process is conducted iteratively, based on previous simulation results. Simulation and optimization 

steps are repeated until convergence to a near optimal solution. The optimization approach may 

involve gradient-based or derivative-free methods. While the former are generally recommended due 

to their stronger convergence, SBO often encounters challenges in obtaining the necessary derivative 

information, as an interface with the source code needs to be available. This limitation persists even 

when the objective function and constraints are smooth (Kolda, 2003). 

Shamshiri and Jafarpour (2010) employ the quasi-Newton BFGS method (Nocedal & Wright, 2006) 

to enhance the sweep efficiency of the CO2 plume within the reservoir. The authors reaffirm that 

injection strategies can influence CO2 movement within the reservoir, encouraging a more uniform 
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front despite reservoir heterogeneities. Similarly, Cameron and Durlofsky (2012) aim to minimize 

the mobile fraction of CO2 to reduce the risk of leakage. In contrast to the previous studies, they apply 

the Hooke-Jeeves Direct Search (HJDS) method (Hooke & Jeeves, 1961), a derivative-free 

optimization technique. However, the absence of gradient information increases the number of 

function evaluations compared to gradient-based approaches. Consequently, hundreds or even 

thousands of simulations are required. Finally, the authors propose hybridizing HJDS with 

probabilistic search algorithms to improve the robustness of the framework. In a similar line, Zhang 

and Agarwal (2012) develop a genetic algorithm coupled with the multiphase numerical solver 

TOUGH2 (Doughty, 2013) to improve CO2 storage efficiency while simultaneously reducing plume 

extension.  

More recently, Zou and Durlofsky (2023) test the efficacy of two metaheuristic approaches to solve 

this problem, namely Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995) and 

Differential Evolution (DE) (Storn & Price, 1997), to determine both well placement and injection 

rates. Metaheuristics guide the optimization process toward regions of interest within the search space 

based on a predefined criterion (fitness function). Due to their probabilistic nature, metaheuristics 

cannot guarantee convergence to the optimum within a finite time, but they are generally more likely 

than other derivative-free methods to identify high-quality solutions (Yang, 2010). However, 

metaheuristics require a large number of function evaluations, particularly when the number of 

decision variables is large and of continuous nature. To reduce the effort, Zou and Durlofsky (2023) 

propose a multi-fidelity approach, with three levels of grid resolution.  

Data-driven modeling (DDM) is a more recent alternative to traditional NRS. These models are 

trained using data generated by numerical simulations to eventually predict the responses of the 

reservoir, while achieving execution times of just a few seconds (Zhang & Sahinidis, 2013; Ng et al., 

2023). Surrogate or proxy models are employed to guide metaheuristics toward the improvement of 

the value function. If a high-fidelity proxy model is successfully developed, decision-making 

processes can be significantly faster. However, training these models is inherently complex and time-

consuming. Furthermore, even after a surrogate model has been properly trained and validated, its 

predictive accuracy may fail to generalize effectively to different reservoir characterizations. For that 

reason, the DDM paradigm is predominantly applied to CO2 injection into depleted oil fields (You et 

al., 2020; Vo et al., 2020; Sun et al., 2021, Abhijnan et al., 2024) where a substantial amount of data 

is typically available from previous production phases. Instead, CO2 injection into deep saline 

aquifers faces significant challenges due to the inherent uncertainty in reservoir properties (Miller et 

al., 2014). 
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Interestingly, the simplified representation of reservoir dynamics by means of proxy models enables 

the development of integrated simulation-optimization frameworks. These surrogate models can be 

embedded as sets of linear or nonlinear equations within the mathematical formulation, depending on 

the prediction method. For instance, Borda et al. (2017) analyze various methods for predicting 

reservoir pressures to optimize CO2 injection into the Nelson Field reservoir (Arizona, United States). 

The optimization model accounts for key constraints, such as mitigating pressure build-up to preserve 

reservoir integrity. Unlike metaheuristics, this framework seeks for the optimal solution while strictly 

satisfying the constraints, provided that the surrogate models achieve sufficient predictive accuracy. 

Nonetheless, this approach is limited to a single geophysical variable:  pressure. Expanding the scope 

to control multiple variables across broader domains introduces substantial complexity to train 

surrogate models. This undermines computational efficiency and can also degrade the accuracy. 

In contrast to all previous contributions, this work presents a novel mathematical programming model 

for the optimal planning of CO2 injection into deep saline aquifers through multiple wells as an 

integrated simulation-optimization framework based on first-principle equations. To the best of our 

knowledge, this optimization approach is the first to incorporate physics-informed equations to 

predict complex, non-linear system evolution. In contrast to previous methods, this framework 

overcomes the reliance on external numerical simulations and surrogate models. 

Motivation 

Mathematical programming emerges as a promising alternative to simulation-based optimization 

methods. Constraints related to subsurface engineering and regulatory policies, such as pressure 

management and CO2 containment, can be incorporated directly into the model to ensure safe 

conditions. This can also help solvers narrow the search space and provide valuable guidance in 

derivative information. In contrast to metaheuristics and data-driven approaches, we argue that a 

physics-informed model can better exploit the advantages of mathematical programming, also 

leveraging interpretability. While the underlying system dynamics in reservoir simulation are 

inherently complex (Voskov et al., 2017), simplifications can be introduced to represent the physics 

without compromising accuracy to an unacceptable degree (Celia et al., 2015).  

In this initial study, our objective is to capture the key reservoir dynamics to maintain the practical 

applicability of the model for optimization purposes. By doing so, we aim to highlight the potential 

of mathematical programming to address challenges in CO2 injection planning and reservoir 

management. However, as shown later in this work, NRS will still play a crucial role to validate 

injection plans with more accuracy. 
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Problem statement 

The optimization problem addressed in this work can be stated as follows. Given are the following 

items: 

(a) A deep saline aquifer with uniform width (dimension y), known extension (dimension x) and 

depth (dimension z), to be used for carbon sequestration, also called the control volume. 

(b) A set of different layers in the z dimension of the reservoir where CO2 migration and trapping 

mechanisms occur. 

(c) A set of vertical wells with known location, comprising one or multiple injection points at 

different layers into which carbon dioxide can be pumped in for storage.  

(d) Reservoir characterization (permeability, porosity, saturation map and pressure constraints) 

all across the control volume. 

(e) A set of time periods comprising a multi-year planning and control horizon. 

(f) Maximum amount of CO2 flow available for injection in each time period. 

The goal is then to determine the optimal multi-well injection plan that maximizes the total amount 

of CO2 stored in the long-term, given in terms of injection rates and bottom-hole pressures at each 

well along the time horizon. The aim is to predict pressure propagation during injection and CO2 

migration in the long-term to comply with injectivity and containment constraints.   

Model assumptions 

The design of a model that effectively balances computational efficiency with predictive accuracy 

poses significant challenges. The model proposed in this work predicts the reservoir behavior over 

time by means of a system of nonlinear algebraic equations and constraints. To build the model we 

make the following assumptions: 

a) For simplicity, the reservoir is represented by a 2D grid-based model (dimension x for length 

and z for depth) so that the width (dimension y) of every block is fixed (see Fig. 1). Although 

this assumption does not necessarily fit real-world reservoirs, it permits to setup a primary 

optimization model that can be easily understood and eventually be extended to 3D. Extensions 

to 3D will be addressed in a forthcoming article.   

b) The reservoir is covered with a zero-permeability caprock, which acts as a structural 

containment that prevents the CO2 to flow to the surface. At the bottom of the deep-most layer 

permeability is also assumed to drop to zero. 

c) Porous space of any block in the reservoir can be occupied with only two components: CO2 and 

brine. At the reservoir conditions, CO2 is in supercritical state. For simplicity, it is assumed that 
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brine and CO2 have constant densities across the reservoir at any time period. Furthermore, 

miscibility and thermodynamic phenomena are omitted, for simplicity.   

d) Mass transport properties of fluids (e.g., viscosity, density) and reservoir blocks (e.g., porosity, 

permeability, effective permeability) are explicitly included in the model. 

e) For CO2 flow prediction, Darcy’s law is utilized based on saturation and pressure differences 

between adjacent grid blocks. 

f) Dynamic pressure propagation can be also modeled through Darcy’s law for multiphase flows, 

based on average properties including rock permeability and fluid viscosity. 

g) Injection management is performed through continuous variables only, with all equations 

formulated in quadratic form, yielding a quadratically constrained program (QCP). 

h) Actual relative permeability curves, derived from experimental data, are included in the model 

in the form of fourth order polynomial equations. 

i) The reservoir is assumed to be open in the x dimension, from which a pseudo-open system 

representation is adopted. The number of blocks in the x dimension (columns) is finite, but those 

blocks at the boundaries are treated in a particular manner. They can steadily receive material 

from adjacent blocks within the control volume without building-up pressure. In other words, 

they are considered as having an infinite volume at a constant pressure (the reservoir pressure). 

j) Only residual and structural trapping mechanisms are accounted for. Since the time horizon 

spans for few decades, mineral trapping is excluded from the analysis. Solubility trapping is 

also omitted for simplicity. From experimental analysis, CO2 solubility is usually below 50 g 

per kg of brine at reservoir conditions (Massarweh & Abushaikha, 2024). Nevertheless, we plan 

to extend the model to account for CO2 solubility in future works.  

 

Fig. 1. Two-dimensional grid representation of the reservoir. 
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Mathematical formulation 

This section presents the first Nonlinear Programming (NLP) mathematical formulation aimed at 

maximizing the total amount of CO2 injected through multiple wells into a deep saline aquifer to be 

safely stored in the long term. The model is fully discretized in space and time domains, with indices 

c and l standing for columns and layers, and t for time periods, respectively. Injection wells are 

identified with the index i. 

The constraints included in the model can be divided into two main categories: (i) those designed to 

model the evolution of the reservoir over space and time, accounting for pressure propagation and 

CO2 migration, and (ii) those dealing with operational limitations of the injection process itself, 

ensuring safe and long-term containment of the CO2 while maintaining reservoir integrity. The former 

are usually given in terms of equalities (e.g., mass balances), while the latter are bound constraints in 

the form of lesser-or-equal inequalities (e.g., maximum saturation).   

Balance equations 

Regarding reservoir dynamics, it is assumed that the reservoir starts fully saturated with brine. 

Saturation is an important state variable of every block (c, l) that needs to be tracked over time. It 

stands for the fraction of a certain component (CO2 or brine) relative to the total porous space. By 

assumption, the miscible fraction of CO2 into brine (solubility trapping) is omitted for simplicity.   

Under these assumptions, Darcy’s law (1856), as presented in Eq. 1, can be adapted to predict pressure 

gradients and/or fluid flowrates in terms of finite difference equations. This is achieved by averaging 

the physical properties of the fluids across the reservoir, yielding good estimations of the pressure 

and flow variables. The volumetric flow rate 𝑄 is a function of the permeability of the porous medium 

(𝑘), the viscosity of the fluid 𝜇 and the pressure gradient ∇𝑃. Consistent with its physical 

interpretation, higher permeability enhances fluid mobility within the medium, whereas viscosity has 

the opposite effect. Lastly, a reduction in the magnitude of the pressure gradient directly reduces the 

flowrate,  

 𝑄 = −
𝑘

𝜇
∇𝑃  (1) 

Tracking pressures 

To account for pressure variations across the reservoir, we introduce the concept of dynamic pressure 

(DP) defined as the pressure increase (above static pressure sp) caused by well injection. Dynamic 

pressure propagates throughout the reservoir, such that the total pressure 𝑃𝑐,𝑙,𝑡 at a given block (c, l) 
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is the sum of the static pressure of layer l (given data) and the net dynamic pressure projected from 

all injection points into layers 𝑙′     along every well i. That summation is presented in Eq. 2, 

 𝑃𝑐,𝑙,𝑡 = 𝑠𝑝𝑙 + ∑ ∑ 𝐷𝑃𝑐,𝑙,𝑡
( ,𝑙′)

𝑙′ 𝐿𝑖  𝐼   ∀𝑐   , 𝑙   , 𝑡  𝑇  (2) 

Without loss of generality, we assume that the dynamic pressure driven by CO2 pumping will 

dissipate along 𝑛𝑑 𝑠𝑠 blocks horizontally, which can be estimated from prior geological studies. 

Given that the system representation is based on a pseudo-open domain, this parameter can be 

adjusted when boundary blocks are reached. The complete dissipation of dynamic pressure is 

enforced by Eq. 3. Note that column 𝑐     determines the well location along dimension x.  

 𝐷𝑃
𝑐′,𝑙,𝑡

( ,𝑙)
= 0  ∀𝑖  𝐼, 𝑙    , 𝑐    , 𝑐

′ ∉ [𝑐 − 𝑛𝑑 𝑠𝑠  , 𝑐 + 𝑛𝑑 𝑠𝑠 − 1], 𝑡  𝑇 (3) 

CO2 injection flow according to the bottom-hole pressure 

To estimate the amount of CO2 directly injected into a block (c, l) adjacent to the injection point at 

layer 𝑙     (denoted by 𝑄𝑇 ,𝑐,𝑙,𝑡) we rely on Darcy’s law applied to a system of resistors in series 

along every injection layer (see Fig. 2). This is applied for each direction, i.e. to the right (column c) 

and to the left (column c - 1) of the injection point, with well i placed at the left of column 𝑐    . As 

expressed by Eqs. 4 and 5, the injection flow rates to the right and to the left, respectively, can be 

estimated from the bottom-hole pressure BHP, reservoir permeability 𝑘ℎ𝑐,𝑙 and average viscosity 

𝜇𝑎𝑣𝑔𝑐,𝑙,𝑡 across the series of 𝑛𝑑 𝑠𝑠 blocks in the corresponding direction. Analogously to an electric 

circuit, resistance (inverse of conductance) of subsequent blocks are summed along each horizontal 

direction. As illustrated in Fig. 2, a higher CO2 saturation yields a lower viscosity, resulting in smaller 

pressure drops. Note that, by convention, the BHP of any well is measured at the same depth (deptho, 

of layer l1), given that there may be multiple injection points along the vertical well.  

 

Fig. 2. Dynamic pressure propagation and CO2 migration in the horizontal direction, to the right of an injection point. 

a
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 𝑄𝑇 ,𝑐,𝑙,𝑡 = 
𝐵𝐻𝑃𝑖,𝑡  +  𝜌𝐶𝑂2   𝑔   (𝑑𝑒𝑝𝑡ℎ𝑙 – 𝑑𝑒𝑝𝑡ℎ𝑜) – 𝑠𝑝𝑙

∑ 𝛼𝑐′−𝑐  𝑘ℎ𝑐′,𝑙
−1𝑐+𝑛𝑑𝑖𝑠𝑠−1

𝑐′=𝑐
   𝑙𝑒𝑛𝑔𝑡ℎ   𝑎𝑟𝑒𝑎−1   𝜇𝑎𝑣𝑔𝑐′,𝑙,𝑡

 ∀𝑖  𝐼, 𝑐    , 𝑙    , 𝑡  𝑇 (4) 

 𝑄𝑇 ,𝑐−1,𝑙,𝑡 = 
𝐵𝐻𝑃𝑖,𝑡  +  𝜌𝐶𝑂2   𝑔   (𝑑𝑒𝑝𝑡ℎ𝑙 − 𝑑𝑒𝑝𝑡ℎ𝑜) − 𝑠𝑝𝑙

∑ 𝛼𝑐−1−𝑐′
  𝑘ℎ𝑐′,𝑙

−1𝑐−1
𝑐′=𝑐−𝑛𝑑𝑖𝑠𝑠

   𝑙𝑒𝑛𝑔𝑡ℎ   𝑎𝑟𝑒𝑎−1   𝜇𝑎𝑣𝑔𝑐,𝑙,𝑡
 ∀𝑖  𝐼, 𝑐    , 𝑙    , 𝑡  𝑇 (5) 

For accuracy, an adjustment factor 𝛼 slightly smaller than one is incorporated in the model to account 

for the flow diversion in the vertical direction. More specifically, from the incompressibility 

assumption, the total amount of CO2 injected to the right (𝑄𝑇 ,𝑐,𝑙,𝑡) will reduce to 𝛼𝑛 𝑄𝑇 ,𝑐,𝑙,𝑡 volume 

units of a multiphase fluid (brine + CO2), 𝑛 blocks at the right of the injection point. 

As stated in Eq. 6, the average viscosity of the multiphase fluid is roughly calculated by weighting 

the individual viscosities according to the CO2 saturation 𝑆𝑐,𝑙,𝑡 at block (c, l) at time t, 

 𝜇𝑎𝑣𝑔𝑐,𝑙,𝑡 = 𝜇𝐶𝑂2
  𝑆𝑐,𝑙,𝑡 + 𝜇𝑏𝑟 𝑛𝑒   (1 − 𝑆𝑐,𝑙,𝑡)    ∀𝑐   , 𝑙   , 𝑡  𝑇 (6) 

Finally, the total injection into well i over period t, represented by the variable 𝑌 ,𝑡, can be calculated 

as in Eq. 7, summing CO2 flows towards both directions, over all injection layers,   

 𝑌 ,𝑡 = ∑ (𝑄𝑇 ,𝑐−1,𝑙,𝑡 + 𝑄𝑇 ,𝑐,𝑙,𝑡)𝑙 𝐿𝑖
  ∀𝑖  𝐼, 𝑐    , 𝑡  𝑇  (7) 

Pressure propagation in the horizontal direction 

To estimate the propagation of dynamic pressures along injection layers, the finite-difference form 

of Darcy’s law (1856) in Eq. 1 is applied to adjacent blocks, based on the previously computed total 

flow rate 𝑄𝑇 ,𝑐,𝑙,𝑡. Eqs. 8 and 9 account for pressure drops along adjacent blocks, in both horizontal 

directions (i.e., to the right and to the left, respectively), 

 𝐷𝑃𝑐,𝑙,𝑡
( ,𝑙)

= 𝐷𝑃𝑐−1,𝑙,𝑡
( ,𝑙)

−
𝛼𝑐−𝑐′

 𝑄𝑇
𝑖,𝑐′,𝑙,𝑡

  𝑙𝑒𝑛𝑔𝑡ℎ  𝜇𝑎𝑣𝑔𝑐,𝑙,𝑡

𝑘ℎ𝑐,𝑙   𝑎𝑟𝑒𝑎
  (8) 

 ∀𝑖  𝐼, 𝑙    , 𝑐
′    , 𝑐   : 𝑐 > 𝑐′, 𝑡  𝑇 

 𝐷𝑃𝑐−1,𝑙,𝑡
( ,𝑙)

= 𝐷𝑃𝑐,𝑙,𝑡
( ,𝑙)

−
𝛼𝑐′−1−𝑐 𝑄𝑇

𝑖,𝑐′−1,𝑙,𝑡
  𝑙𝑒𝑛𝑔𝑡ℎ  𝜇𝑎𝑣𝑔𝑐,𝑙,𝑡

𝑘ℎ𝑐,𝑙   𝑎𝑟𝑒𝑎
  (9) 

 ∀𝑖  𝐼, 𝑙    , 𝑐
′    , 𝑐   : 𝑐 < 𝑐′ − 1, 𝑡  𝑇 

For blocks adjacent to injection points, where CO2 is directly injected, one may also assume a 

horizontal pressure drop provoked by half of the length of the corresponding block, assuming that 

pressures are measured at the center of each element (c, l). Hence, to calculate the pressure gradient 
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necessary to reach the center of those blocks, Eq. 10 can be incorporated into the model. For clarity, 

Fig. 2 also provides a visual interpretation of the pressure gradient. 

 𝐷𝑃𝑐,𝑙,𝑡
( ,𝑙)

= 𝐵𝐻𝑃 ,𝑡 + 𝜌𝐶𝑂2 𝑔 (𝑑𝑒𝑝𝑡ℎ𝑙  −  𝑑𝑒𝑝𝑡ℎ𝑜)  − 𝑠𝑝𝑙 −
𝑄𝑇𝑖,𝑐,𝑙,𝑡   𝑙𝑒𝑛𝑔𝑡ℎ/    𝜇𝑎𝑣𝑔𝑐,𝑙,𝑡

𝑘ℎ𝑐,𝑙   𝑎𝑟𝑒𝑎
  (10) 

 ∀𝑖  𝐼, 𝑙    , 𝑐
′    , 𝑐 = 𝑐′, 𝑐′ − 1, 𝑡  𝑇 

Pressure propagation in the vertical direction 

To further refine the modeling of dynamic pressure propagation to different layers within the 

reservoir, we take the reference pressure at each column of the injection layer l’ (variable 𝐷𝑃
𝑐,𝑙′,𝑡

( ,𝑙′)
, 

obtained from Eqs. 8, 9 and 10) and assume a geometric dissipation in both directions along the 

vertical axis. More specifically, dynamic pressure is assumed to reduce by a factor of 
𝜇𝑏𝑟𝑖𝑛𝑒

𝜇𝑎𝑣𝑔𝑐,𝑙,𝑡

𝑘𝑣𝑐,𝑙

𝑘ℎ𝑐,𝑙
 

every time we move a layer up or down from the injection layer. As stated in Eqs. 11 and 12, 

respectively,  

 𝐷𝑃𝑐,𝑙−1,𝑡
( ,𝑙′)

= 𝐷𝑃𝑐,𝑙,𝑡
( ,𝑙′) 𝜇𝑏𝑟𝑖𝑛𝑒

𝜇𝑎𝑣𝑔𝑐,𝑙,𝑡
 
𝑘𝑣𝑐,𝑙

𝑘ℎ𝑐,𝑙
  (11) 

  ∀𝑐   , 𝑖  𝐼, 𝑙′    , 𝑙 ≤ 𝑙′, 𝑡  𝑇 

 𝐷𝑃𝑐,𝑙+1,𝑡
( ,𝑙′)

= 𝐷𝑃𝑐,𝑙,𝑡
( ,𝑙′) 𝜇𝑏𝑟𝑖𝑛𝑒

𝜇𝑎𝑣𝑔𝑐,𝑙,𝑡
 
𝑘𝑣𝑐,𝑙

𝑘ℎ𝑐,𝑙
  (12) 

  ∀𝑐   , 𝑖  𝐼, 𝑙′    , 𝑙
′ < 𝑙, 𝑡  𝑇 

Note that the factor 𝑘𝑣𝑐,𝑙/𝑘ℎ𝑐,𝑙 is the relationship between the vertical and horizontal permeability 

of the block (c, l), which in practice is usually small (in the order of 10-2). Besides, dissipation is 

smoother if the fluid contained by the block is less viscous. From Eq. 6, the factor 𝜇𝑏𝑟 𝑛𝑒/𝜇𝑎𝑣𝑔𝑐,𝑙,𝑡 

satisfies 1 ≤ 𝜇𝑏𝑟 𝑛𝑒/𝜇𝑎𝑣𝑔𝑐,𝑙,𝑡 ≤ (1 − 𝑠𝑚𝑎𝑥)
−1 ≈ 5. Hence, 𝐷𝑃𝑐,𝑙,𝑡

( ,𝑙′)
 typically reduces from 20 to 

100 times per block in the vertical direction (depending on the saturation), rapidly going to zero and 

favorably comparing to simulation experiments. Also note that nonlinear Eqs. 11 and 12 can be 

written to preserve the bilinear, quadratic form since 𝜇𝑎𝑣𝑔𝑐,𝑙,𝑡 is a linear function of 𝑆𝑐,𝑙,𝑡. 

Extra pressure due to buoyancy at the top layer  

Since the top layer of the reservoir (namely l1) is assumed to lie beneath an impermeable rock 

formation, it is necessary to include an extra term for buoyancy pressure 𝐵𝑃𝑐,𝑙1,𝑡 at the columns of 

that particular layer. This term is added to accurately account for the upwards forces exerted by CO2 

(typically lighter than brine) when reaching the caprock. In other words, buoyancy pressure arises at 



13 

 

the top layer due to the difference of densities between the components and plays a critical role in 

modeling vertical pressure gradients. In particular, it is important to evaluate the stability of the 

reservoir (maximum saturation) and the typical distribution of CO2 in the form of an inverted “cone” 

in the very long term. To incorporate this effect, Eq. 2 is rearranged as shown in Eq. 13. The 

estimation of buoyancy pressure is directly related to saturation of the blocks below (c, l1). As 

described in Eq. 14, this relationship is expressed as a weighted summation, where the weights 

𝛿𝑙  decrease with l and can be fitted to the results of simulation experiments, 

 𝑃𝑐,𝑙,𝑡 = 𝑠𝑝𝑙 + ∑ ∑ 𝐷𝑃𝑐,𝑙,𝑡
( ,𝑙′)

𝑙′ 𝐿𝑖  𝐼 + 𝐵𝑃𝑐,𝑙,𝑡|𝑙=𝑙1
  ∀𝑐   , 𝑙   , 𝑡  𝑇  (13) 

 𝐵𝑃𝑐,𝑙1,𝑡 = ∑ 𝛿𝑙  𝑆𝑐,𝑙,𝑡𝑙 𝐿   ∀𝑐   , 𝑡  𝑇  (14) 

By combining all propagation mechanisms and directions, dynamic pressure is effectively mapped 

across the reservoir, as illustrated in Fig. 3. 

  

Fig. 3. Dynamic pressure propagation within the reservoir from injection at block (c1, l4). The size of the circles 

represents the magnitude of the pressure at each block. 

CO2 material balance 

An accurate characterization of CO2 migration across the reservoir is essential to update the 

saturation map, which in turn allows the mathematical model to accurately represent the system’s 

dynamic behavior according to pressure propagation. Additionally, the saturation of each block and 

the CO2 flows toward the reservoir boundaries are key variables to ensure compliance with 

subsurface engineering policies during operation, as discussed later in this work. Given their 

importance, greater rigor in the calculation of these variables enables the adoption of less 

conservative injection strategies (which are very common in current industrial practice) ultimately 

maximizing the storage efficiency. 
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Firstly, it is necessary to track the amount of CO2 present in each block of the reservoir at every time 

period t. This is achieved using the mass balance equation presented in Eq. 15, which is given in 

volume units from the incompressibility assumption. In that equation, 𝑄𝑐,𝑙,𝑡 represents the total 

amount of CO2 (in volume units) contained into block (c, l) at time period t, and is defined as the 

sum of the CO2 present at the previous period plus the amount directly injected into that block from 

an injection point (𝑄𝑇 ,𝑐,𝑙,𝑡, just for blocks adjacent to well injection points), also adding and 

subtracting the horizontal and vertical flows entering from and exiting to adjacent blocks (𝑄𝑐−1,𝑐,𝑙,𝑡
𝐻 , 

𝑄𝑐,𝑐+1,𝑙,𝑡
𝐻 , 𝑄𝑐,𝑙+1,𝑙,𝑡

𝑉  and 𝑄𝑐,𝑙,𝑙−1,𝑡
𝑉 , respectively). Note that 𝑄𝑐−1,𝑐,𝑙,𝑡

𝐻 , 𝑄𝑐,𝑐+1,𝑙,𝑡
𝐻 , 𝑄𝑐,𝑙+1,𝑙,𝑡

𝑉  and 𝑄𝑐,𝑙,𝑙−1,𝑡
𝑉  

are unconstrained variables that may take negative values. More specifically, outgoing flows yield 

negative terms and are subtracted from the cumulative amount of CO2 stored in the block. In Eq. 15, 

∆𝑡 is the length of a time period, usually given in days.  

 𝑄𝑐,𝑙,𝑡 = 𝑄𝑐,𝑙,𝑡−1 + ∆𝑡 [∑ 𝑄𝑇 ,𝑐,𝑙,𝑡|𝑐,𝑐+1 𝐶𝑖
𝑙 𝐿𝑖

  𝐼 + 𝑄𝑐−1,𝑐,𝑙,𝑡
𝐻 − 𝑄𝑐,𝑐+1,𝑙,𝑡

𝐻 + 𝑄𝑐,𝑙+1,𝑙,𝑡
𝑉 − 𝑄𝑐,𝑙,𝑙−1,𝑡

𝑉 ] (15) 

  ∀𝑐   , 𝑙   , 𝑡  𝑇  

CO2 migration in the horizontal direction 

Once again, Darcy’s law is applied to predict CO2 migration in each direction; However, because 

every block is saturated with a two-phase fluid, yielding a heterogeneous medium, a new variable 

known as effective permeability must be incorporated into the analysis. As demonstrated in 

numerous studies, the effective permeability of a reservoir to a certain component of the multiphase 

fluid highly depends on its saturation (Ahmed, 2010). In our model, the effective permeability to 

CO2 is represented by means of a fourth degree polynomial function of the saturation, which 

accurately fits experimental data. The correlation adopted is presented in Eq. 16. The adjustment of 

the function to real data is illustrated in Fig. 4, where the factor (
𝑆𝑐,𝑙,𝑡

𝑠𝑚𝑎𝑥
)
4
is usually referred to as the 

relative permeability, 

 𝐾𝐻𝑐,𝑙,𝑡
𝑒𝑓𝑓

= 𝑘ℎ𝑐,𝑙 (
𝑆𝑐,𝑙,𝑡

𝑠𝑚𝑎𝑥
)
4
  ∀𝑐   , 𝑙   , 𝑡  𝑇  (16) 

Note that relative permeability, and consequently CO2 movement, remains negligible until a certain 

threshold is reached. This threshold corresponds to approximately half of the maximum reachable 

saturation. This behavior is closely related to capillary effects, which lead to the so-called residual 

trapping. Since the reservoir is initially fully saturated with brine, a substantial amount of CO2 is 

required to initiate fluid displacement farther than the receiving blocks. Residual trapping is a safe 
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storage mechanism that occurs as the CO2 plume passes through porous rocks, leaving small amounts 

of CO2 immobilized within the pore spaces. Under this mechanism, the carbon saturation in the pore 

space remains below the minimum threshold required to sustain mobility through an effective 

permeability to CO2, substantially higher than zero (see Fig. 4).  

 

Fig. 4. Experimental data and polynomial correlation between relative permeability and saturation. 

From the effective permeability in the horizontal direction (𝐾𝐻𝑐,𝑙,𝑡
𝑒𝑓𝑓

), Darcy’s law for heterogeneous 

flow is applied to predict CO2 migration to neighboring blocks in that direction. Such neighboring 

blocks share the same layer and correspond to contiguous columns as stated by Eq. 17. By 

convention, variable 𝑄𝑐,𝑐′,𝑙,𝑡
𝐻  takes a positive value if CO2 migrates from c to c’ = c + 1 and negative 

if it flows in the opposite direction. The flow direction will be determined by the difference of the 

pressures of adjacent blocks, which are driven by the propagation of dynamic pressures from the 

injection points of different wells. 

 𝑄𝑐,𝑐′,𝑙,𝑡
𝐻 =

𝐾𝐻𝑐,𝑙,𝑡
𝑒𝑓𝑓

  𝑎𝑟𝑒𝑎  (𝑃𝑐,𝑙,𝑡 − 𝑃
𝑐′,𝑙,𝑡

)

𝜇𝐶𝑂2  𝑙𝑒𝑛𝑔𝑡ℎ
   (17) 

  ∀𝑐   , 𝑐′ = 𝑐 + 1, 𝑙   , 𝑡  𝑇 

CO2 migration in the vertical direction 

Similarly, effective permeability to CO2 in the vertical direction is computed by Eq. 18 while Darcy’s 

law is applied in Eq. 19 to predict CO2 migration along column c, from layer l to l – 1 (upwards). By 

convention, variable 𝑄𝑐,𝑙,𝑙′,𝑡
𝑉  takes a positive value if CO2 migrates from l to l’ = l – 1 and negative if 

it flows in the opposite direction. As stated by Eq. 19, the first driver for vertical migration is the 
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dynamic pressure gradient due to CO2 injection at different layers of different wells. Nevertheless, 

CO2 upwards movement is further driven by buoyancy forces, which are accounted for by the 

variable 𝐵𝑐,𝑙,𝑙′,𝑡 in Eq. 19. 

 𝐾𝑉𝑐,𝑙,𝑡
𝑒𝑓𝑓

= 𝑘𝑣𝑐,𝑙 (
𝑆𝑐,𝑙,𝑡

𝑠𝑚𝑎𝑥
)
4
  ∀𝑐   , 𝑙   , 𝑡  𝑇  (18) 

 𝑄𝑐,𝑙,𝑙′,𝑡
𝑉 =

𝐾𝑉𝑐,𝑙,𝑡
𝑒𝑓𝑓

   𝑎𝑟𝑒𝑎   ∑ ∑ (𝐷𝑃𝑐,𝑙,𝑡
(𝑖,𝑙𝑙)

 − 𝐷𝑃
𝑐,𝑙′,𝑡

(𝑖,𝑙𝑙)
)𝑙𝑙 𝐿𝑖𝑖 𝐼

𝜇𝐶𝑂2  ℎ𝑒 𝑔ℎ𝑡
+ 𝐵𝑐,𝑙,𝑙′,𝑡   (19) 

  ∀𝑐   , 𝑙   , 𝑙′ = 𝑙 − 1, 𝑡  𝑇 

The vertical flow rate due to buoyancy is driven by static pressure difference between sequential 

layers and is proportional to the difference of densities between CO2 and brine. Since buoyancy does 

not occur in a single slug, but is instead dispersed in bubbles (or small streamlines) across the entire 

cross-sectional area of a block, each CO2 bubble must overcome its own resistance. To account for 

this, the parameter 𝜎 << 1 is introduced in Eq. 20, which can be adjusted to fit simulation data,     

 𝐵𝑐,𝑙,𝑙′,𝑡 =
𝜌𝑏𝑟𝑖𝑛𝑒−𝜌𝐶𝑂2

𝜌𝑏𝑟𝑖𝑛𝑒
(𝑠𝑝𝑙 − 𝑠𝑝𝑙′)

𝑘𝑣𝑐,𝑙 𝜎 𝑆𝑐,𝑙,𝑡−1 𝑎𝑟𝑒𝑎

𝜇𝐶𝑂2 ℎ𝑒 𝑔ℎ𝑡
   (20) 

  ∀𝑐   , 𝑙   , 𝑙′ = 𝑙 − 1, 𝑡  𝑇 

Saturation of CO2 at every block 

Lastly, by knowing the void-volume of a block (𝑎𝑣𝑜𝑙𝑐,𝑙) computed as in Eq. 21 from its porosity 

𝜑𝑐,𝑙, Eq. 22 calculates the CO2 saturation 𝑆𝑐,𝑙,𝑡 in each block (c, l) at time t. It should be noted that 

the effective volume available for storage may vary with the porosity 𝜑𝑐,𝑙. Since boundary blocks in 

columns 𝑐   𝐵 are assumed to have an infinite volume, saturation calculation is omitted for those 

blocks.  

 𝑎𝑣𝑜𝑙𝑐,𝑙 = 𝜑𝑐,𝑙  ∙ 𝑙𝑒𝑛𝑔𝑡ℎ ∙ ℎ𝑒𝑖𝑔ℎ𝑡 ∙  𝑤𝑖𝑑𝑡ℎ  ∀𝑐   −  𝐵, 𝑙    (21) 

 𝑆𝑐,𝑙,𝑡 =
𝑄𝑐,𝑙,𝑡

𝑎𝑣𝑜𝑙𝑐,𝑙
   ∀𝑐   −  𝐵, 𝑙   , 𝑡  𝑇 (22) 

Subsurface operational constraints 

Besides the set of equations proposed to model reservoir dynamics, additional constraints must be 

included to ensure reservoir integrity and maintain safe operational conditions. Although subsurface 

policies have been addressed in previous works, they are rarely implemented as strict constraints to 

be satisfied during the optimization process. Instead, heuristic approaches often embed constraint 

violations within the objective function, and subsequently refine the solution to better comply with 
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them. With the development of a simplified yet accurate representation of reservoir fluid dynamics 

in both space and time domains, these policies can now be directly incorporated as constraints within 

the mathematical programming model, allowing for a more rigorous and integrated approach that can 

effectively address operational safety and reservoir integrity. 

Managing pressures 

Managing the pressure build-up resulting from CO2 injection is essential to prevent the occurrence of 

fracture phenomena (Nicot, 2008). To address this, a maximum admissible pressure is imposed for 

each block as defined in Eq. 23. This upper limit ensures operational safety and significantly 

influences CO2 injection dynamics. As demonstrated by Szulczewski et al. (2011), restricting pressure 

build-up within the reservoir substantially impacts injection performance in the short term.  

 𝑃𝑐,𝑙,𝑡 ≤ 𝑝𝑐,𝑙
𝑚𝑎𝑥  ∀𝑐   , 𝑙   , 𝑡  𝑇  (23) 

Moreover, the injectivity is also limited by the maximum admissible bottom-hole pressure (BHP) at 

each well as stated in Eq. 24. Maximum BHPs promote predictable and safe behavior, not only within 

the reservoir, but also in the operational equipment. Pressure constraints ensure that the injection 

process remains within design parameters, reducing the risk of equipment failure and maintaining the 

integrity of the storage system.  

 𝐵𝐻𝑃 ,𝑡 ≤ 𝑏ℎ𝑝 
𝑚𝑎𝑥  ∀𝑖  𝐼, 𝑡  𝑇  (24) 

Managing saturation 

In contrast to pressure constraints, porosity and resulting effective storage capacity play a more 

significant role over the long term. Saturation level at each block is restricted by Eq. 25 to a given 

maximum, which is typically set at values around 0.80, 

 𝑆𝑐,𝑙,𝑡 ≤ 𝑠𝑚𝑎𝑥 ∀𝑐   , 𝑙   , 𝑡  𝑇  (25) 

Plume extension 

Recognizing that the primary trapping mechanisms are of residual and structural types (Raza et al., 

2018), effective control at the grid boundaries is essential to ensure that the CO2 plume does not 

exceed the control volume limits. Eq. 26 imposes a small upper bound 𝜀 on the total amount of CO2 

that can move horizontally into the boundary cells over the long-term planning horizon. This is 

typically defined by the relevant regulatory authority to threshold values close to zero. 

 ∑ 𝑄𝑐,𝑙,𝑇𝑐  𝐵,𝑙  ≤ 𝜀   (26) 
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Note that during and even after injection, buoyancy forces continue to promote upward displacement 

of CO2, which limits the horizontal spread of the CO2 plume in deep layers, reducing its access to 

fresh brine within the aquifer (Ismail & Gaganis, 2023). However, buoyancy provokes CO2 spread 

when reaching the top layer (caprock), which can compromise containment in the very long term. All 

these aspects introduce a difficult trade-off to be solved while searching for the optimal injection 

policy. The strategy must balance the safety of the trapping mechanisms against maximizing the 

effective utilization of the storage volume over the time horizon.   

CO2 availability 

Lastly, certain limitations on the CO2 injection policy arise from capacity constraints in upstream 

operations. One such limitation is CO2 availability, as carbon must first be captured, prior to injection. 

This model does not optimize over upstream carbon capture processes, but instead assumes a 

predefined parameter  𝑐𝑜 𝑡
𝑚𝑎𝑥 that represents the maximum amount of CO2 available for injection 

across the reservoir during each time period. Accordingly, an upper bound is imposed on the total 

injection of CO2 over all wells for every period t, as stated by Eq. 27, 

 ∑ 𝑌 ,𝑡  𝐼 ≤ 𝑐𝑜 𝑡
𝑚𝑎𝑥  ∀𝑡  𝑇  (27) 

In practice, the time horizon is divided into injection and passive phases. While balance equations 

and migration constraints need to be tracked all along the time horizon, massive injection is only 

allowed over the injection phase (first TI periods). Therefore, CO2 availability given by parameter  

𝑐𝑜 𝑡
𝑚𝑎𝑥 is reduced to a relatively small value for later periods t > TI, with the only purpose of 

maintaining the reservoir stability.  

An important aspect to emphasize is that despite the large number of equations and variables required 

to capture the complexity of the problem (in the order of thousands for a relatively small case), each 

variable can ultimately be expressed as a function of the bottom-hole pressures in every well i up to 

period t (𝐵𝐻𝑃 ,𝑡′,  𝑡′ ≤ 𝑡), making them the only true decision variables. Consequently, the problem 

has relatively few degrees of freedom to manipulate in the search for the optimal solution. This 

characteristic enhances the performance of reduced-gradient solvers, even when dealing with a highly 

nonlinear model. However, it may also yield suboptimal solutions, such as the zero-injection scenario, 

due to the limited flexibility in the decision space. Ongoing research is focused on developing more 

robust approaches that improve convergence and can guarantee global optimal solutions. 

Objective function 
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An optimal injection strategy must carefully manage pressure increases and CO2 containment 

throughout the reservoir. This may involve strategically manipulating injection rates at different wells 

to enhance pressure propagation toward the reservoir boundaries, thereby maximizing storage 

efficiency while ensuring safe operations. Since safe storage conditions have been addressed through 

the constraints previously discussed, the primary focus of the objective function, defined in Eq. 28, 

is simply to maximize the total amount of CO2 injected into the reservoir over the time horizon, 

 𝑀𝑎𝑥 𝑧 =  ∑ ∑ 𝑌 ,𝑡𝑡 𝑇  𝐼   (28) 

In summary, the NLP formulation aims to maximize Eq. 28 subject to the reservoir dynamics 

equations (Eqs. 2-22) and subsurface engineering policies (Eqs. 23-27) that ensure safe operations.  

Results and discussion 

This section presents several instances of different case studies aimed at optimizing the CO2 injection 

plan for illustrative, two-dimensional reservoirs. The optimization results are obtained from the NLP 

model developed in the previous section, whose goal is to maximize CO2 storage efficiency while 

adhering to operational and regulatory constraints. The mathematical model is implemented using 

GAMS 45.3.0 (GAMS, 2023), and all NLP optimization runs are solved with CONOPT4, the latest 

version of CONOPT (Drud, 1996). Computations are performed on a system with an Intel Core i7 

13th Gen CPU (1.7 GHz, 16 GB RAM), utilizing up to 12 threads for parallel processing. Note that 

nonlinear equations can be expressed in quadratic terms, yielding a nonconvex QCP formulation. 

However, for all the cases presented in this work, specific QCP global solvers like GUROBI cannot 

find even a good feasible solution after hours of computation. 

For illustrative purposes, the optimization model considers a 20-year horizon, discretized into annual 

time periods, during which two vertical injection wells are operated. For the first 10 years, the CO2 

injection rate into each well is considered as a decision variable, subject to an upper limit of 0.5 Mton 

per year. This injection capacity corresponds to the annual CO2 emissions of a small 100 MW coal-

fired power plant. Based on this fact, the selected rate is deemed appropriate, given that the reservoir 

model provides a conservative estimation of the storage capacity by not fully accounting for its three-

dimensional nature. If the total available CO2 is injected, it would occupy approximately 2% of the 

reservoir’s pore volume, which falls within the 1–4% range suggested by the Intergovernmental 

Panel on Climate Change (Solomon, 2007).  

During the injection phase, the primary constraints influencing the optimization procedure are 

injectivity limitations and pressure build-up restrictions. To ensure operational safety, the bottom-
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hole pressure is constrained to a maximum of 30 MPa, which corresponds to approximately 1.5 times 

the initial reservoir pressure. Additionally, the pressure in each grid block is limited to 35 MPa to 

prevent potential reservoir fracturing or leakage. 

After the injection phase, the model is also intended to keep track of the CO2 plume extension over 

the following 10 years. The optimization framework enforces containment constraints over the whole 

time horizon, ensuring that the migration of CO2 remains within the designated storage area. 

Specifically, the model imposes a maximum threshold of 0.0015 Mton at the reservoir boundaries, 

thereby mitigating the risk of unintended plume expansion beyond regulatory limits. 

The rest of the section is structured as follows. First, we present a detailed description of an 

illustrative reservoir with homogenous properties, including the necessary assumptions for its 

implementation. Next, we analyze the results from an initial set of scenarios (Case 1), which involve 

simplified well placement designs and reservoir representations. These preliminary scenarios 

primarily serve to visualize the fundamental principles governing the model, and to conduct a basic 

sensitivity analysis on the influence of injection rates and well depths. Following this, we extend our 

analysis using a higher-fidelity model (Case 2), incorporating finer grid spatial resolution to improve 

the accuracy of the results and validate the injection strategies. Finally, we apply the model to a 

reservoir featuring a realistic permeability field (Case 3), allowing for a more comprehensive 

assessment of the relationship between the reservoir’s geophysical characteristics and the 

optimization strategy that maximizes CO2 storage. 

Reservoir representation 

The illustrative reservoir is located 1200 meters below the surface, and extends over 4800 x 100 x 

700 meters. Assuming a fixed, homogeneous porosity of 0.12, the total pore volume is estimated at 

40.32 million cubic meters. 

A grid block aspect ratio of 2 : 1 : 1 (length : thickness : height) is adopted. For Case 1 and Case 3 

the model employs a spatial discretization of 24 x 1 x 7 grid blocks (see Fig. 5). In Case 2, a higher 

fidelity model is introduced, refining the spatial resolution to 48 x 1 x 14. In Case 1 and Case 2, a 

homogeneous permeability of 250 mD is assumed all across the field, with vertical permeability set 

as 1% of the horizontal permeability. Subsequently, in Case 3, a synthetic heterogeneous permeability 

field is introduced to resemble realistic reservoir conditions, allowing for a more accurate evaluation 

of the CO2 injection strategy. 
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Fig. 5. Two-dimensional grid discretization for the optimization model. 

Case study 1 

Instance 1.1: Deep wells 

This case emulates a criterion for injection planning that guides common industry practices. Based 

on comments from our industry partner, well operators might favor deeper injection wells to slow 

down buoyancy forces. In shallow wells, buoyancy drives CO2 upward, increasing the risk of early 

structural trapping and CO2 dispersion. Besides, during its ascent, CO2 interacts with brine, enhancing 

dissolution and residual trapping, which provide safer long-term storage. Therefore, prolonging the 

vertical migration path until reaching the caprock can be one of the key objectives. On the other hand, 

a balanced injection strategy is also standard practice, particularly in early-stage operations when 

reservoir behavior is uncertain. Reducing variability in injection rates across wells simplifies CO2 

migration forecasts, improving operational control. Based on practical considerations, Case 1 

comprises two wells that are placed in the second-lowest reservoir layer (L6). Note that layer L7 is 

kept within the model to track vertical migration, but is not used for injection to avoid boundary 

effects. The first injection well (IW1) is positioned between columns C8 and C9, while IW2 is located 

between C16 and C17. Additional constraints are included in the optimization model to ensure an 

even distribution of injection rates among the wells over time. 

The NLP model of Case 1.1 comprises 73,141 constraints and 71,161 variables, with 43,274 nonlinear 

elements in the Jacobian matrix. Despite its large scale, the degrees of freedom remain limited to 

bottom-hole pressures per well at each time step, from which injection rates are derived. Over the 

first 10 years, the total amount of CO2 injected reaches 0.14 Mton, storing merely 3% of the available 

CO2. As demonstrated later in this section, this amount can increase significantly. One of the primary 

reasons why the initial well placement strategy fails to maximize reservoir storage capacity, despite 

following the general guideline of “the deeper, the better”, is the pressure interference between the 
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wells. Since both wells inject simultaneously at similar rates, dynamic pressure buildup in the central 

region limits injectivity to remain within regulatory pressure constraints, and forces CO2 flows to 

move toward the reservoir boundaries. As a result, the central section between the wells remains 

mostly underutilized, preventing fresh brine from interacting with newly injected CO2, thereby 

hindering the activation of safe trapping. 

Instance 1.2: Layer shifting   

To evaluate a different design that can avoid pressure interference, the well placement strategy is 

modified in Case 1.2 by relocating IW2 to a different injection layer. Since pressure propagation 

predominantly occurs in the horizontal direction shifting IW2 to L4, while maintaining its original 

column position reduces direct pressure overlap (see Fig. 6 for well placement illustration). 

 

Fig. 6. Well layout for Case 1.2. 

After solving the NLP model proposed in this work, the revised design shows a significant 

improvement in the storage efficiency. The optimization model now achieves a total injection of 1.25 

Mton of CO2, representing an eight-times increase compared to the initial design. More than 25% of 

the total available CO2 can be injected under these conditions. The results confirm that shifting 

injection depths can enhance storage efficiency by minimizing pressure interference. Another key 

observation from these results is that the primary limiting factor is not CO2 plume extension, but 

rather injectivity constraints. One indicator supporting this conclusion is the dominance of vertical 

migration over horizontal spread. As previously discussed, when injection pressure is sufficiently 

high, the CO2 plume yields a flatter front, allowing viscous forces to overcome buoyancy and extend 

further into the reservoir. However, due to the imposition of equivalent injection rates at both wells, 

the system can never reach the threshold where viscous forces dominate over gravity-driven 

migration. At this point, it becomes evident that injection strategies can greatly benefit from managing 

different injection rates per well. 
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Instance 1.3: Decoupling injection rates   

Building upon the previous design, we conduct a final experiment (Case 1.3) in which the constraint 

of balanced injection rates is lifted, favoring unrestricted optimization of injection rates per well. By 

introducing this flexibility, the total CO2 injection increases further to 2.23 Mton, representing nearly 

45% of the available carbon. Note that the improvement in the objective function stems from the 

implementation of alternating injection strategies as illustrated on Fig. 7. As shown by previous 

authors (Zou and Durlofsky, 2023), alternating strategies can mitigate pressure interference leading 

to high injection rates at specific periods to promote a more uniform CO2 plume front, also enhancing 

residual trapping. In real-world scenarios, this strategy would also favor dissolution trapping, which 

was not explicitly considered in this version of the model. The results also reveal that alternate 

injection allows CO2 to redistribute, reducing pressure build-up and preventing local saturation from 

reaching its upper limit. 

A key observation from this case is that the primary limiting constraint has now shifted from 

injectivity to plume containment, as CO2 reaches the maximum regulatory threshold at the reservoir 

boundaries. Fig. 8 illustrates CO2 saturation maps at two critical time points: the end of the injection 

phase (Year 10), and the end of the time horizon (Year 20). To provide better visualization, an 

upscaled, smoother version of the saturation map is also shown in the same figure. As expected, once 

injection ceases, dynamic pressure no longer dictates carbon movement, leaving vertical migration 

due to gravity as the predominant transport mechanism. 

 

Fig. 7. Case 1.3 optimized CO2 injection profiles (bars) and bottom-hole pressure (lines) for each well over injection 

horizon. 
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Fig. 8. Resulting saturation map for Case 1.3 at the end of injection phase (left) and end of control horizon (right). 

 

Table 1. Model parameters and results for all case studies and instances 

 Case 1.1 Case 1.2 Case 1.3 Case 2 Case 3 

Grid 

discretization 
24 x 1 x 7 24 x 1 x 7 24 x 1 x 7 48 x 1 x 14 24 x 1 x 7 

Injection layers 
IW1.L6; 

IW2.L6 

IW1.L6; 

IW2.L4 

IW1.L6; 

IW2.L4 

IW1.L6; 

IW2.L4 

IW1.L6; 

IW2.L4 

Horizontal 

permeability 
Constant 

250 mD 

Constant 

250 mD 

Constant 

250 mD 

Constant 

250 mD 

Log-normally 

distributed 

(420; 100) mD 

Vertical 

permeability 

kv/kh 

0.01 0.01 0.01 0.01 0.01 

Constraints on 

injection profile 
Balanced 

injection  

Balanced 

injection  
None None None 

Model size 
73,061 const; 

71,161 vars. 

73,061 const; 

71,161 vars. 

73,061 const; 

71,161 vars. 

422,061 const; 

413,761 vars. 

73,061 const; 

71,161 vars. 

CPU Time [s] 12.27 23.28 111 2075 209 

Objective value 

[Mton CO2] 
0.14 1.25 2.23 1.76 2.45 
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The resulting injection plan for Case 1.3 has been validated using commercial simulation software 

(GEM, by Computer Modelling Group Ltd.) broadly used in the CCS industry. Using different grid 

resolutions, results from the NRS favorably compare with predictions made by the optimization 

model. Results and statistics from simulation are provided in the Supplementary Material.  

Computational details for all instances of Case study 1 are presented in Table 1, while the full set of 

results from the optimal solutions are presented in the Supplementary Material. Note that in all 

instances of Case 1 the optimal solutions are obtained in less than two minutes of CPU time.   

Case study 2 

The aquifer model used in Case 1 has been intentionally designed with a relatively coarse grid to 

ensure computational efficiency. To assess the impact of grid resolution on model sizes, CPU times 

and optimal solutions, we now address the CO2 injection planning under the same conditions of Case 

1.3 but using a refined spatial discretization of 48 x 1 x 14, yielding a total of 672 grid blocks. This 

refinement significantly increases model dimensions, expanding to 422,061 constraints and 413,761 

variables, i.e. a fivefold increase after dividing the blocks in quarters. 

In the optimal solution, the total amount of CO2 that can be sequestered at the end of the injection 

phase is 1.76 Mton, which is 20% smaller than the injection volume obtained using the coarse-grid 

model. This outcome aligns with prior research findings, which indicate that coarse-grid 

representations tend to underestimate plume migration, leading to an overestimation of storage 

efficiency (Yamamoto et al., 2011; Zou and Durlofsky, 2023). The computational performance of 

the NLP model is promising since even for a finer discretization, the solver finds the local optimal 

solution in less than 35 minutes of CPU, as shown in Table 1. Details on the solution for Case 2 are 

presented in the Supplementary Material.    

Case study 3  

For the first two cases we have assumed a homogeneous aquifer, which does not represent real-world 

reservoir features accurately. In practice, geophysical properties vary spatially, influencing CO2 

injection and migration dynamics. As a result, well injection performance is strongly dependent on 

local reservoir characteristics, requiring smarter injection strategies that can adapt to heterogeneities. 

Field engineers typically obtain subsurface data at discrete locations, and various interpolation and 

simulation techniques allow for constructing data-driven geophysical realizations of the field. One 
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widely applied method is Sequential Gaussian Simulation (SGS), which is used in this work to 

generate a synthetic permeability map as shown in Fig. 9.  

 

Fig. 9. 480 x 70 synthetic permeability field for Case 3 (left) and its aggregated 24 x 7 representation (right). 

More specifically, the heterogeneous permeability field is generated using the built-in function 

gs.SRF of the GSTools geostatistical Python framework (Müller et al., 2022). A spherical variogram 

model is applied to a 480 x 70 two-dimensional grid, with correlation lengths of  𝑙𝑥/ 𝑥 = 0.6 and  

𝑙𝑧/ 𝑧 = 1 in the horizontal and vertical directions, respectively. Permeability follows a log-normal 

distribution, with log- permeability mean of 420 and standard deviation of 100. The 𝑘𝑣/𝑘ℎ ratio 

remains fixed at 0.01, consistent with previous cases. 

 

Fig. 10. Optimized CO2 injection profiles (bars) and bottom-hole pressure (lines) for each well in Case study 3. 

In short, the injection plan of Case study 3 is optimized under similar conditions as in Case 1.3, but 

now based on the heterogeneous permeability field depicted at the right of Fig. 9. The optimal 

solution from the NLP proposed in this work yields a total CO2 storage of 2.45 Mton, which is 

obtained after 209 s of CPU time (see Table 1). Fig. 10 presents the injection strategy and bottom-



27 

 

hole pressure profile for each well during the injection phase. Remarkably, the injection is 

preferentially distributed (60-40%) toward IW2, which is shallower but located in a higher-

permeability zone, capped by low-permeability blocks at layer L1. An important observation is that 

the interference of dynamic pressures from the two wells is more important than in Case 2, despite 

the shift in depth. This occurs due to the presence of higher permeability paths between the injection 

points. As a result, identifying the optimal solution becomes more complex, and cannot be easily 

determined through manual adjustment or direct search methods. This highlights the advantage of 

using an advanced optimization model to efficiently navigate problem complexities. 

Another noteworthy point is that each well operates under a distinct active constraint. IW2 is limited 

by plume migration because high permeability accelerates CO2 movement toward the top-right 

boundary of the aquifer (see Fig. 11). In contrast, IW1 is constrained by pressure buildup, requiring 

longer pausing periods to allow the plume to redistribute and facilitate additional CO2 injection in 

the surrounding region. These findings reinforce that the dominant constraint (or set of constraints) 

varies spatially, directly shaping the optimal injection strategy into heterogeneous reservoirs.  

 

Fig. 11. Resulting saturation map for Case 3 at the end of injection phase (left) and end of control horizon (right). 

One key aspect that is left for future work is the adjustment of the parameters of the optimization 

model in order to accurately predict plume migration and pressure gradients, even when using coarse 

grids. This could be done in sequential steps, by comparing with the results of simulation runs based 

on much finer discretizations.     

Conclusions 

We have proposed an efficient mathematical programming model to optimize the storage of CO2 into 

deep saline aquifers in the long term. The NLP optimization model relies on well-known physics 

models like Darcy’s law that allow to capture migration of CO2 based on permeability, saturation and 

pressure gradients. The NLP formulation is based on a time and volume discrete representation that 
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has been initially deployed in two dimensions, using finite-difference algebraic equations. The 

computational results are quite promising since they suggest that the model may scale reasonably to 

real instances and 3D configurations. For the optimization model to be practical, it must maintain fast 

computational runtime, otherwise it offers little advantage over the metaheuristic methods discussed 

in this paper, which rely on sequential, computationally expensive function evaluations via numerical 

reservoir simulation. In fact, we have not sought to replicate the accuracy of NRS, but rather to guide 

the development of injection strategies that can also enable field operators to rapidly explore different 

well designs. While higher-fidelity models remain essential for final validation, our approach avoids 

the need to evaluate hundreds or even thousands of candidate solutions as required by previous 

approaches. Instead, only the optimal solution yielded by the mathematical model will be tested, 

adjusted and eventually validated, thus reducing the overall computational cost significantly.  

It is interesting to note that the results shown in this paper have been found using CONOPT4, a 

generalized reduced-gradient local solver (Drud, 1996). It is not surprising to see that this active set, 

feasible path solver yields very good results for an NLP model with thousands of equality constraints 

and just a few bounds. Following a feasible path, it computes relevant derivatives, and therefore better 

directions towards the optimal solution. The feasibility of the initial and intermediate points, 

satisfying thousands of complex material and pressure balances is expensive, and thus, carefully 

preserved by the solution strategy. Although the NLP model can be fully expressed in quadratic terms, 

specific global solvers for QCP like GUROBI struggle to find even a good feasible solution in 

reasonable CPU times. 

Further experimentation, model adaptations to account for solubility trapping, and extensions to 3D 

are ongoing work. The development of an iterative, self-adaptive optimization framework capable of 

solving real-world instances in reasonable times is the final goal of this project.   
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Nomenclature 

Sets and subscripts 

𝑐    columns (grid discretization in the x-direction) 

𝑐     column at the right of well i 

𝑐   𝐵 columns located at the boundaries of the grid 

𝑖  𝐼 injection wells 

𝑙    layers (grid discretization in the z-direction) 

𝑙     layers into which well i injects CO2 

𝑡  𝑇 time periods 

 

Parameters [units] 

𝑎𝑟𝑒𝑎 cross sectional area of a block [m2] 

𝑎𝑣𝑜𝑙𝑐,𝑙 effective volume of cell (c, l) [m3] 

𝑏ℎ𝑝 
𝑚𝑎𝑥 maximum permissible bottom-hole pressure for each well i [MPa] 

𝑐𝑜 𝑡
𝑚𝑎𝑥 available CO2 for injection in time period t [m³/s] 

𝑑𝑒𝑝𝑡ℎ𝑜 depth at top of the reservoir [m] 

𝑑𝑒𝑝𝑡ℎ𝑙 depth at layer l [m] 

𝑔 gravitational acceleration [m/s²]  

ℎ𝑒𝑖𝑔ℎ𝑡 height of a grid block [m] 

𝑘ℎ𝑐,𝑙 reservoir horizontal permeability of block (c, l) [mD] 

𝑘𝑣𝑐,𝑙 reservoir vertical permeability of block (c, l) [mD] 

𝑙𝑒𝑛𝑔𝑡ℎ length of a grid block [m] 

𝑛𝑑 𝑠𝑠 number of blocks along which dynamic pressure is assumed to fully dissipate 

𝑝𝑐,𝑙
𝑚𝑎𝑥 maximum permissible pressure for each block [MPa] 

𝑠𝑚𝑎𝑥 maximum permissible CO2 saturation for each block [-] 

𝑠𝑝𝑙 hydrostatic pressure in layer l [MPa]  

𝑤𝑖𝑑𝑡ℎ width of a grid block [m] 

𝛼 horizontal flowrate fraction after vertical diversion [-] 

𝛿𝑙 weight for layer l to compute buoyancy pressure [MPa] 

∆𝑡 length of a time period [days] 

𝜀 maximum amount of CO2 allowed to reach boundaries [m³] 

𝜑𝑐,𝑙 porosity of block (c, l) [-] 

𝜇𝑏𝑟 𝑛𝑒 viscosity of brine [µPa  s] 
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𝜇𝐶𝑂2
 viscosity of CO2 [µPa  s] 

𝜌𝐶𝑂2
 density of CO2 [kg/m³] 

𝜌𝑏𝑟 𝑛𝑒 density of brine [kg/m³] 

𝜎 sparsity parameter for flow driven by buoyancy [-] 

 

Variables [units] 

𝐵𝑐,𝑙,𝑙−1,𝑡 vertical flow of CO2 driven by buoyancy from block (c, l) to (c, l-1) at time t [m³/day] 

𝐵𝐻𝑃 ,𝑡 bottom-hole pressure (measured at the top of the grid) of well i at time period t [MPa] 

𝐵𝑃𝑐,𝑙,𝑡 buoyancy pressure into the column c of the top layer, at time period t [MPa] 

𝐷𝑃𝑐,𝑙,𝑡
( ,𝑙′)

 dynamic pressure at block (c, l) originated from injection into well i, layer l’, at time 

period t [MPa] 

𝐾𝐻𝑐,𝑙,𝑡
𝑒𝑓𝑓

 effective horizontal permeability for CO2 in block (c, l) at time period t [mD] 

𝐾𝑉𝑐,𝑙,𝑡
𝑒𝑓𝑓

 effective vertical permeability for CO2 in block (c, l) at time period t [mD] 

𝑃𝑐,𝑙,𝑡 pressure of block (c, l) at time period t [MPa] 

𝑄𝑐,𝑙,𝑡 amount of CO2 in block (c, l) at time period t [m³] 

𝑄𝑇 ,𝑐,𝑙,𝑡 flow of CO2 injected into block (c, l) from well i during time period t [m³/day] 

𝑄𝑐,𝑐+1,𝑙,𝑡
𝐻  horizontal flow of CO2 from block (c, l) to block (c+1, l) during time period t [m³/day] 

𝑄𝑐,𝑙,𝑙−1,𝑡
𝑉  vertical flow of CO2 from block (c, l) to block (c, l-1) during time period t [m³/day] 

𝑆𝑐,𝑙,𝑡 saturation of block (c, l) at time period t [-] 

𝑌 ,𝑡 total amount of CO2 injected into well i at time period t [m³] 

𝑍 total amount of CO2 injected in reservoir over the time horizon [m³] 

𝜇𝑎𝑣𝑔𝑐,𝑙,𝑡 average viscosity at block (c, l) during time period t [µPa  s] 
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