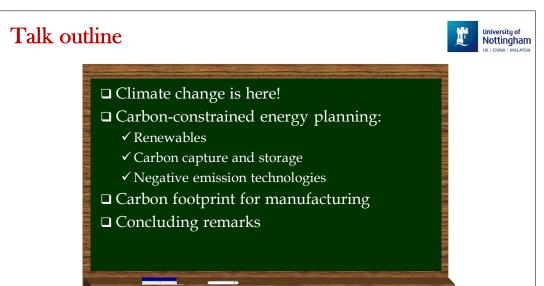
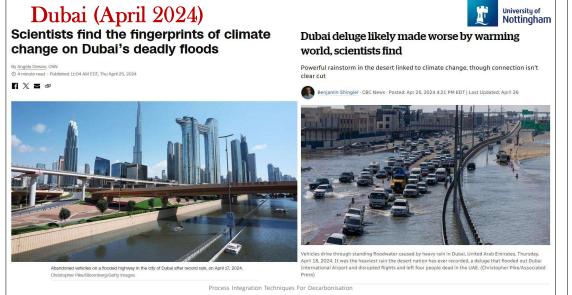
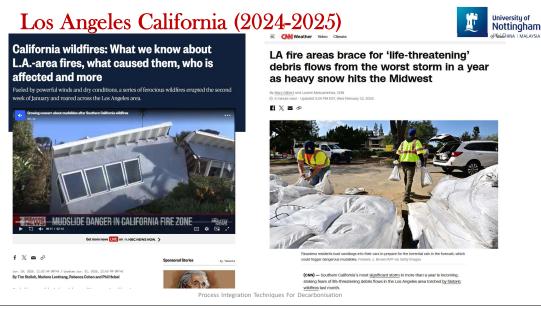
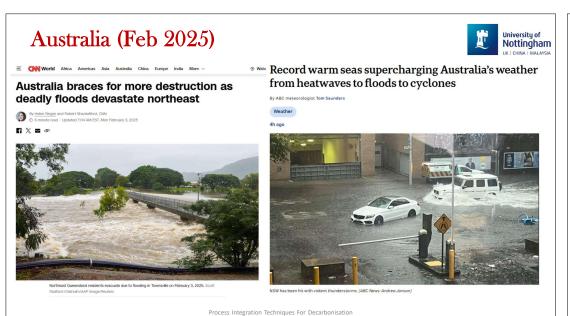


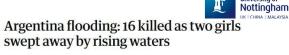
Dominic Foo


- · Qualifications:
 - BEng and MEng & PhD (Chem Eng, Univ Teknologi M'sia)
 - 200+ papers published in ISI-indexed journals
 - ≥300 publications and h-index ≥ 49 in Scopus
 - >40 keynote/plenary presentations
 - Author & editors of 10 books
 - Editorial activities: Editor-in-Chief for Process Integration & Optimisation for Sustainability (Springer Nature); Subject
 Editor for ISI-indexed IChemE journal Process Safety and Environmental Protection (Elsevier); Editorial Board members:
 Water Conservation Science and Engineering (Springer Nature); PROCESSES (MDPI); South African Journal of Chemical
 Engineering (Elsevier)
- · Professional involvements:
 - · Fellow, Academy of Science Malaysia (ASM)
 - · Fellow, Institution of Chemical Engineers (IChemE)
 - Fellow, Institution of Engineers Malaysia (IEM)
 - · Fellow, The Higher Education Academy (HEA), UK
 - · Past President, Asia Pacific Confederation of Chemical Engineering (APCChE)
 - · Chartered Engineer (Engineering Council UK)
 - · Professional Engineer (Board of Engineers M'sia)
 - Past chairman, ChE Tech Division, Institution of Engineers Malaysia
- · Important awards/recognitions:
 - Innovator of the Year 2009, Institution of Chemical Engineers UK
 - · Young Engineer Award 2010, Institution of Engineers Malaysia
 - Outstanding Young Malaysian 2012, Junior Chamber International
 - · Outstanding Asian Researcher and Engineer 2013, Society of Chemical Engineers, Japan
 - Top Research Scientist Malaysia 2016 , Academy of Science Malaysia
 - World Top 2% Scientist in Stanford List (2019-2021)

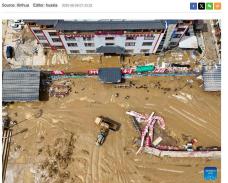








Authorities warn more fatalities expected as a year's worth of rain falls on Bahía Blanca in eight hours


□ Firefighters and volunteers help people out of flooded areas in Bahía Blanca, Argentina, on 8 March 2025. Photograph: Pablo Presti/EPA

Process Integration Techniques For Decarbonisation

Rescue underway in flood-affected counties of Guizhou

Over 80,000 people flee severe flooding in southwest China

Story by AFP • 49m • 🕚 2 min read 💋 Summarise

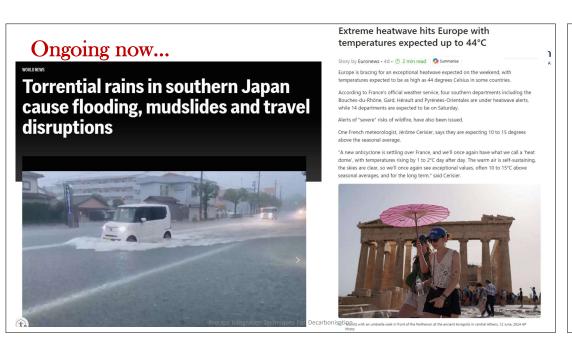
An earlal drone photo shows people clearing silt at a football field of the Cun Chao stadium in

Rongjiang County, southwest China's Guizhou Province, June 25, 2025. Continuous heavy rainfall and

Process Integration Techniques For Decarbonisation

Not too long ago...

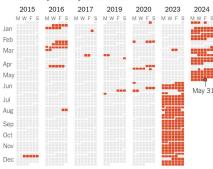
3 dead as S. Korean region hit by most rain in 120 years


University of Nottingham

L The western Seosan area was hit by rainfall peaking at 114.9mm per hour. (EPA Images pic)

NEZUCESEOSAN CITY: At least three people were killed and more than 1,000 evacuated today after Process Integration Techniques South Korea was hit by torrential rains, officials said, with one region pummelled by the

Hottest? Or hotter?

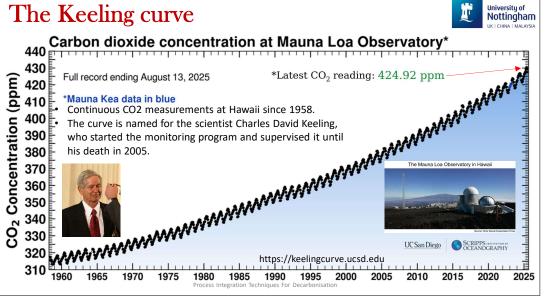


2024 on Course to Outpace 2023 as the Hottest Year Ever

As of May 31, over 100 daily global surface temperature records have been set in 2024.

Hottest days of the year on record

Store (CDS), ERA5 | Graphic: Shad Frigui


Process Integration Techniques For Decarbonisation

Sustainable planetary boundaries

Earth-system Process	Parameters	Proposed Boundary	Current Status	Pre-industrial Value
Climate Change	Atmospheric CO2 concentration (ppm by volume)	350	387 Stratospheric	280
Global freshwater use	Consumption of freshwater by humans (km³ per year)	4,000	2,600	415

(Rockstrom et al., 2009)

Paris agreement

Key points of the Paris Agreement

196 signatories, will take effect from 2020

Emissions

Parties aim to reach a global peak of greenhouse gas emissions as soon as possible, and achieve zero net emissions in the second half of the century.

Process Integration Techniques For Decarbonisation

\$100 bln

The agreement affirms the obligations of developed countries to maintain a \$100bln per year funding pledge from 2020, with the amount to be updated by 2025.

2018

Review mechanism

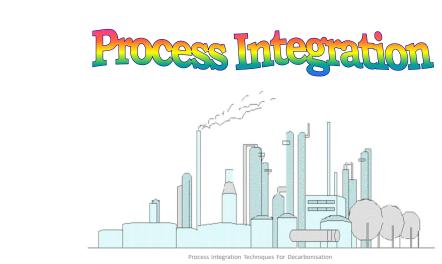
Financing

Parties are to make the first assessment of their efforts to cut emissions in 2018, with further reviews every five years. First world review is 2023.

Convright © 2017 CGTN CGTN

University of Nottingham

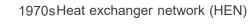
Other UN Climate Change Conferences



Nottingham

Process Integration Techniques For Decarbonisation

Decarbonisation wedges University of **Nottingham** CCS industry and ransformation 60 CCS power generation CO₂ emissions (Mt/y) Nuclear Renewables Power gen efficiency & nd-use fuel switching End-use electricity efficiency 20 End-use fuel efficiency CO₂ removal or regative emission echnologies 2010 2020 2030 2040 2050 Energy (TWh/y) Process Integration Techniques For Decarbonisation



Some milestones

University of Nottingham

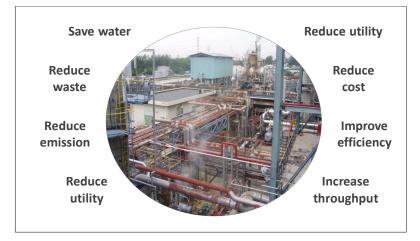
1994 Water minimisation (water pinch)

2002 Production supply chain

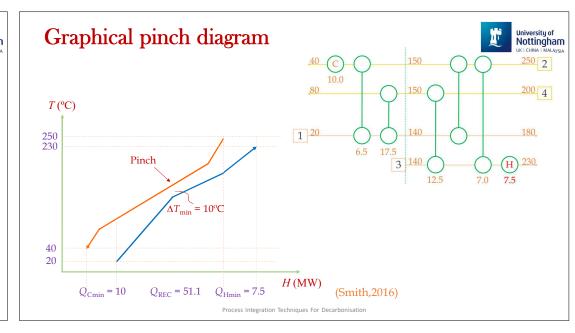
2002 Hydrogen network (H2 pinch)

2005 Property integration (property pinch)

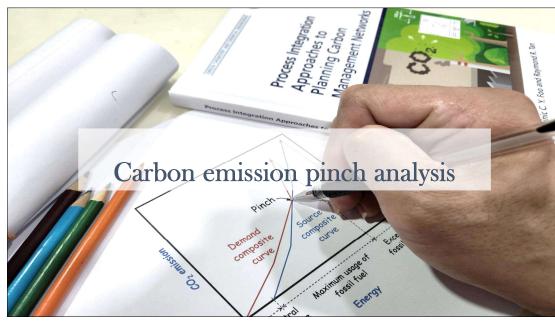
2007 Energy planning (carbon pinch)

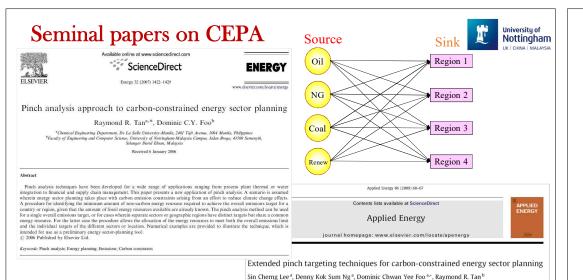


An established tool


Process Integration Techniques For Decarbonisation

The chemical industry




Chemical industry consumes ~28% of the industrial energy, where most of it is obtained from fossil resources (IEA, 2017).

Decarbonisation wedges **Nottingham** CCS industry and ransformation CCS power generation CO₂ emissions (Mt/y) **Nuclear** Renewables nd-use fuel switching End-use electricity efficiency End-use fuel efficience CO₂ removal or regative emission echnologies 2010 2020 2030 2040 2050 Energy (TWh/y) Process Integration Techniques For Decarbonisation

Process Integration Techniques For Decarbonisation

^a School of Chemical and Environmental Engineering, University of Nottingham Malaysia, Broga Road, 43500 Semenyih, Selangor, Malaysia ^b Chemical Engineering Department, De La Salie University, 2401 Taft Avenue, 1004 Manila, Philippines

Problem statement

- Given a set of **energy demands** (e.g. geographical regions or economic sectors), designated as DEMANDS = $\{j \mid j = 1, 2, ..., M\}$.
 - Each demand requires energy consumption of D_j and at the same time, restricted to a maximum emission limit of $E_{D,j}$.
 - Dividing the emission limit by the energy consumption yield the emission factor for each demand, $C_{\rm D,\,i}$.
- Given a set of **energy sources**, designated as SOURCES = $\{i \mid i = 1, 2, ..., N\}$, to be allocated to energy demands.
 - Each source (e.g. coal, oil, etc.) has an available energy of S_i and is characterized by a fixed emission factor, $C_{S,i}$.
 - Product of the available energy and the emission factor gives the total emission of the source $E_{S,i}$.
- The objective is to determine the **minimum CO₂-neutral and/or low-carbon energy sources** that fulfill the energy demand.

Decarbonisation wedges University of Nottingham CCS industry and ransformation CO₂ emissions (Mt/y) ower gen efficiency & nd-use fuel switching End-use electricity efficiency End-use fuel efficiency CO₂ removal or regative emission echnologies 0 2010 2020 2030 2040 2050 Energy (TWh/y) Process Integration Techniques For Decarbonisation

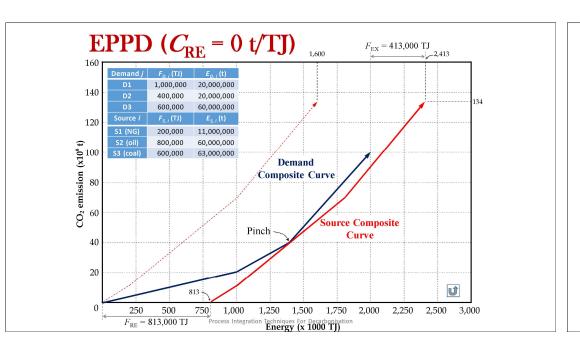
Energy planning pinch diagram (EPPD) University of Nottingham curve composite Maximum usage Excess of Maximum usage Excess of CO2-neutral low-carbon carbon-based energy source sources energy source sources **Energy quantity** Carbon neutral energy resource Low-carbon energy resource

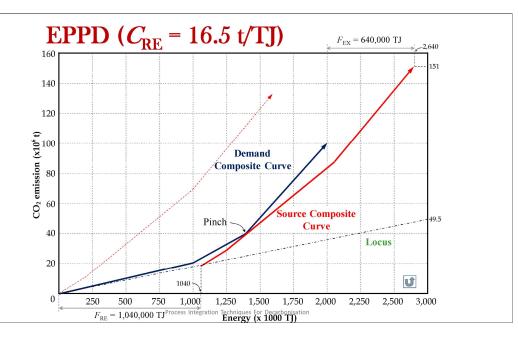
Case study - Philippines

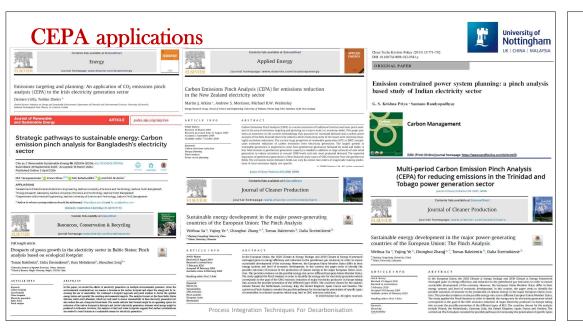
- Three types of fossil fuels are to be supplied to three different regions.
- Renewables may be used to supplement the fossil fuels.
- Task determine the minimum amount for the following renewables:
 - Carbon-neutral renewables ($C_{RE} = 0 \text{ t/TJ}$)
 - Low-carbon renewables, with intensity $C_{\rm RE}$ = 16.5 t/TJ

Case study (Tan & Foo, 2007)

(a) Energy demands


Demand <i>j</i>	Energy, <i>F_{D, j}</i> (TJ)	Carbon intensity, $C_{D,j}$ (t/TJ)	CO ₂ emission, E _{D, j}
D1	1,000,000	20	20,000,000
D2	400,000	50	20,000,000
D3	600,000	100	60,000,000


Process Integration Techniques For Decarbonisation


(b) Energy sources

Source i	Energy, F _{s, i} (TJ)	Carbon intensity, C _{s, i} (t/TJ)	CO_2 emission, $E_{S,i}$ (t)
S1 (NG)	200,000	55	11,000,000
S2 (oil)	800,000	75	60,000,000
S3 (coal)	600,000	105	63,000,000

Process Integration Techniques For Decarbonisation

Automated Targeting Model (ATM)

C _k	ΔC_k	$\Sigma_{j} F_{D, j}$	$\Sigma_{i} F_{S,i}$	F _{Net, k}	δ_{k}	$\boldsymbol{\varepsilon}_{k}$
					$\delta_0 = F_{RE}$	
C ₁		$\Sigma_{\rm j}{\sf F}_{{\sf D},{\sf j}}$	$\Sigma_{\rm i}{\sf F}_{{\sf S},{\sf i}}$	F _{Net, 1}	\downarrow	$\varepsilon_1 = 0$
	$\DeltaC_{\mathtt{1}}$				δ_1	\downarrow
C ₂		$\Sigma_{\rm j}{\sf F}_{{\sf D},{\rm j}}$	$\Sigma_{\rm i}{ m F}_{ m S,i}$	F _{Net, 2}	\downarrow	ϵ_2
:	ΔC_2	ŧ	i	ŧ	δ_2	÷
	ŧ	÷	÷	÷	÷	÷
	ŧ	:	:	:	1	:
C _{n-1}	ŧ	$\Sigma_{j} F_{D, j}$	$\Sigma_{\rm i}{\sf F}_{{\sf S},{\sf i}}$	F _{Net, 2}	ŧ	ε _{n-1}
	$\Delta C_{\text{n-1}}$				$\delta_{\text{n-1}} = F_{\text{EX}}$	\downarrow
C _n						ϵ_{n}
		Process Integr	ation Techniques Fo	r Docarbonication		

Constraints of ATM

- Follow **Steps i iii of the algebraic targeting** technique for the first 5 columns.
- Energy cascade across all carbon intensity levels:

$$\delta_k = \delta_{k-1} + F_{\text{Net},k} \ \forall k$$

(3.7)

• **Residual emission load** (ε_k) in the emission load cascade:

$$\varepsilon_k = \begin{cases} 0 & k = 1 \\ \varepsilon_{k-1} + \delta_{k-1} \Delta C_{k-1} & k \ge 2 \end{cases}$$

• Residual energy entering the first (δ_0) and leaving the last levels (δ_{n-1}) should take non-negative values:

$$\delta_{k-1} \ge 0 \ k = 1, n$$

(3.9)

• All residual loads must take non-negative values:

$$\varepsilon_k \ge 0 \ k \ge 2$$

(3.10)

Process Integration Techniques For Decarbonisation

Objective of ATM

University of Nottingham

• To minimize **renewable energy** (F_{RE}):

 $minimiseF_{RE}$

(3.11)

• To minimize **overall cost** for all renewable energy *h*:

 $minimiseF_{RE,h}C_{RE,h}$

(3.12)

where $F_{\text{RE}h}$ & $C_{\text{RE}h}$ are amount & unit cost of renewable energy.

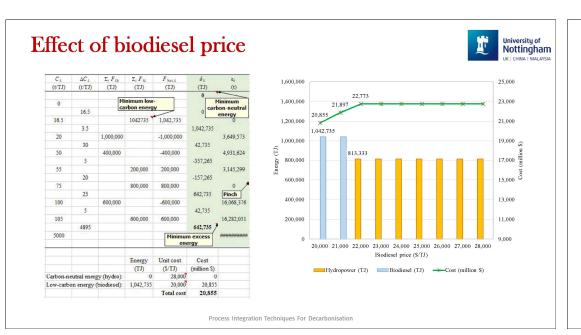
- Variables:
 - Amount of renewable energy $(F_{RE}; F_{REh})$
 - Residual energy at level $k(\delta_k)$
 - Residual load at level $k(\varepsilon_k)$
- Parameters:
 - Intensity level (C_k) ,
 - Energy demands (F_{D_i}) and sources (F_{S_i})
- ATM formulation is a *linear program* (LP) ensure global solution.

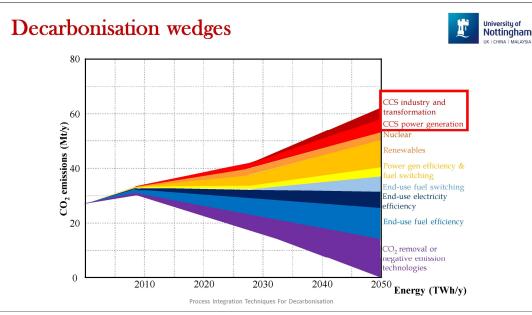
Process Integration Techniques For Decarbonisation

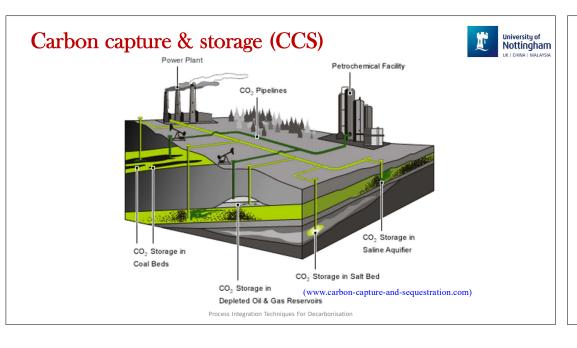
Case study (Tan & Foo, 2007)

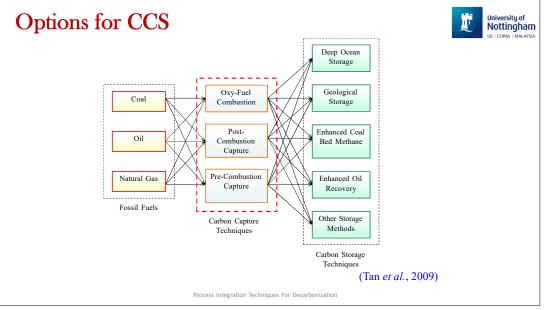
(a) Energy demands

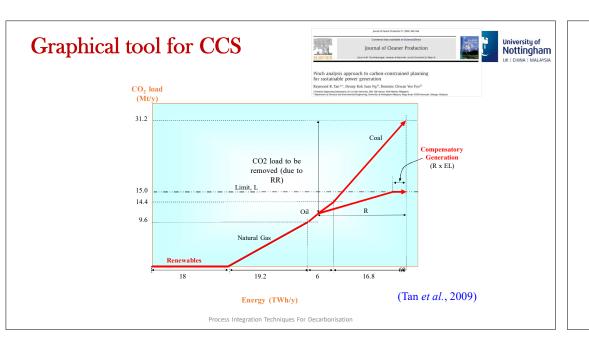
Demand j	Energy, $F_{D,j}$	Carbon intensity, $C_{D,j}$	CO_2 emission, $E_{D,j}$
	(TJ)	(t/TJ)	(t)
D1	1,000,000	20	20,000,000
D2	400,000	50	20,000,000
D3	600,000	100	60,000,000

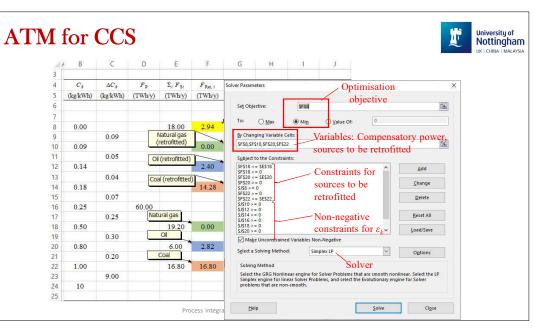

(b) Energy sources

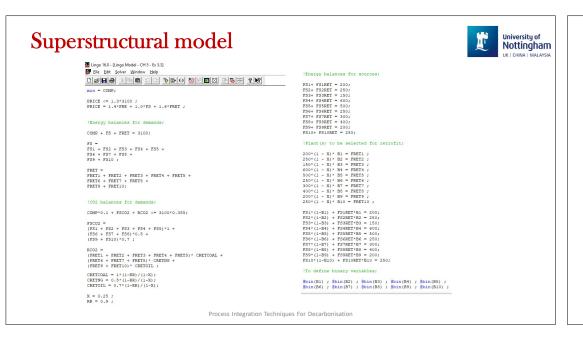

Source i	Energy, $F_{S,i}$	Carbon intensity, $C_{S,i}$	CO_2 emission, $E_{S,i}$
	(TJ)	(t/TJ)	(t)
S1 (NG)	200,000	55	11,000,000
S2 (oil)	800,000	75	60,000,000
S3 (coal)	600,000	105	63,000,000

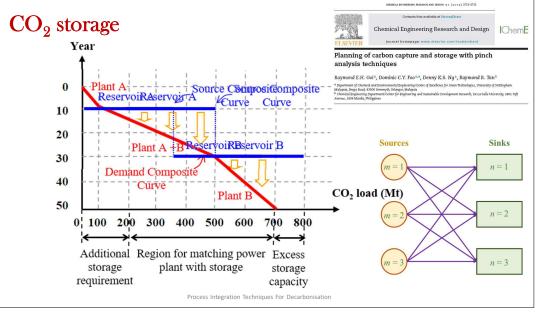

Process Integration Techniques For Decarbonisation

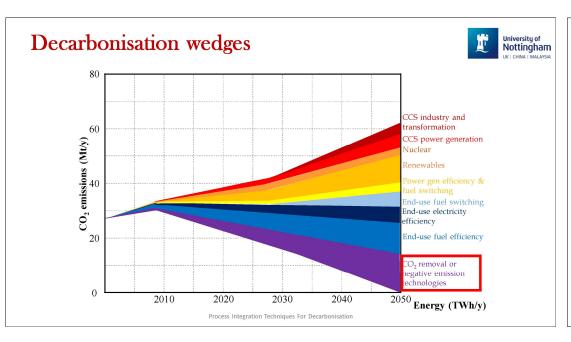

ATM with spreadsheet

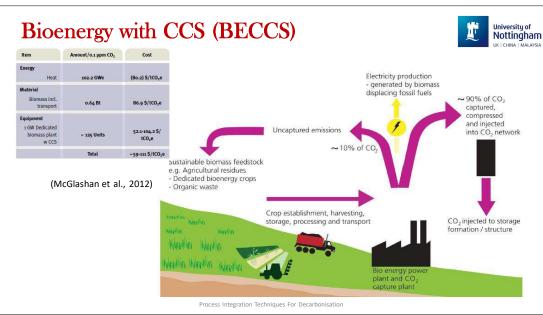


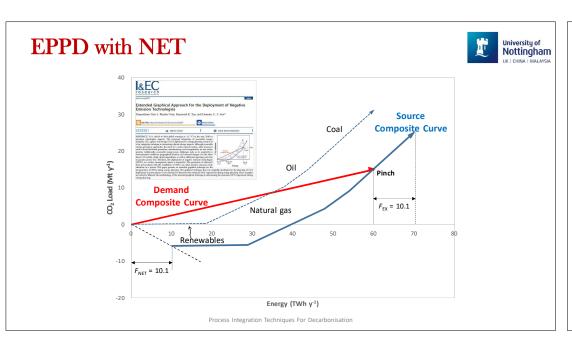


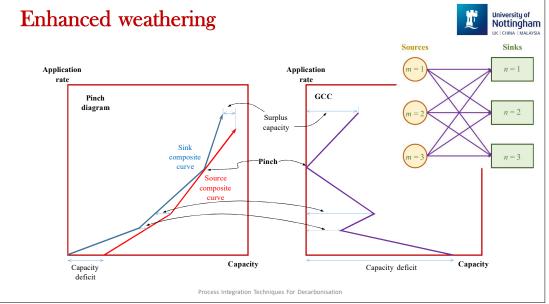


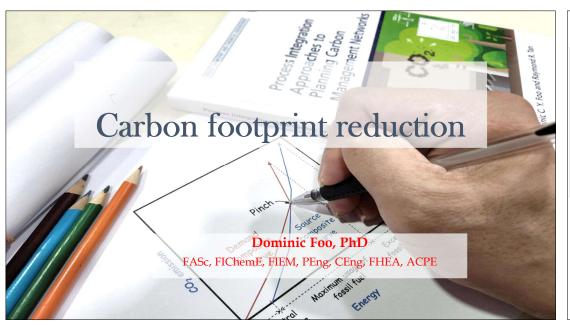


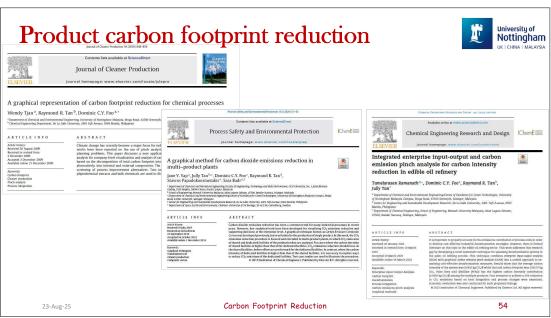


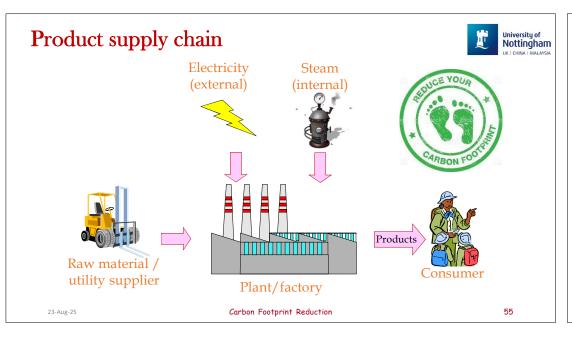


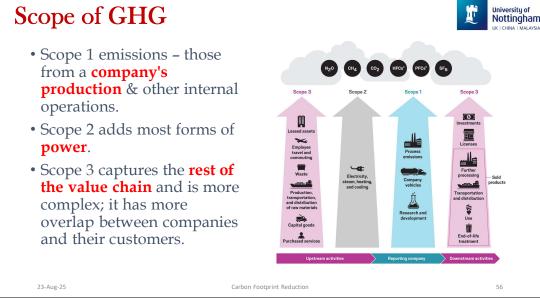


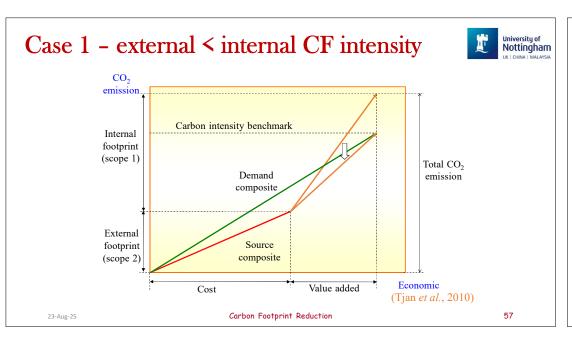


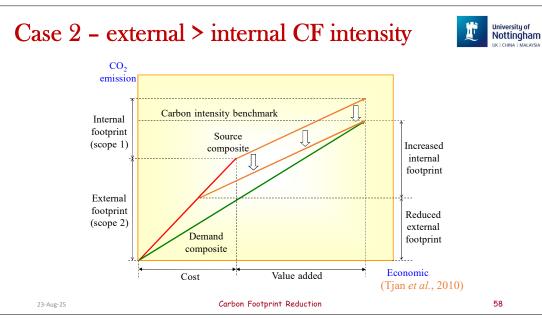


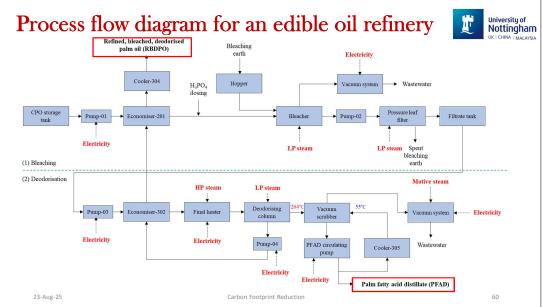


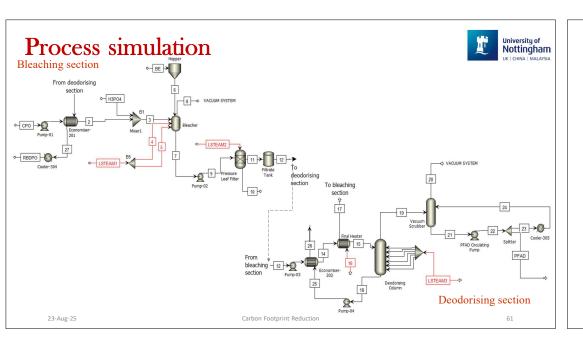


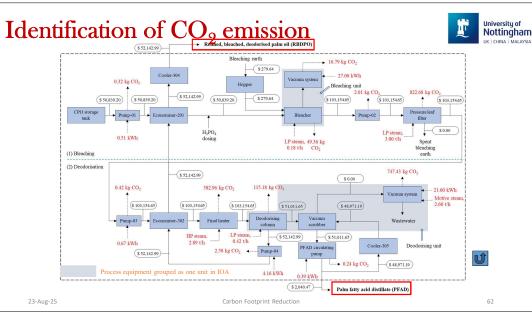


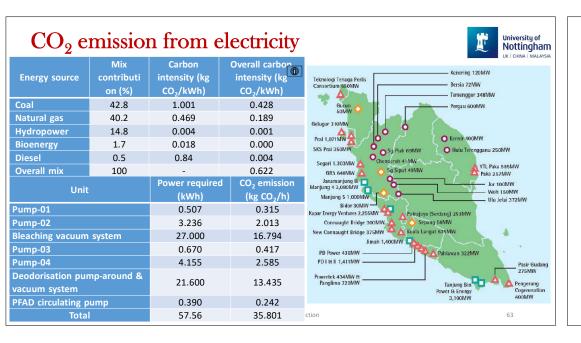










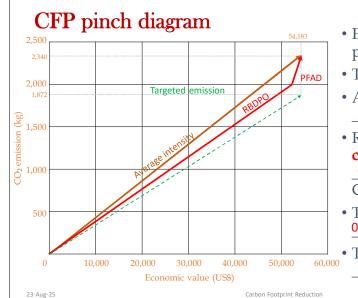


CO₂ emissions from steam

Steam type	Amount of steam (t/h)	CO ₂ emission (kg CO ₂ /h)
LP steam	180.00	49.361
LP steam	3000.00	822.680
HP steam	2892.00	582.955
LP steam	420.00	115.175
Motive steam	2604.00	733.993
	9096.00	2304.163
	LP steam LP steam HP steam LP steam	Steam type steam (t/h) LP steam 180.00 LP steam 3000.00 HP steam 2892.00 LP steam 420.00 Motive steam 2604.00

- intensity (kg CO₂/kg steam)
 - LP steam: 0.274
 - HP steam: 0.202
 - Motive steam: 0.282

23-Aug-25 Carbon Footprint Reduction 64


Economic values for products

Stream	Market value (\$/t)	Mass flow (t/h)	Economic Value (\$/h)	CO ₂ emission (kg)
СРО	847.32	60.0	50,839	
RBDPO product	916.90	56.9	52,143	1,992
PFAD output		73.1	51,012	
PFAD recycle	697.770	70.2	48,971	
PFAD product		2.92	2,040	348

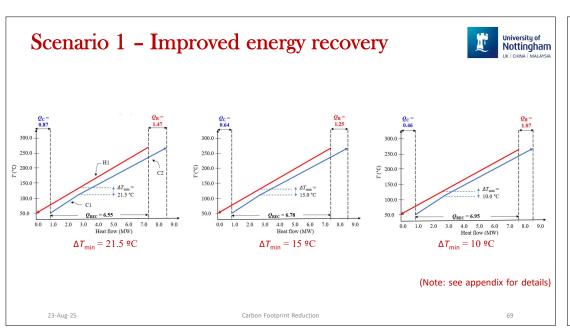
52,143 + 2,040 = \$ 54,183 /h Economic values of RBDPO and PFAD products =

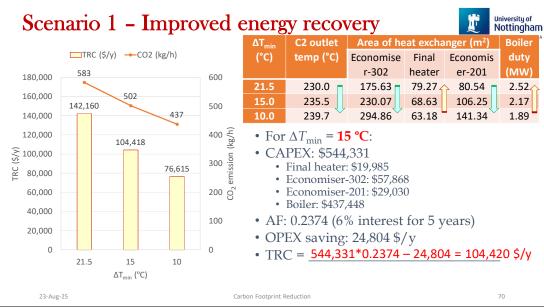
23-Aug-25 Carbon Footprint Reduction

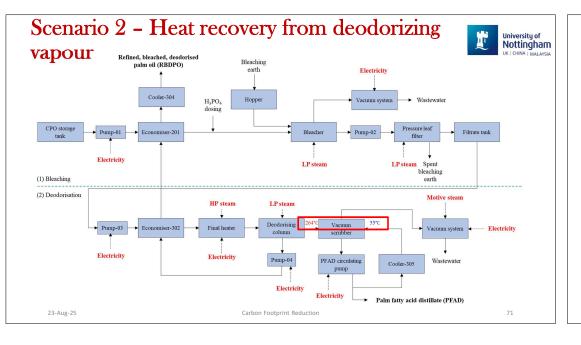
- Nottingham Economic values products: \$54,183/h.
- Total CFP: 2340 kg CO₂
- Average carbon intensity: 0.0432 kg CO₂/\$
- Reduction target: 20% of current carbon intensity: $0.0432 \times 0.8 = 0.0345 \text{ kg}$ $CO_2/\$$
- Targeted CO₂ emission: $0.0345 \times 54183 = 1872 \text{ kg/h}$.
- Targeted CO₂ reduction: 2340 - 1872 = 468

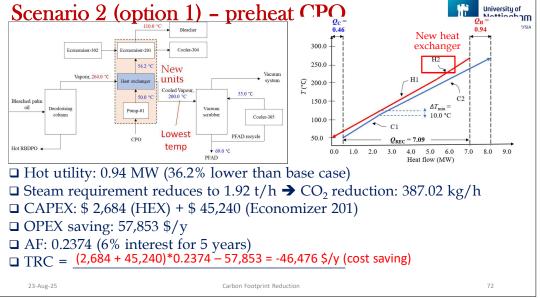
University of Nottingham

Scenarios for CFP reduction

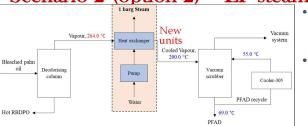

- Scenario 1 Improved energy recovery
- Scenario 2 Heat recovery from hot vapour of deodorising column
 - Option 1 preheat CPO
 - Option 2 LP steam generation
- Scenario 3 Implementation of biomass boilers
- Scenario 4 Co-firing of biomass with LNG




Hopper \$ 50,839.20 Cold stream 0.51 kWh (C1)Hot stream (H1) (1) Bleaching \$ 52,142.99 \$ 0.00 \$ 48,971.19 Cold stream 0.67 kWh 4 16 kWh \$ 2,040.47 → Palm fatty acid distillate (PFAD Process equipment grouped as one unit in IOA 23-Aug-25 Carbon Footprint Reduction


Scenario 1 - Improved energy recovery

23-Aug-25 Carbon Footprint Reduction



• 3.6 t/h of LP steam are needed for bleacher, deodorising column, & pressure leaf filter.

- Simulation results:
 - 1,281 kg/h of 1 barg steam can be generated.
 - Emission factors: 0.274 kg CO₂/kg steam
- ✓ Pump incurs 0.131 kW electricity → additional CO₂ emission = 0.131 kW × 0.622 kg CO₂/kWh = 0.08 kg/h CO₂.
- ✓ Net total CO₂ emissions reduction = avoidance from steam generation CO₂ from pump usage = $1281 \times 0.274 0.08 = 350.9 \text{ kg/h}$.
- □ CAPEX: \$ 14,928
- □ OPEX saving: 502,945 \$/y
- ☐ AF: 0.2374 (6% interest for 5 years)
- \Box TRC = ___14,928*0.2374 502,945 = -499,401 \$/y (cost saving)

23-Aug-25

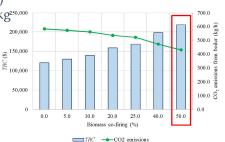
23-Aug-25

Carbon Footprint Reduction

72

Scenarios 3 & 4 - options with biomass Scenario 3 Scenario 4 Steam LNG boiler Steam Steam Carbon Footprint Reduction Scenario 4 Carbon Footprint Reduction Scenario 4 Carbon Footprint Reduction Talenta in Management of Northingham Red I college in Northingham Red

Scenario 3 - Implementation of biomass boilers


palm kernel shells

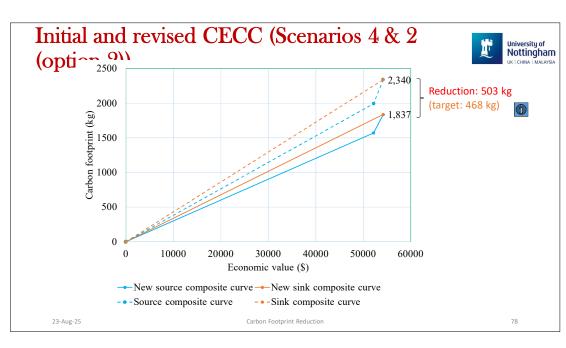
- Emissions from combustion of biomass is offset by CO₂ intake during photosynthesis → carbon-neutrality.
- Example: LNG boiler can be replaced with palm biomass (e.g. empty fruit bunches, palm kernel shells) complete removal of CO₂ emissions of 582.96 kg/h (24.9 % roluction).
- Issue with direct biomass-powered boiler:
 - High CAPEX (~\$ 1.26 M, i.e. 3x of liquified NG boiler
 - Ash adhesion on boiler surface
 - Large space requirement for biomass storage
 - Entangling issue of fibres in the boiler
- Possible solution: convert biomass into syngas via gasification as fuel source for the boiler.

Scenario 4 - Co-firing of biomass with LNG

- Advantage: reduce the CAPEX
- To calculate LHV of mixture: $LHV_{mix} = fLHV_{biomass} + (1 f)LHV_{LNG}$
- Example: co-combustion of 50% palm kernel shell (PKS) with LNG:
 - LHV: 15,594 kJ/kg (PKS); 44,200 kJ/kg (LNG)
 - LHV_{mix} = $0.5(15,594)+0.5(44,200) = \frac{29,900}{100} \text{ kJ/kg}^{250,000}$
- CAPEX calculation:
 - Biomass boiler: 997,451 \$
 - Gasifier: 493,229 \$
 - AF: 0.237 (6% interest for 5 years)
 - Annualised CAPEX: 236,791 \$/y
- Cost saving: 18,160 \$/y
- Total retrofit cost (TRC) =

23.6791 – 18.160 = 218.631 \$/v

23,6791 – 18,160 = 218,631 \$/y


Carbon Footprint Reduction

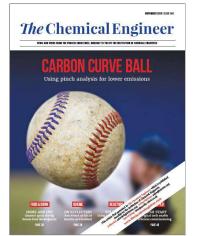
23-Aug-25

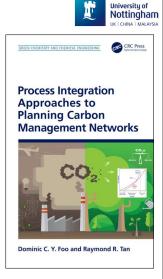
Carbon Footprint Reduction

76

Scenarios comparison University of Nottingham • Targeted CFP reduction: 468 kg/h 400,000 CO_2 300,000 229,447 500.0 218,628 • Scenario 3 achieves target (538 kg CO₂ reduction), however too costly. 200,000 104,418 100,000 400.0 cmissions • Proposal 1: combine Scenarios 4 & EC → 100,000 2 (option 2): • TRC: 218,628 - 499,401 = 280,773 (saving) 350.9 -46,475 300.0 8 -200,000 • CO_2 reduction: 152 + 350.9 = 502.9 kg 195. 200.0 .5 -300,000 • Proposal 2: combine Scenarios 3 & -400,000 2 (option 2): 100.0 • TRC. 229,447 – 499,401 = 269,954 (saving) -500,000 -499,401 • CO₂ reduction 583 + 350.9 = 933.9 -600,000 Scenario 1 Scenario 4 Scenario 2 Scenario 3 (Option 1)(Option 2) ■TRC ---Reduction in CO2 emissions 23-Aug-25 Carbon Footprint Reduction

Concluding Remarks


- There is a broad global consensus that climate change is a grave environmental issue
- Decision support tools based on PSE can help professionals to effectively plan various decarbonisation options.



Process Integration Techniques For Decarbonisation

Carbon Management Networks (Tan & Foo, 2007. Energy 82: 1422)

