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) Role of Industry to achieve ‘Net-Zero’ targets
y g

Industry play a critical role — | Natural gas

Steel

Cement

= 40%

Global energy consumption

Aluminium

>30% of Ammonia
global GHG
emissions /

Transport

>30%

Global greenhouse gas emissions

Production-related emissions by sector
(Scope 1 and 2)

Source: IEA and World Economic Forum 2022
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Challenges =3

N1
INDUSTRY

Progress 1n these sectors has been Imited to date.

* High heat demand

* Temperature barrier
Non-renewables 72 %
Renewables 28 % Low temperature heat ( below 100 °C)
Media: Hot water
Industry: Food and others
——————————————————— 14 %
Coal
45 % Medium temperature heat ( 100 - 500 °C)
Media: Steam
Industry: Paper, food and chemical
EU27 + UK Process High temperature heat ( 500 -1000 °C)
energy demand heat Media: Fired heat (industrial furnaces)
Natural gas Industry: Steal, cement, glass and other
29 %
Oil
o il e LI Very high temperature heat ( above 1000 °C)
Cooling Renewables 10 % Media: Fired heat (industrial furnaces)
3% Industry: Steal, cement, glass and other
Others 1 %
Sources:

Fraunhofer Institute (2016) Mapping and analyses of the current and future (2020 - 2030) heating/cooling fuel deployment (fossil/renewables)
. Naegler ef al (2015) Quantification.of the Europgan industrial heat demand by branch and temperature level. Int. J. Energy Res.
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Utility system is often the largest energy consumer on process sites

Flue
. Steam Turbine . S Gas
Utility L"v" . h Press . - POWER
Boilers ery High Pressure (VHP) Steam Power
= Station

- FLH
Flue [
Fuel I Gias %
Fuel » J
Al Y @ POWER
ir
Gas D Condenser

| Torbine POWER ¥ ¥ High Pressure (HP) "
I 1
| i | v | | Medium Pressure (MP) |
: T | I 1 I | Low Pressure (LP) ]|
I 1

5 e

Fuel | PROCESS A PROCESS B PROCESS C Tower
[ T
, L |
) Cooling Water
To improve the performance of such systems ... we need to model and optimize the model
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D Current Industrial Energy Systems

Boiler house

SE&

Electricity grld

Fossil fuel based

power plant
Steam system
g all A
carbon Economics
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D Future Industrial Energy Systems

Completely different

71N system configuration and
_ %% ] Boiler house operation
wind
a% A=
hydrogen -C-@- _4 \
W?O electrlcal enprgy storage
=N s (N
biomass

Go. o, Go N

Renewable based power plants
SSG g 9 9
% _ Steam system
O@I : 000 solar PV

\\_//
('):-

-
-
L4

LR

== H— :000,
hydrogen <1000 0 J

-O:
Unit A S Unit C
fle 5 @mﬁ éﬁ il N

thermal energy storage
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|
Electricity
B1 B2 53 HRSG 1 HRSG 2 ¢< grid
VHP main :
:
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| 1 |
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Anaerobic s , ...................................................

QO

Biomass
D|rect_ ; - Gasification
combustion digestion
Woodchips Wood:pellets Biogas Syngas Naturafgas

D-G$0On "' Wind/ SPV

R farms

EB1 _EB2 ' Electricity
BBl | BB2 B1 B2 B3 HRSG 1 HRSG 2 : ; ¢< o

VHP.main [I]II]S 1”" ”SI IH”l”" i

1

:

: ! i

Process Ay Y I By R Y e e e e e e |

HP main ]|

Process _l MP main |—> Process
rrocess l LP main Process
@ @ Process
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Thermal Energy Storage

000000 Lol

VVoodcmp VVoodpeHeF ngas Syngas Nannaigas E Fuelgas

e m e e

Yasummnnnnay ) 2 R 1
v i i v oo SFYL :
K AK w‘ :
: Electricit
BB1 BB2 B1 HRSG 2 EB1 :"JEBZ -er‘-* grid ’
. L e 7
VHP.main SH1 SH1 !
- Molten Salt system |
Process |y L b e e :
HP main
|
Process
Process _l MP mgin Vs
U3y 3yv/
Process _l LP main — Process
L e
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Steam Accumulators
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Flectrical Energy Storage
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Type

Gas boilers

Packaged boilers

Field-erected boilers

Biomass boilers

Stoker boilers

Fluidized bed boilers

Electric superheater

Size & Load
20 t/h 100 t/h

Ny

LTI

Efficiency [-]

Energy Decarbonisation challenges

MANCH IP\N)LER
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Part-load efficiency

1.00
1
1
0.96 |
1
—— Electrode boiler ]
092 Field-erected boiler '
—— Packaged boiler !
1
0.88 ——Fluidized bed boiler 1
— Stoker boiler :
0.84 |
1
1
1
0.80 —
1
1
0.76 1
1
—_—
0.72 !
1
[r———
068 L
0.0 01 02 03 0.4 05 0.6 0.7 08 09
Operation Load [-]
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Heat recovery steam generators Steam turbines Gas turbines

Q O O _____ > Blogas Synsgas Natural gas

Blogas Syngas NaturaE gas
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Supplementary firing? i Back pressure D_Q@:@
1 _———
.............. Yo T
Gas exhausts Aero derivative

HRSG ¢@ _____ . S
-
@ DGO

] Industrial
Condensing
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Energy demand variation

1.60

- Plant A
2 1.20
£ 0.80
£ 0.40
£0.00
0 100 200 300
Time [d]
1.60
= Plant B
£ 1.20
£ 0.80
£ 0.40
2 0.00
0 100 200 300
Time [d]
1.60
= Plant C
£ 1.20
£ 0.80
2 0.40
E
£ 0.00
Ay

0 100 200 300
Time [d]
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Energy supply/price variation

[MWHh]
[MWHh]

Jan Mar May Jul Sep Nov

L

aat

[MWHh]
[MWHh]

Jan Mar May Jul Sep Nov

e

3.5 . . . .
‘ ‘ ‘ | ‘ | | I I 80 Electricity price fluctuation
I -~ 3

Jan Mar May Jul Sep Nov

0 1000 2000 3000 4000 5000 6000 7000 8000
Time [h]

—_

Electricity price fluctuation [-]

o
S

(=]

Jan Mar May Jul Sep Nov
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Environmental factor

Heat Power Heat Power
100 % 65% 100 %
Gas .
Local power turbine Gas boiler
eneration .
Nat;gal - g P———
i ; Electricity
gtSea/r(; import
turbines
Fuel 10 %
gas Gas boiler
e
O O ————————— 1 Fuel gas
S S r GT O

Electricity

1
: 1
. g > : gliid
() ] ' () =
VHP main FFB 1 HRSG = VHP main FFB 1

S0 - -FT ! = ’
_HP main HP main |
MP main Letdonn MP main — N
Lpmain =] L main R A=

] I I
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There is no silver bullet

Depends on several aspects:

* Technologies/sources available

e Varnabilty of the energy demand and supply across the time
e  Site thermal and power demand

e Utility prices (Power tariffs)

e  Sources environmental factor

Restricted/ Prohibited use and/or distribution of this material
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)  Challenges of Industrial Decarbonisation
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Previously, the design was based on Economics of the site.

BUT... Raw material T
extraction s

Other aspects as environmental impact are also important.

Construction

Life Cycle and
Assessment installation
+ Most economical design (LCA)
. .. End oflife
- High amount of emissions

500

(.'jnln TAC & System
1 T

» operation

400 ~

300 1 LCA 1s an essential tool to understand the true

CQOy abatement provided.

200

+ Carbon|emissions free

100 - High ecanomical impact j I

to analyse the trade-off between
environmental and techno-
economics aspects.

Global Warming Potential {CO2 emissions)

7 & min CO2
\.-m

T
50 55 60 65 70 75
Total annualized cost (M%)
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@ How to successfully integrate environmental

objectives?

Weather data

Utilities prices
(Utilities contracts)

Environmental factor of
resources/technologies

Emissions regulations

160
1.20
0.80
£ 040
£ 000

profile [-]

roduction

: 0 50 100 150 200 250 300 350
Time [d]

System energy requirement
Measurements

P

ik Design SES DeSIgﬂ tOOI

F 4
" (Multi-objective optimization)

Equipment calculations

MANCH ]l STER

The University of Manchester

Optimal energy system
design and configuration

Optimal energy system
operation report

Energy production and
use planning

Energy and emissions

Energy/Utilities system
(Degrees of freedom for energy generation)

Hydrogen  Water Fuels Renewables Steam

® OO

- Technologies/Resources availability

kTechnologies efficiency-performance and costs

Electricity

\ report

J
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APPROACH
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Methodology

X Output
- Pareto front
.0:0. - Utlty system configuration
°® - Uttty system operation

‘ Optimization
[ ]

Superstructure creation
p
(]
°o® Data classification
Y [ )

{ )
Inputs oo
p X ®0e% 1/ Data clustering

Stream data
Production profiles
Power demand
Market prices
Technology data
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Methodology
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Multi-period approach

>
>
o
>

Design days/periods

=
= ~< =
E E
E x :,, Design period | Design period 2 Design period 3
= =
= —
2 E inter-design
s @ periods
7] =
B 5]
: =
B i
W
E £
@ 3
5 &
= &
[ + - - - - o=t e ‘ . : .
b tn Time horizon ‘ oo o ' . .
ta tz2ts ity tg .. Time horizon

various scenarios to represent
different operating conditions

{ )
In °®
puts L .0 7/ Data clustering

- Stream data

- Production profiles

- Power demand

- Market prices

- Technology data
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Methodology

ProcessC ™" Process D=
- } ""E . — Supplementary
wo - ource Frohile :
X T T(g!:ﬂ Site Profile heating
300.00

Steam
system

200.00

150.00;

remperm‘ure IC1

-60.00 -40.00 -20.00 0.00 20.00 40.00 60.00 80.00
Load [MW)]

)
Inputs XX X)

- Stream data

- Production profiles
- Power demand

- Market prices

- Technology data
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°o® Data classification
Y [ )
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I Period n
I Period 3

Period 2

Period 1

NET 2 gl

BBl | BB2 | FFBI | FFB2 | FFB3 HRSG 1 HRSG 2 ;

VHP main i M
| Electricity
! grid
- - 1
1 I I
. 1 1 |
S |
Q : HP main
>
; P i — =
" R ts
system
e

%
Inputs eoo0o0
°

- Production profiles
- Energy demand

- Market prices

- Technology data
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Energy balance terms Equipment performance Steam properties

(bilinear) (bilinear) (convex nonlinear)

Iteration 1

.- Iteration 1 ST

Iteration2 | AR . LIV
v Iteration 2

Modelling and optimization

Superstructure creation
[ ]

°o® Data classification
[ )
o
1/ Data clustering

MILP linearization LP linearization Assuming pressure as a parameter
Error up to 2%%*
*Pp_ . :0.1-120 bar

g
Tonge” Tsat-570°C

Gounaris et al. (2009) McCormick (1976)

COSFS and emissions |:> Piecewise affine approximations
(nonlinear)

%
Inputs eoo0o0
°

- Stream data

- Production profiles
- Power demand

- Market prices

- Technology data
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Global Warming Potential (CO2 emissions)

500

8
=)

<]
S

200 4

100 4

MEthOd()logy MANCHESTER

The University of Manchester

X Output

- Pareto front

.min TAC

0%°% - Utility system configuration

[ ] .- .
- Uttty system operation

‘ Modelling and optimization
[ ]

50
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Y min CO2 . .
. . . . . Superstructure creation
55 60 65 70 75
Total annualized cost (M$) .
°o® Data classification
o ®

{ )
Inputs .0
p X ®0e% 1/ Data clustering

- Stream data

- Production profiles
- Power demand

- Market prices

- Technology data
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=

* Resources &Technologyclbility

e Economic constraints g

¥ e Design & Operational optimization
* Sustainability constraints
=S -
, » _ = — * Time variability
* Constraints on utility options &

-—
-

To develop road maps to evolve o
existing systems to future systems 1n a - =
sustainable basis

e Environmental constraints

~
_ 9 Cost-effective Energy System

Reduce energy demand & maximise flexibility

Total site Energy Integration optimization

Current Energy System > Operational optimization

=
=

—
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D Case Study

The University of Manchester

Background
* Design of the utility system for a medium-size complex site
* Analysis of the of various

technology/source alternatives

Objective

* Reduce environmental impact by
at minimum costs
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Current utility system: Energy strategy:
Fuelgas  Naturalgas I : Heat Power
O O S4o------- ] 25 - 35%
'e”'i ...... ¥enin: GT E 40 - 45 % Gas turbine
...... g i Ngtural Local pqwer
I_jr' gas ® generation
VHP main FFB 1 HRSG 1?

50 - 55 %

=T - — B 50-55 %

-15%
HP main Gas boiler Imported Ssteam?urbines
MP main I ; Fuel electricity
-LP main gas
7
Explored options:
Operational optimization CCs Renewables Heat electrification Biomass and waste
VN P—_— V=N N
" saE L
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Energy strategy: A
Heat Power C02

65% Grid

100 %
Gas

Local power turbine

Operational optimization Natural generation
— gas
35%
Steam
turbines
Fuel 10 %
gas Gas boiler
CAPEX [m$/year] O&M [m$/year] Total costs [m$/year] Emissions [ktCOy/year]
m Fuel m Electricity m Maintenance CAPEX mO&M m Scope 1 mScope 2
63%
i - -14%
_ -23%
-309%
I l 8% L7oe
Base Case "Gray" grid Base Case "Gray" grid Base Case "Gray" grid Base Case "Gray" grid
Optimal desigﬁ Optimal desigﬁ Optimal desigﬁ Optimal desigﬁ
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Energy strategy: A Energy strategy: C-O [
2
Heat Power COz Heat Power v
0 Grid - 200 .
100 % 65% 100 % 10 I20/0 _ Grid
Gas Gas boiler Local generation
Local power turbine
Operational optimization eneration
: Natural g 80 - 90%
gas 0 c
Electricity
35% .
Steam lmport
turbines
Fuel  [IHO7V Fuel
gas Gas boiler gas
CAPEX [m$/year] O&M [m$/year] Total costs [m$/year] Emissions [ktCOy/year]
m Fuel m Electricity m Maintenance CAPEX mO&M m Scope 1 mScope 2
63%
i -149%
- -23%
-30%
I l 8% L7oe
Base Case "Gray" grid Base Case "Gray" grid Base Case "Gray" grid Base Case "Gray" grid
Optimal desigﬁ Optimal desigﬁ Optimal desigﬁ Optimal desigﬁ
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Power

90 - 95 %

Electrode

boilers

electricity

Fuel 5-10%

gas Gas woiler + CC

MANCHE STER
= ) 4
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Li-ion
battery

60 - 70%
Wind
turbines

30 - 35%
SPV

CAPEX [m$/year] O&M [m$/year] Total costs [m$/year] Emissions [ktCO,/year]
m Fuel m Electricity  m Maintenance CAPEX = O&M m Scope 1 m Scope 2
17009%
65%
309% :
o -15%
95% -
65% -95%
-99%
sesees N — 17%
Configuration Low-carbon Conlfiguration Low-carbon Configuration Low-carbon Configuration  Low-carbon
technology technology technology technology
Base Case Optimal design Base Case Optimal design Base Case Optimal design Base Case Optimal design

We know our goal, but how we achieve it?
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Heat Power
- 25 - 35%
40 . 45 A’ Gas turbine
Local power
_Natural o generation

100% @~ = =- > gas

50-55% [50-55% M~
Gas boiler Imported
electricity

90%
gas
Current utility system
80%
70% Energy strategy:
Heat Power
1%}
c 75-85% 95 o
% 60% Electrode A)
2 boilers Local
£ electricity
o 3 Investing in local low carbon energy generation
@, 50% reduces electricity import and fuel costs
S
= Gas boiler + E 5-10%
2 0% eI nergy s:ﬁltegy. bower
c < PP
< S Re-structure maintaining SO o
s the overall costs Eoctade * 1100 %
30% /-/ : boilers Local
, electricity
, Achieving the last 10% of decarbonization is the most
. , challenging and expensive part.
20% ./~ Fuel 0-10%
R4 To eliminate the dependency on fossil fuel technology and reduce gas Gas boiler +CC
R4 emissions due to imported electricity, significant capital investment is ope
10% & required in wind energy and energy storage Future net'ZerO‘utlllty system
_________________ 1
ARk E EE * ;
oy T » 'S b
100% 110% 120% 130% 140% 150% 160% 170%

Total annualized costs
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(> Conclusions

» Energy efficiency plays a key role in industrial energy transition, but further

paradigm change in the way the systems are design and operated is
required.

» There is NO “one solution fits all”. Optimal design will depend on several

factors, as location, energy carbon intensity, energy price fluctuations,
sources & technology availability.

» The strategy for developing the road map to industrial net-zero energy
systems requires the use of decision support tools to identify the most
cost-effective design that meets sustainability goals.

MANCHESTER
1824

The University of Manchester

=
=
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