

Towards the optimal design and operation of Aggregated Energy Systems

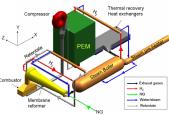
Prof. Emanuele Martelli Politecnico di Milano, Department of Energy

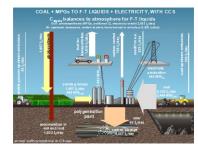
September 9th 2021 Carnegie Mellon University 1

THE DEPARTMENT OF ENERGY @ POLITECNICO, DIVISIONS & OUR GROUP

The Department of Energy at Politecnico joins researchers originally belonging to 5 divisions. It has ~130 permanent researchers and professors

- 1. Chemical Technologies and Processes and NanoTechnologies Division
- 2. Electrical Division
- 3. Nuclear Engineering Division
- 4. Thermal Engineering & Environmental Technologies Division
- 5. Fluid Dynamic Machines, Propulsion & Energy Systems Division
 - Fluid-dynamics of turbomachines
 - Internal combustion engines
 - Propulsion and combustion
 - Group of Energy COnversion Systems (GECOS):





- 1. CARBON CAPTURE TECHNOLOGIES
- 2. RENEWABLE ENERGY SOURCES AND WASTE-TO-ENERGY
- 3. ENERGY STORAGE, HYDROGEN AND FUEL CELLS
- 4. ORC, S-CO2 AND ADVANCED POWER CYCLES
- 5. MICRO-GRIDS AND MULTI-ENERGY SYSTEMS
- 6. SYSTEM MODELLING AND OPTIMIZATION
 - a) **Process optimization**
 - b) Heat integration and heat recovery cycles
 - c) Aggregated Energy Systems:

Virtual Power Plants Multi-Energy Systems Energy Districts Microgrids

VIRTUAL POWER PLANTS

A **virtual power plant** (**VPP**) is a cloud-based power plant that aggregates several energy systems with different primary energy sources and different features as well as energy storage systems.

On the electricity market it is seen as a single (aggregated) power plant. Its primary purpose is to generate and sell electricity and services to the electric grid.

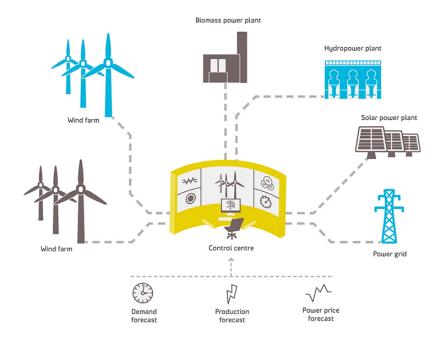
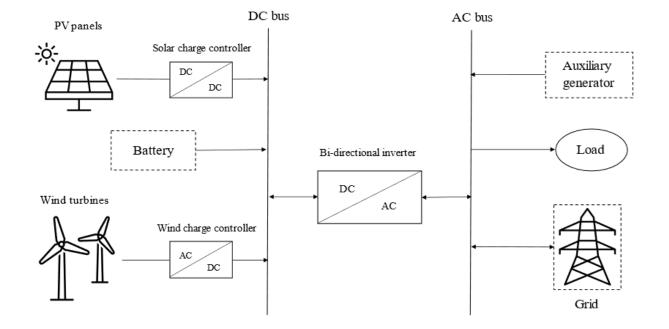


Figure Source: https://www.solarpowerw orldonline.com/

VIRTUAL POWER PLANTS

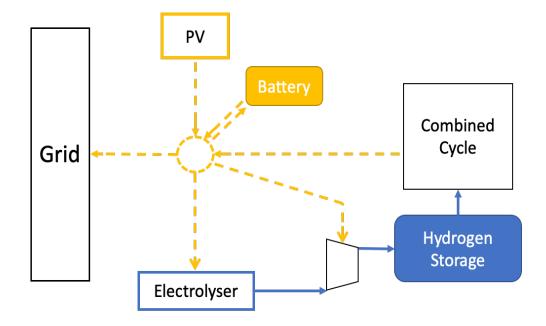
Advantages of VPPs compared to stand-alone units:


(The centralized control system allows to:)

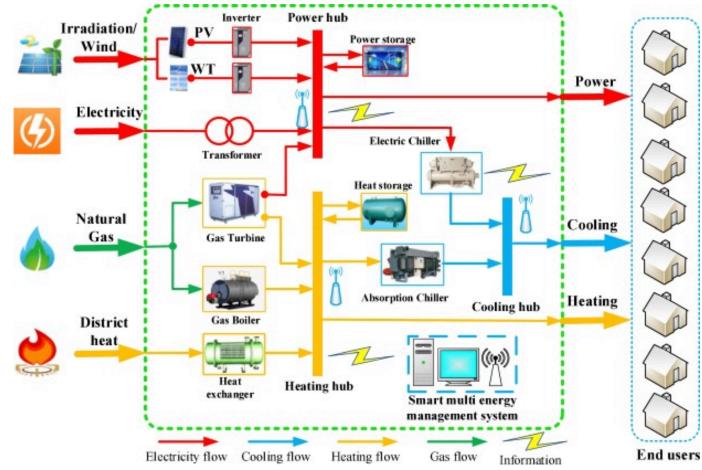
- exploiting the synergies between the different energy technologies/storages to maximize the part-load efficiency (i.e., using more efficient units for each load, compensate solar with wind, etc).
- Adjusting loads and storage management to decrease fluctuations of power supplied to the electric grid (compared to stand-alone solar/wind plants) and participate to the day-ahead market (advantage for the control of the grid)
- Higher operational flexibility in increasing/decreasing the load on short notice (via the optimized management of storage systems, and/or use of quick-start units like GTs or dispatchable loads for demand side management sites).
- Providing ancillary services to the electric grid (frequency regulation, load balancing/following, spinning and non-spinning reserve in case of failure)

Disadvantages:

- the complexity requires advanced optimization techniques for the design and operational planning (unit commitment + economic dispatch) + control.



VPP EXAMPLES


- GT + Battery («peaker»)
- NGCC + Battery (faster ramping)
- NGCC + PV + Battery
- NGCC + PV + Electrolyzer + H2 storage + H2 export

MULTI-ENERGY SYSTEMS

- Multiple primary energy sources
- Multiple energy vectors as output (e.g., electricity, heating, cooling, hydrogen)

https://www.sciencedirect.com/science/article/abs/pii/S0360544218312635

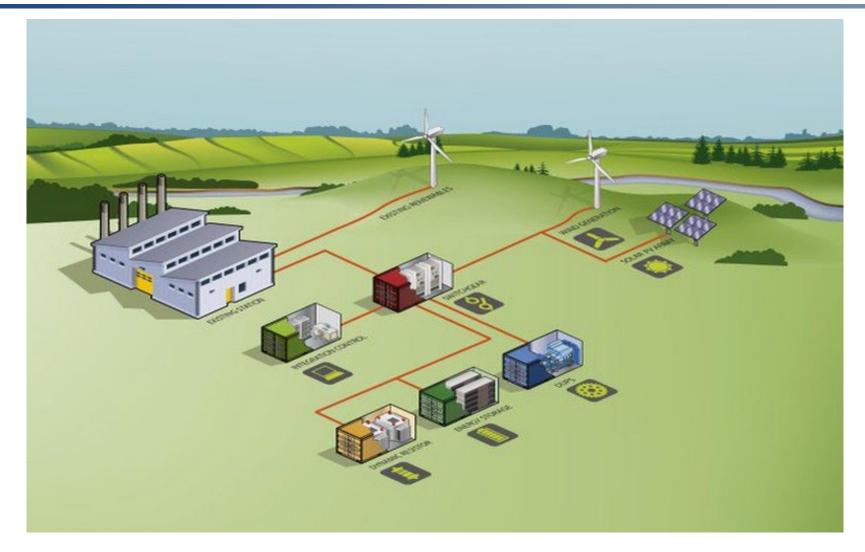
MULTI-ENERGY SYSTEMS

Advantages of MES compared to stand-alone units:

- exploiting the synergies between the different energy technologies/storages to maximize the part-load efficiency (i.e., using more efficient units for each load)
- Storing energy (heat/electricity) to increase the share of intermittent renewables sources while preserving good reliability
- Using cheapest primary energy source depending on the hourly profiles and renewable production
- Optimizing management of storage systems to operate CHP units (specially 1 d.o.f. units, see later) with high efficiency and/or lower costs of power exchanges with grid.
- Sizing the units not for the peak demand thanks to the possibility of exploiting the aid of energy storage systems to meet the peak demand.
- Using high efficiency technologies (e.g., high temp. fuel cells) with limited operational flexibility (start-up, shut-down times/costs)

Disadvantages:

The complexity requires advanced optimization techniques for the design and operational planning (unit commitment + economic dispatch) + control.

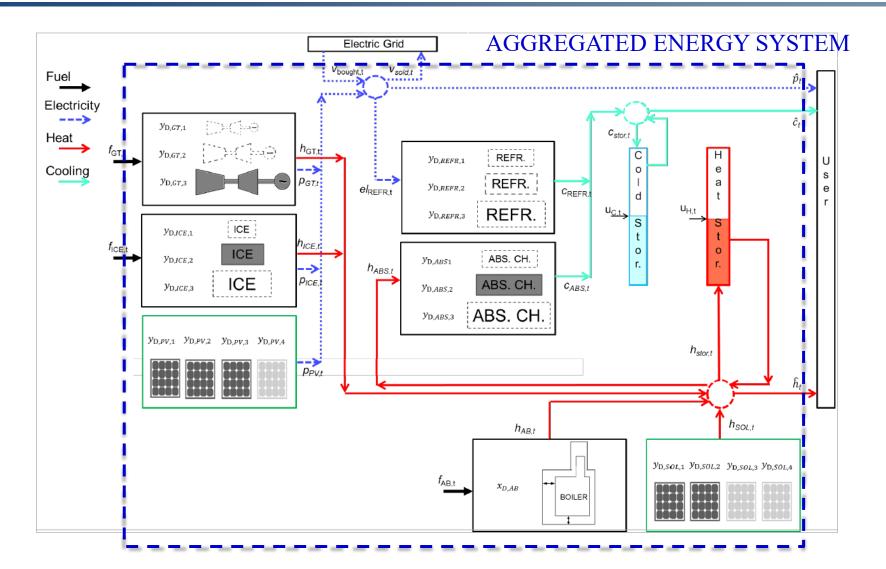

MICROGRIDS FOR ISLANDS AND REMOTE/RURAL SITES 10

https://share.america.gov/alcatraz-one-of-the-largest-microgrids-in-u-s/

MICROGRIDS FOR ISLANDS AND REMOTE/RURAL SITES 11

https://renewablesnow.com/news/frances-eps-provides-storage-for-flinders-island-microgrid-558389/

OLITECNICO MILANO 1863


OPTIMIZATION OF AGGREGATED ENERGY SYSTEMS (MES, VPP, PED, ETC) 12

Types of optimization problems associated to aggregated energy systems:

- 1. Design/retrofit of the system («investment planning»)
- 2. Long-term operation planning accounting for yearly constraints (incentives, yearly limits on emissions, and/or seasonal storage systems)
- 3. 24h-ahead scheduling (unit commitment)
- 4. Intraday dispatch optimization (e.g., 15 min basis)
- 5. Optimal control (e.g., < 1 min basis)

OPTIMIZATION OF AGGREGATED ENERGY SYSTEMS

13

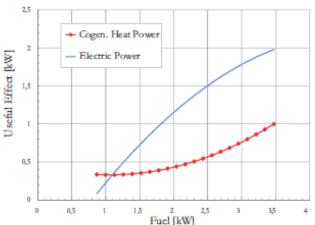
<u>Given:</u>

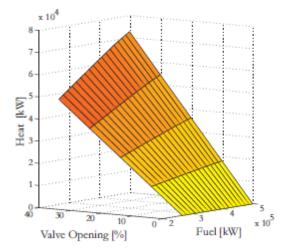
- → Forecast of Electricity demand profile
- → Forecast of heating and cooling demand profile
- → Forecast of production from renewables
- → Forecast of time-dependent price of electricity (sold and purchased)
- Performance maps of the installed units
- → Operational limitations (start-up rate, ramp-up, etc) of units
- → Efficiency and Maximum capacity of storage systems

Objective: minimize the Daily/Weekly Operating Cost

 $\sum_{t=1}^{24\cdot7} C_{\text{Fuel,tot,t}} + \sum_{t=1}^{24\cdot7} C_{0\&M,tot,t} + \sum_{t=1}^{24\cdot7} C_{start-up,tot,t} \ \mp \sum_{t=1}^{24\cdot7} El_{tot,t}$

Indep. variables: on/off of units, load of units, storage level in each time period *t*

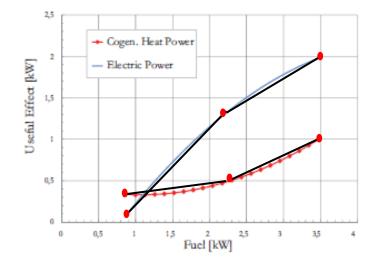

Assumption: All thermal generators are connected in parallel and provide hot water / steam at similar temperatures Assumption: All thermal generators are connected in parallel and provide hot water / steam at similar temperatures


Constraints:

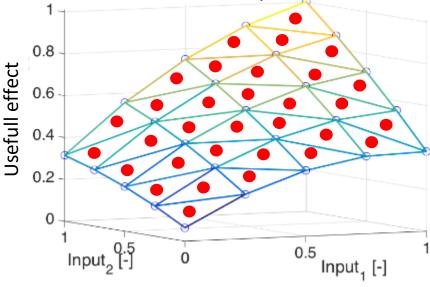
- → Electric energy balance constraint \forall *t* (linear)
- → Heating energy balance constraint $\forall t$ (linear)
- → Cooling energy balance constraint \forall *t* (linear)
- → Start-up constraints $\forall t$, \forall unit (linear)
- → Ramp-up constraints $\forall t$, \forall unit (linear)
- → Performance maps of units $\forall t, \forall$ unit *i* (nonconvex)

Nonconvex MINLP Available MINLP optimizers cannot find the optimal solution for problems with more than 2-3 units

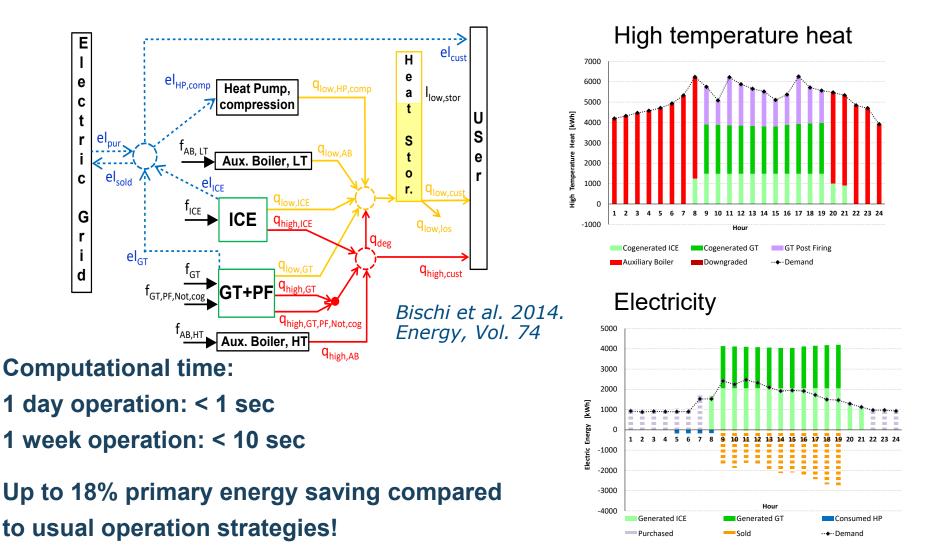
Amaldi et al., 2017. *Short-term planning of cogeneration energy systems via MINLP,* in SIAM book: "Advances and Trends in Optimization with Engineering Applications".



Basic idea: conversion into MILP via linearization of the performance maps

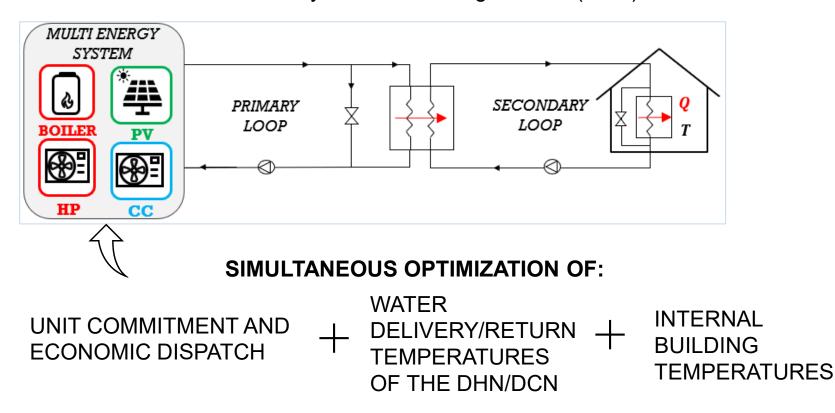

Advantages of MILP formulations:

- Guarantee on the global optimality of the solution
- Super-efficient commercial MILP solvers (e.g., CPLEX, Gurobi)



1-D PWL approximation

2-D PWL approximation with the «triangular method» D'Ambrosio et al. 2010. Op. Res. Letters


Bischi et al. 2014. Energy, Vol. 74

MILP model implemented within the Energy Management Strategy (EMS) of several microgrids and MESs

CO-OPTIMIZATION OF THERMAL COMFORT AND MES OPERATION

Optimal operation of a MES providing **heat**, **cooling** and **electricity** to a university campus, served by a district heating network (DHN)

Considering thermal comfort requirements of users in each building during the occupancy hours.

Ghilardi, Castelli, Moretti, Morini, Martelli, Co-optimization of multi-energy system operation, district heating/cooling network and thermal comfort management for buildings, Applied Energy, Volume 302, 2021, 117480

GENERATING UNITS:

- Linearized **part load performance** of the generators
- Air temperature effect on the COP of heat pumps and chillers

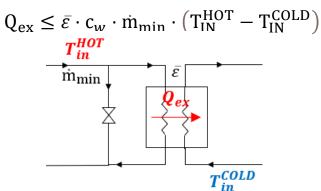
BUILDINGS

Each building may have a different internal $C \frac{dT}{dt} = (UA + mc_p) \cdot (T_{ext} - T_i) + mc_{p,UTA} \cdot (T_{UTA} - T_i) + Q_{in}$ temperature T_i

ODE is discretized over time (15 minutes) using finite differences. Error in temperature estimate < 0.1 °C.

DISTRICT HEATING NETWORK

Assumptions: Radial topology with primary/secondary loop for each building, constant mass flow rates


• **Delay in heat propagation** within the pipes

$$T_{out}(t) = T_{\infty} + (T_{in}(t - \Delta t) - T_{\infty}) \cdot (1 - \frac{4 \cdot k_p}{D_p \cdot c_w \cdot \rho_w} \cdot \Delta t)$$
$$T_{\infty}$$
$$\Delta t \text{ time delay}$$
$$k_p, D_p \text{ pipe parameters}$$

T_{out}

(1D flow, no axial conduction, neglected pipes heat capacity)

• Upper bound on heat transfer in HEx

(Minimum thermal capacity always on the same side)

Objective function: Minimize the total operating cost for the planning horizon

Key Variables:

- On/off (binary) and loads of each generator
- Internal temperature of each building in each time step
- Water delivery and return temperatures of the DHN

Key Constraints (for each time step):

- Linearized performance maps of generators
- Discretized differential equation of each building
- DHN Pipe delay equation
- Heat transfer across each primary-secondary heat exchanger of the DHN
- Ramping limitations on generators
- Maximum allowed temperature ramps in buildings recommended by ASHRAE
- Internal building temperature within comfort range during occupancy hours (e.g., 20-22 °C in winter, 25-27°C in summer)

CONSTRAINTS

Planning horizon: 1 week to exploit thermal capacity of buildings

Time step: 7-15 minutes, depending on the lenght of the DHN.

Computational time depends on the number of buildings and number of time steps

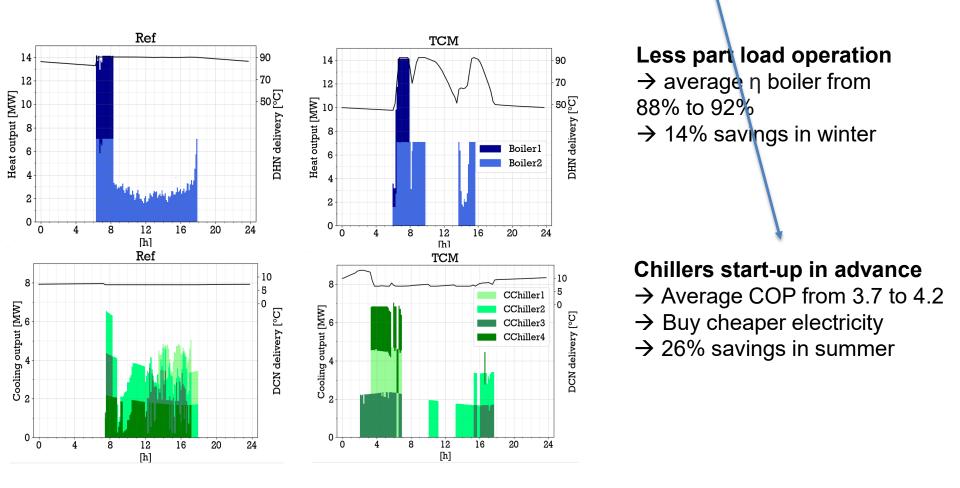
CASE STUDY

Campus of university of Parma

- 12 buildings with diverse thermal properties
 Radially arranged (primary/secondary loop)
 Occupancy in working hours (Mon-Fri 8 am-6 pm)
- 3 weeks of the year
 2 MES configurations: Design 1: boiler + compression chiller (CC) Design 2: HP + auxiliary boiler + Chiller + PV panels

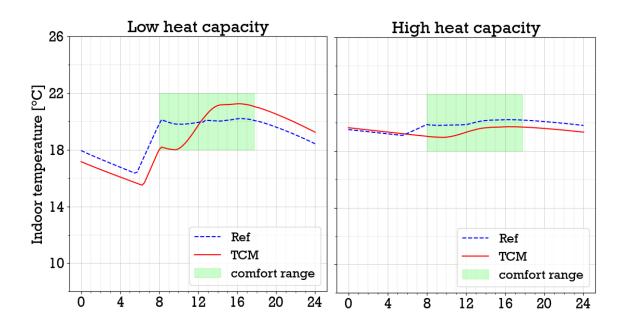
	Buildings temperature	DHN delivery temperature		
Ref	FIXED	FIXED		
		(Function of air temperature)		
тсм	OPTIMIZED (±2°C wrt set-point when open to public, no temperature constraints when closed)	OPTIMIZED (≤90°C heating; ≥ 7°C cooling)		

Solver: Gurobi

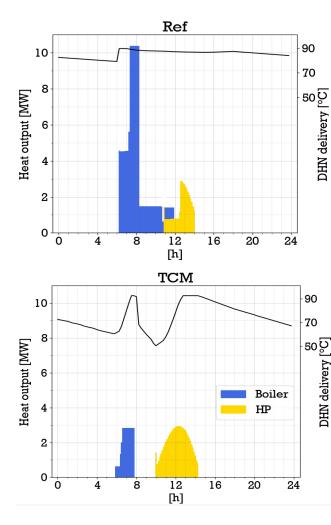

Problem dimensions (1 week, 7.5 min time steps): 6725 binary, 250160 continuous variables, 384000 constraints

Computational time: 5 hours, gap 0.5% (20 min if considering 12 buildings and 3 days, < 1 min for 7 days and 1 building)

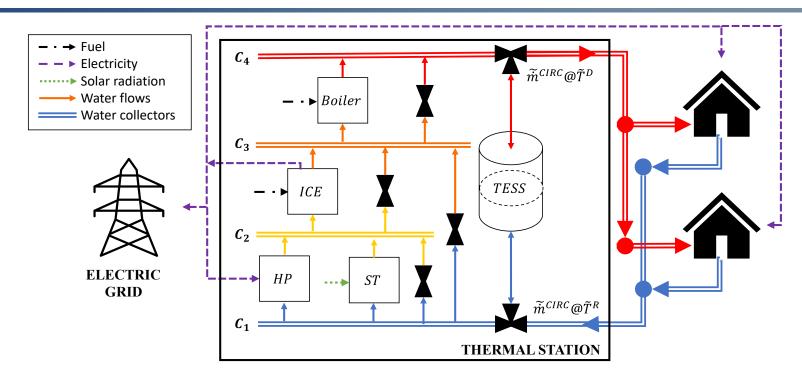
CASE STUDY


Main results:

- 1) TCM reduces energy demand of buildings thanks to the flexibility allowed by the comfort interval
- 2) TCM is essentially a Thermal Demand-side management tool
- 3) TCM exploits buildings' thermal inertia as a HEAT STORAGE system

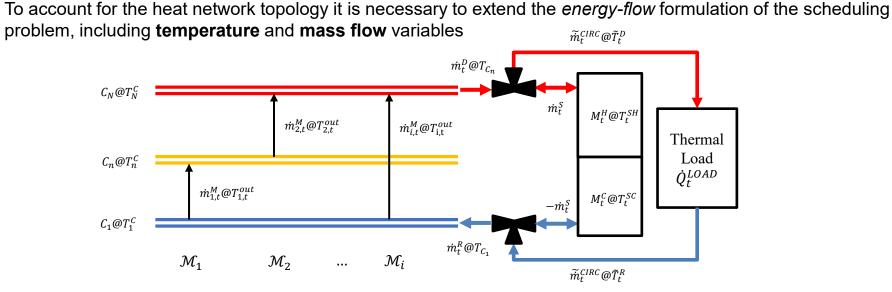

CASE STUDY

• Different profiles depending on buildings' properties



Notes

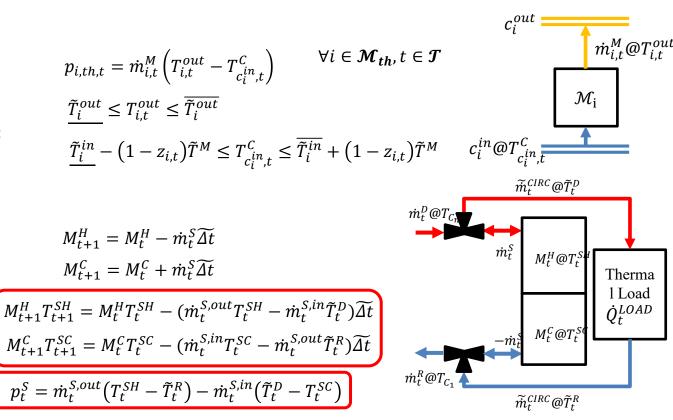
- → Optimal temperature profiles depend on the building time constant (heat capacity/dispersion coeff.)
- → TCM allows saving fuel by reducing the morning peaksof the boiler and using the HP during sunny hours (PV panels)
- \rightarrow 22% savings in spring, 3% in winter, 8% in summer


IMPACT OF SERIES/PARALLEL CONNECTIONS AND HEADERS TOPOLOGY

- i. Thermal generators may have different heat generation temperatures
 → series / parallel arrangement
- ii. Direct stratified thermal storages are normally employed
 - \rightarrow interaction with variable delivery/return temperature
- iii. Non-isothermal mixing occurs in the headers

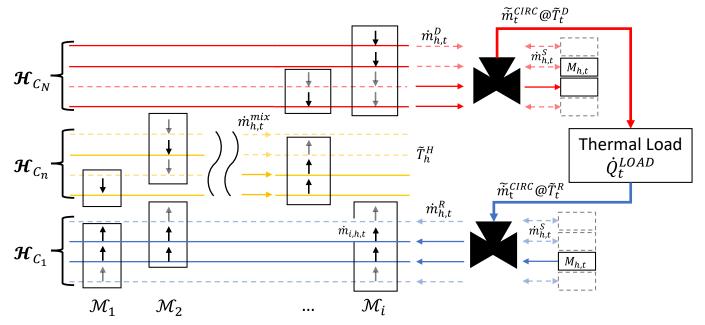
Current MILP models consider only Energy-flows neglecting the impact of **system topology and water temperatures**

٠

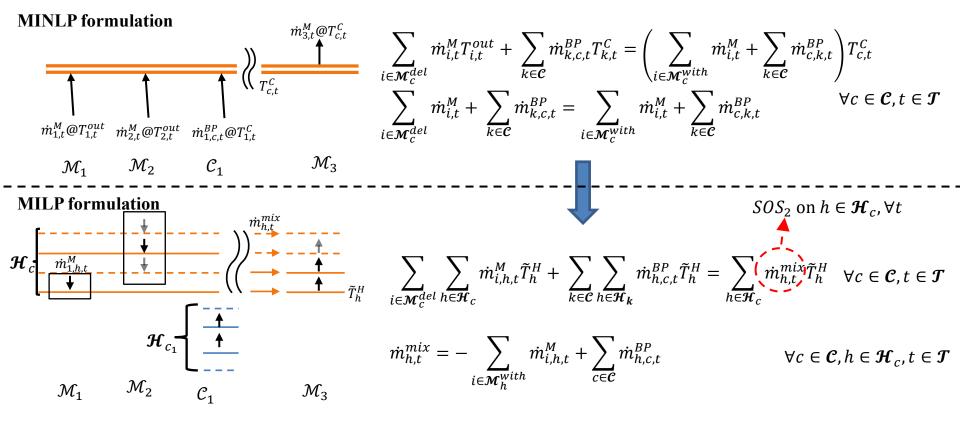

- Heat and mass balances must be enforced on all thermal units (generators and storages) and on the water collectors
- The product of mass flow and temperature variables makes the problem a Mixed Integer Non-Linear Problem (MINLP)

GENERATORS

- Thermal energy balance:
- Operating temperature range:


THERMAL STORAGE

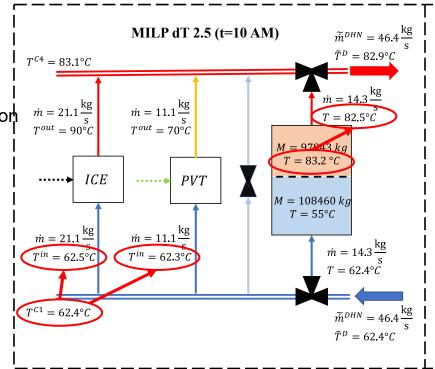
- Mass balance:
- Thermal energy balance (non-isothermal mixing):
- Net power contribution:



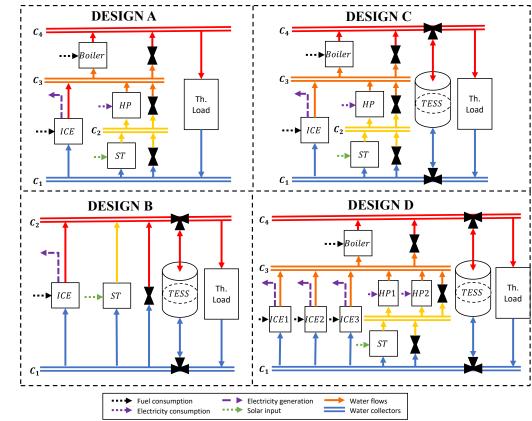
$$\begin{aligned} \text{WATER COLLECTOR} & \left(\tilde{m}_{t}^{DHN} - \dot{m}_{t}^{S,out} \right) \tilde{T}_{t}^{R} + \dot{m}_{t}^{S,in} T_{t}^{SC} = \left(\sum_{i \in \mathcal{M}_{c}^{with}} \dot{m}_{i,t}^{M} + \sum_{k \in \mathcal{C}} \dot{m}_{c,k,t}^{BP} \right) T_{c}^{C} \\ & \times \text{Energy balance} \\ \text{(non-isothermal mixing)} & \left(\sum_{i \in \mathcal{M}_{c}^{del}} \dot{m}_{i,t}^{M} T_{i,t}^{out} + \sum_{k \in \mathcal{C}} \dot{m}_{k,c,t}^{BP} T_{k}^{C} = \left(\sum_{i \in \mathcal{M}_{c}^{with}} \dot{m}_{i,t}^{M} + \sum_{k \in \mathcal{C}} \dot{m}_{c,k,t}^{BP} \right) T_{c}^{C} \\ & \times \sum_{i \in \mathcal{M}_{c}^{del}} \dot{m}_{i,t}^{M} T_{i,t}^{out} + \sum_{k \in \mathcal{C}} \dot{m}_{k,c,t}^{BP} T_{k}^{C} + \dot{m}_{t}^{S,out} T_{t}^{SH} = \left(\tilde{m}_{t}^{DHN} + \dot{m}_{t}^{S,in} \right) \tilde{T}_{t}^{D} \\ & \times C \in \mathcal{C}/[c_{1}, c_{N}], t \in \mathcal{T} \\ & \times \mathcal{M}_{c}^{Mel} \dot{m}_{i,t}^{M} T_{i,t}^{out} + \sum_{k \in \mathcal{C}} \dot{m}_{k,c,t}^{BP} T_{k}^{C} + \dot{m}_{t}^{S,out} T_{t}^{SH} = \left(\tilde{m}_{t}^{DHN} + \dot{m}_{t}^{S,in} \right) \tilde{T}_{t}^{D} \\ & C = c_{N}, \forall t \in \mathcal{T} \\ & \times \mathcal{M}_{c}^{Mel} \dot{m}_{i,t}^{M} + \sum_{k \in \mathcal{C}} \dot{m}_{k,c,t}^{BP} = \sum_{i \in \mathcal{M}_{c}^{With}} \dot{m}_{i,t}^{M} + \sum_{k \in \mathcal{C}} \dot{m}_{c,k,t}^{BP} \\ & \nabla C \in \mathcal{C}/[c_{1}, c_{N}], t \in \mathcal{T} \\ & \times \mathcal{M}_{c}^{Mel} \dot{m}_{i,t}^{M} + \sum_{k \in \mathcal{C}} \dot{m}_{k,c,t}^{BP} = \sum_{i \in \mathcal{M}_{c}^{With}} \dot{m}_{i,t}^{M} + \sum_{k \in \mathcal{C}} \dot{m}_{c,k,t}^{BP} \\ & \forall C \in \mathcal{C}/[c_{1}, c_{N}], t \in \mathcal{T} \\ & \times \mathcal{M}_{c}^{Mel} \dot{m}_{i,t}^{M} + \sum_{k \in \mathcal{C}} \dot{m}_{k,c,t}^{BP} = \sum_{i \in \mathcal{M}_{c}^{With}} \dot{m}_{i,t}^{M} + \sum_{k \in \mathcal{C}} \dot{m}_{c,k,t}^{BP} \\ & \forall C \in \mathcal{C}/[c_{1}, c_{N}], t \in \mathcal{T} \\ & \times \mathcal{M}_{c}^{Mel} \dot{m}_{i,t}^{M} + \sum_{k \in \mathcal{C}} \dot{m}_{k,c,t}^{BP} + \dot{m}_{t}^{S,out} - \dot{m}_{t}^{S,in} = \tilde{m}_{t}^{DHN} \\ & \nabla C \in \mathcal{C}/[c_{1}, c_{N}], t \in \mathcal{T} \\ & \times \mathcal{M}_{c}^{Mel} \dot{m}_{i,t}^{M} + \sum_{k \in \mathcal{C}} \dot{m}_{k,c,t}^{BP} + \dot{m}_{t}^{S,out} - \dot{m}_{t}^{S,in} = \tilde{m}_{t}^{DHN} \\ & \nabla C \in \mathcal{C}/[c_{1}, c_{N}], t \in \mathcal{T} \\ \end{array}$$

- The MINLP formulation is non-convex due to the bilinear products between mass flow and temperature
 - → very difficult to find global optimum, especially for MES with complex unit commitment problems (many binary variables)
- We propose a linearized formulation based on the definition of **discrete constant temperature levels** ("virtual headers")
 - Each header is represented as a set of multiple virtual headers wit fixed temperatures

Water flows are represented as the combination of multiple virtual flows at constant temperatures Generators withdraw and deliver water on the virtual headers within their inlet/outlet operating temperature range



SOS2 constraint allows determining in which temperature interval (between those of the virtual headers) results the mixed water stream. The temperature discretization introduces a «demixing» effect


local possible violations of second law of thermodynamics (due to the temperature discretization and SOS2)

It underestimates costs (LB)

- Its impact can be contained by reducing the temperature difference between adjacent temperature levels (e.g., 1 °C)
- In the proximity of relevant temperature thresholds temperature levels resolution can be refined

- Load and delivery/return temperature profiles measured in the Politecnico di Milano CHP power station
- Four system architectures, associated to different degrees of complexity of the scheduling problem, are evaluated
- Three alternative formulations are compared:
 - Classic MILP energy-flow formulation
 - > MINLP water-flow formulation
 - > **MILP** *water-flow* formulation (with different temperature resolutions ΔT)

Key findings: numerical effectiveness of linearized water-flow model

Practical feasibility and «real operating costs» of MILP solutions is tested imposing the scheduling in the MINLP formulation and solving the NLP subproblem.

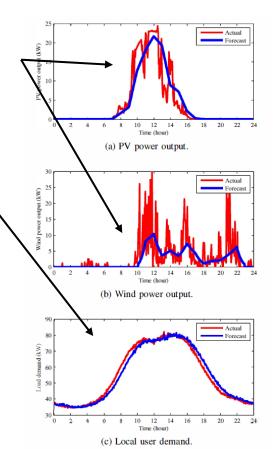
- The *energy-flow* MILP formulation does not find practically feasible scheduling plans
- The MILP water-flow model needs a temperture resolution of < 2.5 °C to find practically feasible solutions
- In most MINLP runs (7/10), no feasible solution is found → careful initialization required
- The water-flow MILP formulation is more reliable and finds better or equal solutions within the computational time limit (1 hour)

DESIGN A	3 UNITS	MILP Energy-flow		TLP T 5		MILP AT 2.5	MILP AT 1	MINLP (best run)
	OF [€]	4528		051		5072	5102	5109
	Sol Time [s]	0.4	-	1.2		1.6	3.9	260
Best solution	Gap [%]	0.00%	0.0	0.00%		0.00%	0.00%	1.83%
found	NLP OF [€]	unfeas.		unfeas.		5126	5109	5109
These I Freedom	ICE	28340	30	0993		30554	30740	30923
Thermal Energy Production	Boiler	382	382 46		4879		5141	5188
	HP	16104	13	13688		3465	13859	13802
Summary [kWh]	PVT	8926	4	4376		4853	4012	3840
Operating Hours	ICE	24	24 24			24	24	24
[h]	Boiler	1				11	12	12
լայ	HP	19	19 21			21	22	22
DESIGN B		MILP	N	11LP	N	MILP	MILP	MINLP
DESIGN B	2 UNITS + TES	Energy-flo		AT 5	Δ	T 2.5	ΔΤ 1	(best run)
	OF [€]	5147	5	5903	4	5944	5961	5960
Best solution	Sol. Time	0.5	25.7		2	261.3	1800.0	1800.0
found	Gap [%]	0.00%	0	0.07%		0.10%	2.11%	5.85%
Iounu	NLP OF [€]	unfeas.	u	nfeas.	4	5960	5960	5960
Thermal Energy	ICE	38936	4	19494		50051	50294	50266
Production	PVT	14863	4	5458		4777	4553	4386
Summary [kWh]								
TESS throughput [kWh]			8119 5700		5511 27338		5598	5436
Net energy export to grid [kWh]Operating Hours [h]ICE		15015 23			27558		27610 24	27579 24
Operating nours		25		24		24	24	24
DECICND		M	LP	MILI	•	MILP	MILP	MINLP
DESIGN D			y-flow	ΔΤ 5		ΔT 2.5	$\Delta T 1$	(best run)
		Linerg	.j 110 m					(best Full)
First incumbent	OF [€]		-			5537	5688	6028
1% from final	Time to find [s]]	-			310	2033	2145
incumbent	Gap [%]		-			4.4%	6.3%	15.2%
Best solution	OF [€]	51	5103			5498	5658	5828
found	Sol. Time [s]	2	.3	3120.7	7	3600	3600	3600
	Gap [%])%	0.01%		2.61%	5.58%	12.3%
	MINLP OF [€		eas.	unfeas	_	5499	5613	5828

OPTIMAL OPERATION OF AGGREGATED ENERGY SYSTEMS UNDER FORECAST UNCERTAINTY

<u>Given:</u>

- Forecast of power production from renewables and its uncertainty
- → Forecast of energy demand profiles and its uncertainty
- → Forecast of electricity prices and its uncertainty
- → Performance maps of the installed units
- → Operational limitations (start-up rate, ramp-up, etc) of units
- → Efficiency and Maximum capacity of storage systems


Determine:

Day-ahead UC and EC: on/off of units, load of units, storage manag.

<u>Minimizing</u> the expected daily operating cost considering the possible future "scenarios"

Constraints: meet energy demands, technical limitations of units, performance maps, etc in all the considered future scenarios

OPTIMAL OPERATION OF AGGREGATED ENERGY SYSTEMS UNDER FORECAST UNCERTAINTY

Robust Optimization approach:

- (+) It guarantees that the users' demand is always satisfied (no outages/black-out).
- (+) Prob. Distribution of the uncertain factors not required
- (+/-) Need of defining a-priori "recourse laws" (not fully flexible BUT useful for real-time operation)
- (-) Excessively conservative (suboptimal) solutions
- (-) Correlation between uncertain factors not considered

Recommended for MES systems with high reliability requirements (e.g., serving hospitals) and offgrid microgrids (due to the black-out risks).

Stochastic Optimization Approach:

- (+) It targets that the minimization of the expected cost in the set of possible future scenarios
- (+) scenarios can keep correlation between uncertain factors
- (-) No "recourse laws" are provided

(-) Prob. Distribution of the uncertain factors not required Recommended for CHP systems with high reliability requirements and microgrids.

(-) Operating feasibility in the worst possible case may not be guaranteed.

Ideally suited for maximizing the profit of Virtual Power Plants providing balancing/ancillary services to the electric grid. \rightarrow Ongoing work (Alessandro's PhD thesis)

PIECE-WISE AFFINE ADJUSTABLE ROBUST OPTIMIZATION

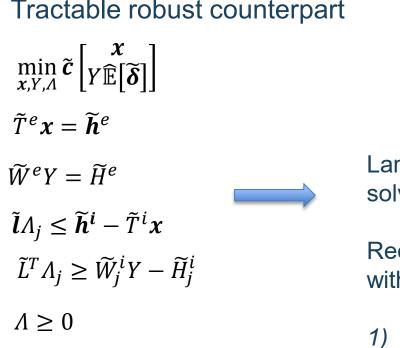
Adjustable robust formulation of the "energy-flow" MILP model:

$$\begin{aligned}
& \min_{x_{\delta}} \{ \mathbb{E}[\tilde{c}^{T}x_{\delta}] : \forall \tilde{\delta} \in \mathcal{U} \ \tilde{A}^{e}x_{\delta} = \tilde{b}_{\delta}^{e} \land \tilde{A}^{i}x_{\delta} \leq \tilde{b}_{\delta}^{i} \} \\
& x_{\delta} = \begin{bmatrix} x \\ \Delta x_{\delta} \end{bmatrix} \qquad \text{``Here and now'' decisions} \\
& = day-ahead committment} \\
& \text{``Recourse'' decisions} \\
& = real-time corrections}
\end{aligned}$$
Uncertainty set is defined by Bounds for instantaneous power deviation Bounds on total error over a given time window (budget of uncertainty) and the set is defined by uncertainty is defined by it is defined by uncertainty is defined by uncertainty is defined by uncertainty is defined by a difference of the set is difference of the set is defined by a difference of the set is differe

«Polyhedral» uncertainty set:

$$\mathcal{U} = \{ \boldsymbol{\delta} \mid \underline{\delta_t} \leq \delta_t \leq \overline{\delta_t}, \| \boldsymbol{\delta} \|_1 \leq \Gamma \} \equiv \{ \boldsymbol{\delta} \mid L \boldsymbol{\delta} \leq \boldsymbol{l} \}$$

Bounds and budget determined by statistical analysis of prod. and demand forescast errors (99.5° percentile)


Moretti, Martelli, Manzolini, 2020. An efficient robust optimization model for the unit commitment and dispatch of multi-energy systems and microgrids, Applied Energy, vol. 258.

AFFINE ADJUSTABLE ROBUST OPTIMIZATION

 $\Delta \boldsymbol{x}_{\delta} = \boldsymbol{Y}^{+} \widetilde{\boldsymbol{\delta}}^{+} - \boldsymbol{Y}^{-} \widetilde{\boldsymbol{\delta}}^{-} = \begin{bmatrix} \boldsymbol{Y}^{+} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{Y}^{-} \end{bmatrix} \begin{bmatrix} \boldsymbol{\delta}^{+} \\ \widetilde{\boldsymbol{\delta}}^{-} \end{bmatrix}$ Piece-Wise Linear recourse: p_{δ}^{ICE} sp_δ δ $\overline{\delta}$ p^{ICE} δ p_{MAX}^{ICE} sp_{MAX} p_{MIN}^{ICE} sp δ δ Semi-infinite program $\min_{\boldsymbol{x},\boldsymbol{Y}} \tilde{\boldsymbol{c}} \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{Y} \widehat{\mathbb{E}} [\boldsymbol{\delta} \end{bmatrix} \end{bmatrix}$ $\tilde{T}^e x = \tilde{h}^e$.. 10 s.t. $(\widetilde{W}^{e}Y - \widetilde{H}^{e})\widetilde{\delta} = \widetilde{h}^{e} - \widetilde{T}^{e}x \quad \forall \delta \in \mathcal{U}$ $\widetilde{W}^{e}Y = \widetilde{H}^{e}$ It is a linear program with respect to $\widetilde{\delta}$ $\max_{\boldsymbol{\delta} \in \mathcal{H}} \left[\left(\widetilde{W}^{i} Y - \widetilde{H}^{i} \right) \widetilde{\boldsymbol{\delta}} \right] \leq \widetilde{\boldsymbol{h}}^{i} - \widetilde{T}^{i} \boldsymbol{x} \longrightarrow$ LP duality allows reformulation

36

Large scale MILP, tractable for commercial solvers if *number of time steps* < 100

Reductions in computational time achievable with:

- 1) Aggregating uncertain factors of energy demand and renewable production
- 2) *«Partial-past recourse» laws*: correction law depends only on a few past realizations of the uncertain factors.

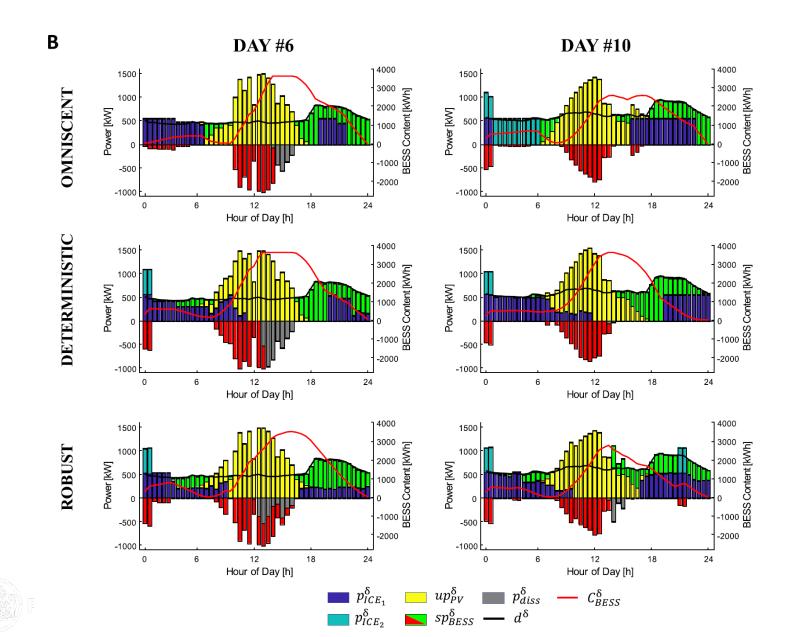
Moretti, Martelli, Manzolini, 2020. An efficient robust optimization model for the unit commitment and dispatch of multi-energy systems and microgrids, Applied Energy, vol. 258.

AARO TEST CASES

Test Case	Energy	Peak Power	Daily Demand	Uncertainty Factors
	Energy	$[MW_p]$	[MWh/day]	
Off-grid Micro-Grid	Electricity	1.1	14.2	Electric Demand, PV
On-griu Milero-Griu			17.2	production
On-grid Hospital	Electricity	1.9	35.3	Electric demand, Thermal
On-griu nospital	Heat	4.6	83	demand, PV production
On-grid Campus	Electricity	3.7	28.9	Electric demand, Thermal
	Heat	10.3	66.4	demand, PV production

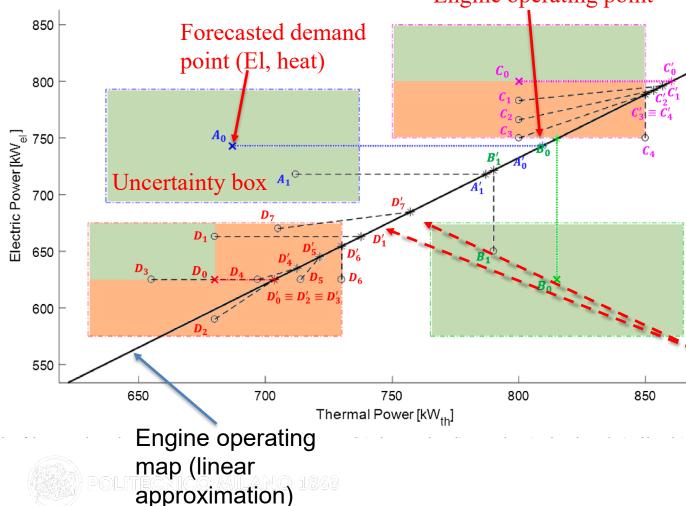
	Microgrid		Hospital						Campus		
CONFIGURATION UNITSS	А	А	В	С	D	Е	F	G	А	В	С
Diesel generator [kW _{el}]	2 x 550	-	-	-	-	-	-	-	-	-	-
CHP engine [kW _{el} / kW _{th}]	-	1 x 1900 / 1770	1 x 1900 / 1770	2 x 1000 / 1040	2 x 1000 / 1040	-	1 x 1050 / 1080	-	1 x 960 / 1000	-	1 x 2050 / 1900
Natural gas Boiler [kW _{th}]	-	3 x 1700	3 x 1700	2 x 1270	2 x 1270	-	-	-	1 x 3960	1 x 4170	1 x 5900
PV field [kW _{el}]	1 x 1440	-	-	-	1 x 1000	1 x 1000	1 x 2000	1 x 1500	1 x 3150	1 x 3150	-
Heat Pump [kW _{th}]	-	-	1 x 2070	1 x 2070	1 x 2070	2 x 1050	3 x 2070	-	1 x 1670	-	1 x 1550
ORC CHP unit [kW _{el} / kW _{th}]	-	-	-	-	-	1 x 1000 / 4830	-	1 x 1000 / 4830	2 x 60 / 350	1 x 515 / 2570	-
Biomass Boiler [kW _{th}]	-	-	-	-	-	1 x 1680	-	1 x 1680	-	-	-
Thermal Storage [kWh _{th}]	-	1 x 1274	1 x 1274	1 x 1274	1 x 10000	1 x 10000	1 x 10000	1 x 10000	1 x 21140	1 x 28400	1 x 4626
Lithium-Ion Battery [kWh _{el}]	1 x 3600	-	-	-	-	-	-	-	-	-	-

Moretti, Martelli, Manzolini, 2020. An efficient robust optimization model for the unit commitment and dispatch of multi-energy systems and microgrids, Applied Energy, vol. 258.


AARO vs. Reserve Constraints + Heuristic corrections 39

Name	R0	R1	R2	R3
Extended Uncertainty Characterization (Section Uncertain Net Demand (Section 6.3) Partial-past recourse (Section 6.1)	on 6.2)	✓	1	* * *
El. Demand – Production from PV panels	Data-driven ad to limit the unce budgets + ramp error)	ertainty	set (int	raday

Off-grid microgrid			Expected Total Actual T		GAP	Service Interruptions		
		Diesel Consumption [L]	Diesel Consumption [L]	(increase wrt LB) [%]	Total Unserved Energy [kWh]	Service Reliability [%]	Avg. Sol. Time	
	OMNISCIENT (lower bound)		12605	14020 (LB)	-	0	100	6.4
	MILP with Reserve +	No reserve	12609	12772*	-8.9%*	5000	88.5	7.6
		T ^{res} =1h	13672	14634*	4%*	1568	96.4	6.8
		Tres=2h	14291	15624*	11%*	670	98.5	6.5
	heuristic correct.	T ^{res} = 3h	15010	16573*	18%*	53	99.5	6.3
	ROBUST + Affine	R0	13838	16515	18%	0	100	406
	correction	R1	13597	15943	14%	0	100	778
		R2	13618	16097	15%	0	100	175
		R3	13710	16191	16%	0	100	48


POLITECNICO MILANO 1863

AARO vs. Reserve Constraints + Heuristic corrections 40

AARO LIMIT 1: OVER-CORRECTION OF CHP UNITS

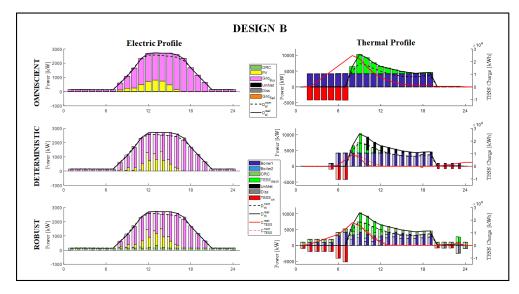
Green region around point A_0 : Any possible uncertain deviation in heat demand is automatically satisfied by the excess heat produced by the engine \rightarrow the heat demand recourse coefficients are zero (not necessary)

Engine operating point

Red region around D_0 : D_0 : forecasted demand D_7 : realization demand

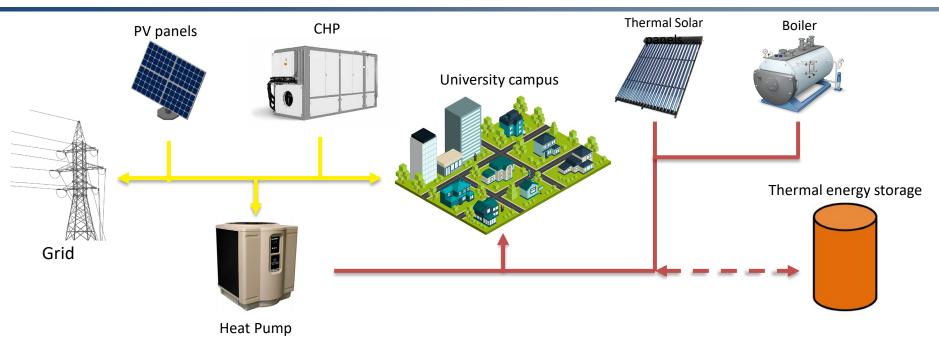
Recourse coefficients for both demands (heat and electricity) are non-zero, determined to compensate variations of only electricity or only heat demand. If both demand variations are positive, engine load is overcorrected (engine operating in D'₇) Microgrids and MESs feature mainly quick-start units such as:

- Boilers
- Internal combustion engines
- Gas turbines
- Heat pumps


For these units, on/off (binary) recourse decisions should be included.

Unfortunately the available approaches (e.g., Bertsimas's binary decision rules + cutting plane algorithm of Blankenship and Falk) are computationally intensive and not easily scalable to industrial scale problems with > 2 units and 24 or more time steps.

AARO vs. Reserve Constraints + Heuristic Corrections 43


CAMPUS								
Design	Simulation Mode	Expected Operating Cost [€]	Actual Operating Cost [€]	GAP [%]	Unserved Thermal Energy[kWh]	Service Reliability [%]		
	OMNISCENT	20160		0	100%			
СА	DETERMINISTIC	17205	21855	8.4%	0	100%		
	ROBUST	17490	20955	4.0%	0	100%		
	OMNISCENT	33210			100%			
СВ	DETERMINISTIC	30285	33345*	0.4%*	1970	94.6%		
	ROBUST	31755	34695	4.5%	0	100%		
	OMNISCENT	32925			100%			
CC	DETERMINISTIC	31485	34740	5.5%	0	100%		
	ROBUST	31710	33525	1.8%	0	100%		

Conclusions on AARO:

- 1. AARO leads to higher reliability for same op. cost or lower op. cost for same reliability
- Piecewise affine recourse laws, although limited, better than det. MILP + heuristics corrections for real-time operation
- 3. Computational time can be effectively limited with the partial-past approach
- 4. Binary decision rules may futher improve solutions

LONG-TERM OPERATIONAL PLANNING

Optimal daily operation while considering yearly behavior

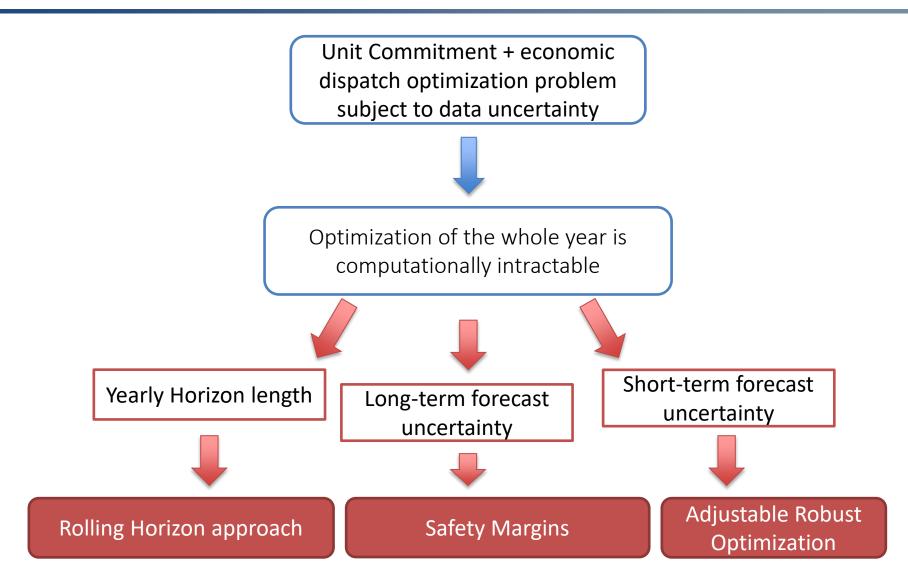
- To get "white certificate" incentives, CHP yearly constraints must be met:
 - Constraint on minimum yearly Primary Energy Saving index
 - Incentive value depends also on the yearly First Law Efficiency
- Some MESs have a maximum allowed yearly electricity net export
- Seasonal Storage energy systems (e.g. Hydrogen, Underground Thermal Storage, CAES) might be used

Problem statement

Given:

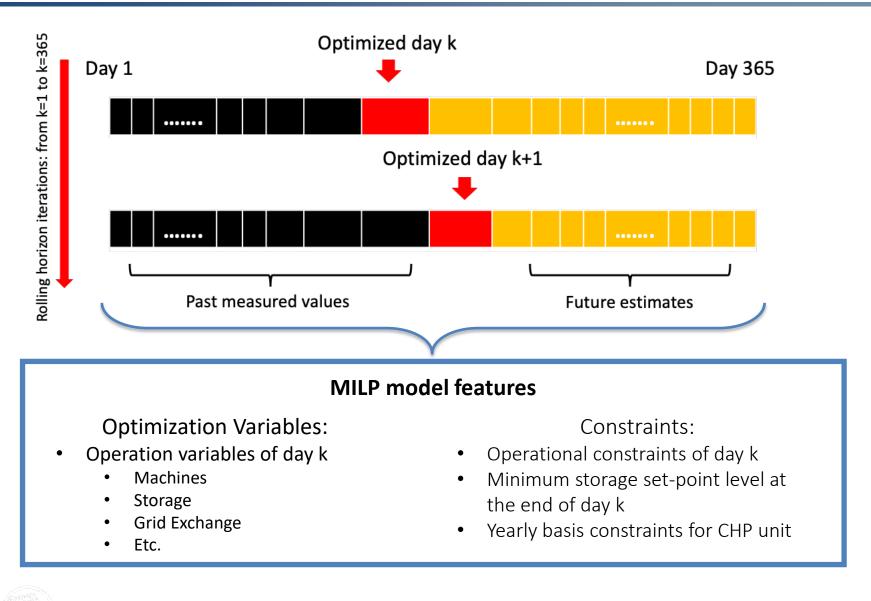
- Units and energy storage performance data and maps
- Forecast of energy demands and solar production
- Forecast of fuel and electricity price profiles
- Forecast uncertainty

Determine the optimal robust operation schedule which minimize the sum of:

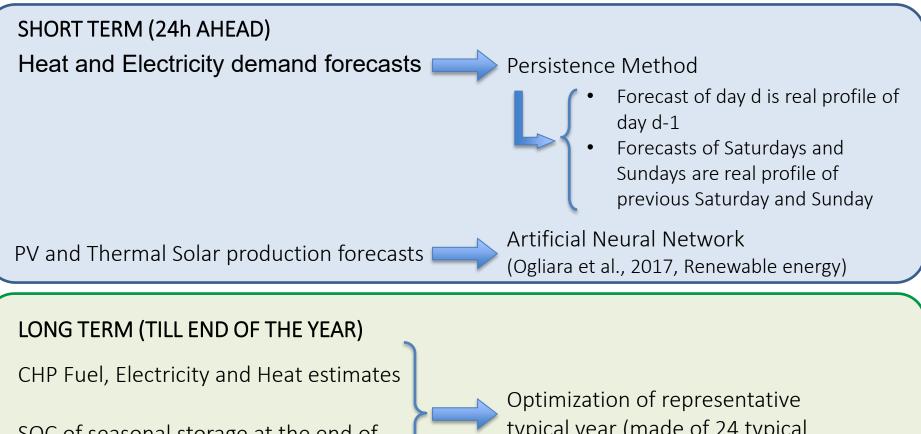

- Machines fuel consumption cost
- O&M costs
- Electricity revenues/purchase cost
- Yearly incentives for CHP units

Subject to the following constraints:

- Operational/commitment constraints on units and storage systems
- Yearly incentive constraints on CHP units (minimum required efficiency index)
- Maximum allowed yearly electricity net export
- (optionally) operational limits on the seasonal storage system (max charge/discharge rate, max/min charge levels, target charge level at end of year)



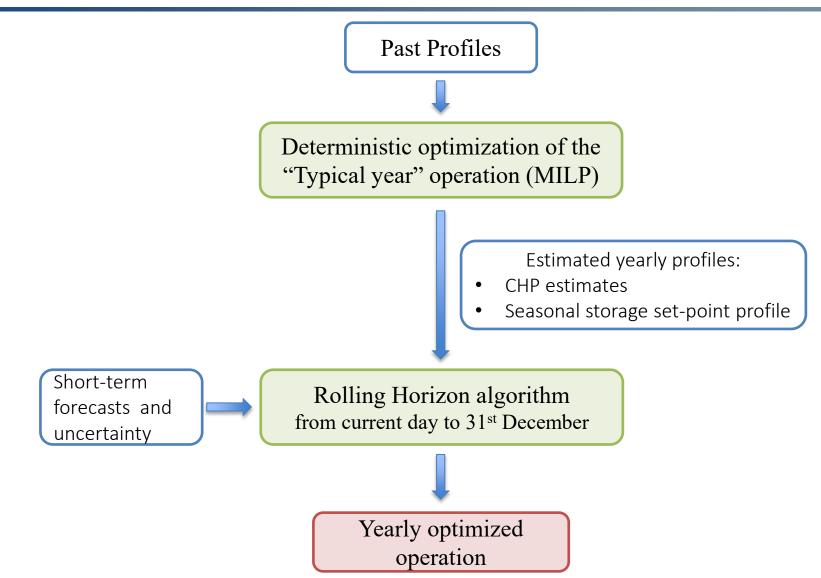
INTRODUCTION - PROBLEM SUMMARY


Castelli, A.F., Moretti, L., Manzolini, G., Martelli, E. A Robust Rolling-Horizon Algorithm for the Optimal Operation of Multi-energy Systems with Yearly Constraints and Seasonal Storage. (2020) Computer Aided Chemical Engineering, 48

ROLLING HORIZON APPROACH

POLITECNICO MILANO 1863

SHORT AND LONG-TERM FORECASTS


SOC of seasonal storage at the end of each day

typical year (made of 24 typical days)

METHODOLOGY FLOW CHART

HANDLING UNCERTAINTY

SHORT TERM

Uncertainty factors:

- Electricity demand
- Heating demand
- PV electricity production
- Thermal Solar heating production

Robust optimization model with affine recourse:

- Recourse just on short term uncertainty
- Provides a solution feasible for each possible scenario considered
- Provides robust strategy for online control

LONG TERM

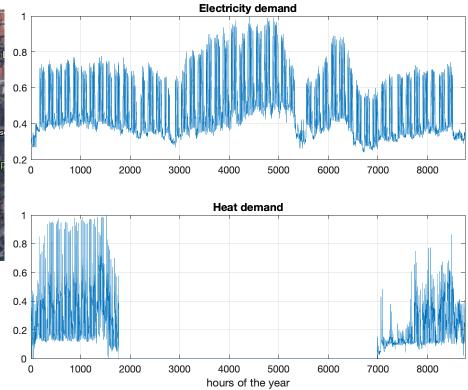
Uncertainty related to forecasts of :

- Renewable energy production
- Heating demand
- Electricity demand

affecting CHP fuel consumption and

seasonal storage management

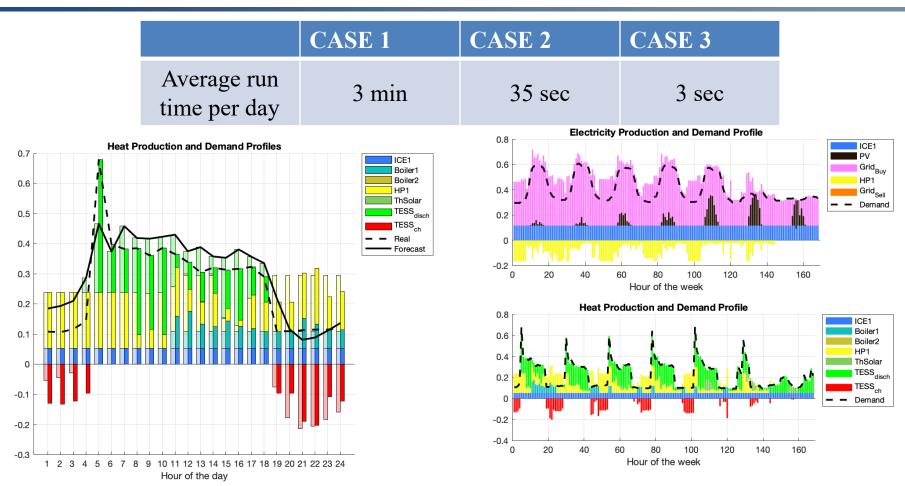
Safety margins:


- Margin profile is tunable (high in the beginning of the summer, lower towards the end of the year)
- Margin value can be adapted "online" (based on measured performance in past days)
- Penalty proportional to violation of safety margins

CASE STUDIES – 2018 DEMAND PROFILES

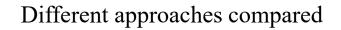
Leonardo Campus, Politecnico di Milano Milano, IT

	Pa	Test year (2018)		
	Average (10 years)	Max	Min	Yearly average
Temperature [°C]	13.8	14.91	10.92	15.08
Irradiance [kW/m ²]	299.52	286.14	326.43	325.6


CASE STUDIES – MES DESIGNS

- CASE 1 = conventional design with large CHP engine
- CASE 2 = fully renewable with seasonal storage assisted by a back-up boiler
- CASE 3 = hybrid design with CHP + renewable with seasonal storage

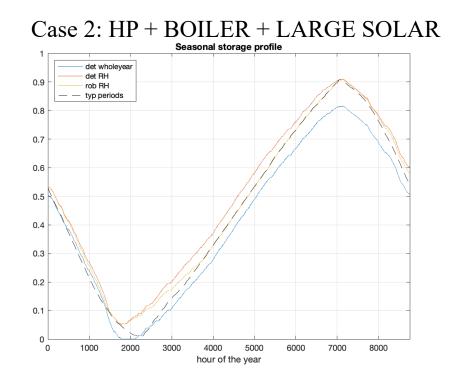
UNIT	CASE 1		CASE 2	СА	SE 3
CHP ICE	E1: 2.9 Q: 2.6 MW MW		-	El: 344 kW	Q: 497 kW
Boiler 1	Q: 2.4 MW		Q: 3.5 MW	Q: 2.4 MW	
Boiler 2	Q: 2.4 MW		-	Q: 2.4 MW	
Heat Pump	Q: 1.7 MW		Q: 3.5 MW	Q: 1.7 MW	
Storage	Max Capacity				
TESS	5 MWh (non-Seasonal)		7.2 GWh (Seasonal)	1.8 GWh (Seasonal)	
Non-dispatchable	Installed power				
PV panels	-		4.5 MW	1]	MW
Thermal Solar panels		-	5.9 MW	1.6	MW


RESULTS

- Nominal solution (based on forecast values) are the small half-columns on the left.
- Affine decision rules (recourse laws) adopted for real-time operation of the MES

BENCHMARK OPTIMIZATION APPROACHES

Whole year deterministic MILP ("det wholeyear") Lower Bound of the yearly operating cost


Rolling Horizon with deterministic short-term MILP with safety margins (certain input data) ("det RH")

Benchmark to assess cost penalty of short-term robustness on daily planning solutions

Rolling Horizon with robust short-term MILP with safety margins (short-term forecasts of demands) ("rob RH")

Piecewise affine recourse rules used for real-time operation

- 1) Typical year TESS setpoint agrees well with "det wholeyear"
- 2) RH algorithms stay above the desired set points with minor differences
- 3) Deterministic RH is closer to the desired set point

OLITECNICO MILANO 1863

RESULTS – COST COMPARISON AND INDEXES

Yearly cost increase and CB variation with respect to benchmark case "LB" (whole year deterministic)

	YEARLY O		CB incentives		
	Det RH vs LB Rob RH vs I LB		Det RH vs LB	Rob RH vs LB	
CASE 1 (CHP only)	+3.19%	+6.13%	-1.67%	-2.11%	
CASE 2 (Solar)	+0.59%	+5.23%	n.a.	n.a.	
CASE 3 (CHP and Solar)	+0.9%	+1.52%	+5.73%	+6.94%	

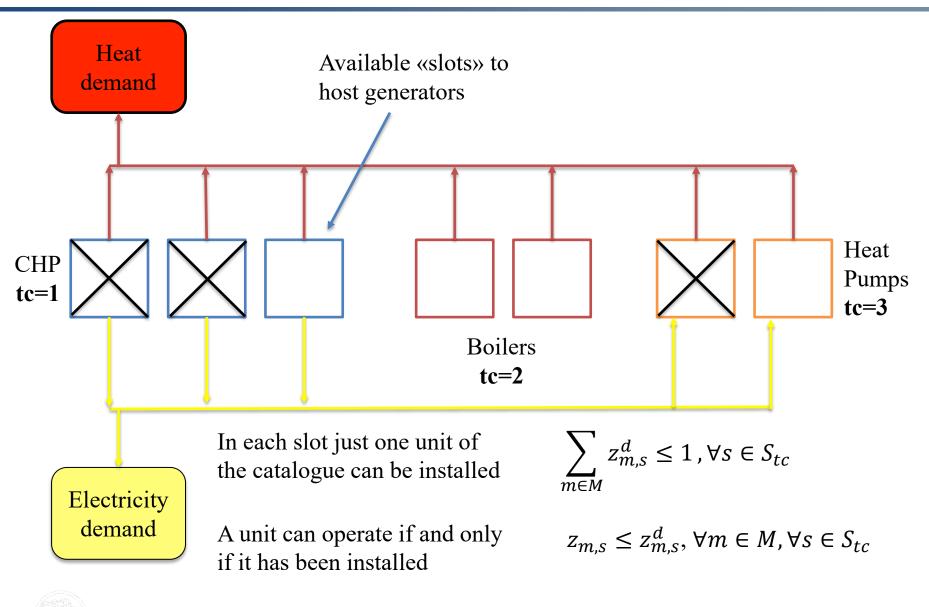
- 1) The cost of adding safety margins for long-term operation is acceptable (1-3%)
- 2) The cost of "short-term robustness" is limited to a few percentage points (2.85% for case 1, 4.61% case 2, 0.62% case 3)

POLITECNICO MILANO 1863

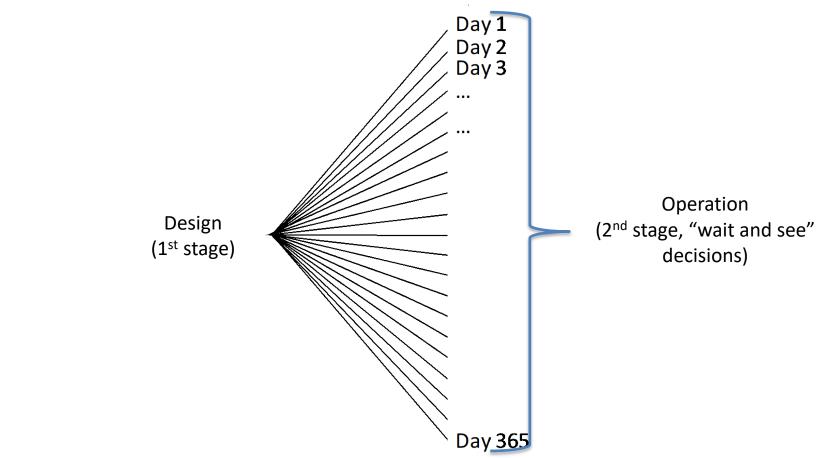
Given:

- A catalogue of possible units (e.g., CHP ICEs, HP GTs, boilers, heat pumps, etc) and the list of available sizes (discrete or continous)
- A catalogue of heat storage systems
- Forecast of future energy demand profiles (whole year) of each building/site
- Forecast of future energy prices and their time profiles of each building/site

Determine:


- Which units and heat storage system to install in each district/building
- The sizes of the units and storage systems
- The required energy connections between sites/buildings

Considering:


- Nonlinear size effects on investment costs and efficiency
- On/off and part-load operation of the units

Objectives: Maximize the NPV/Minimize the energy consumption/CO2 emissions

OPTIMAL DESIGN: PROBLEM FORMULATION

OPTIMAL DESIGN: EQUIVALENCE TO TWO-STAGE STOCHASTIC PROGRAM

Notes:

- Each day corresponds to a scenario of the stochastic program
- Operation decisions are also binary (binary variables in the second stage)
- Classic Bender's and Lagrangian decompositions (based on dual information) may not lead to a feasible and optimal solution (duality gap)

DESIGN OPTIMIZATION APPROACHES

Design-scheduling decompositiom with heuristic design algorithms (Elsido et al., 2017. Energy Vol. 121)

Upper level (evolutionary alg.): optimizes design variables (selection/sizes) Lower level: MILP scheduling problem

Avantages:

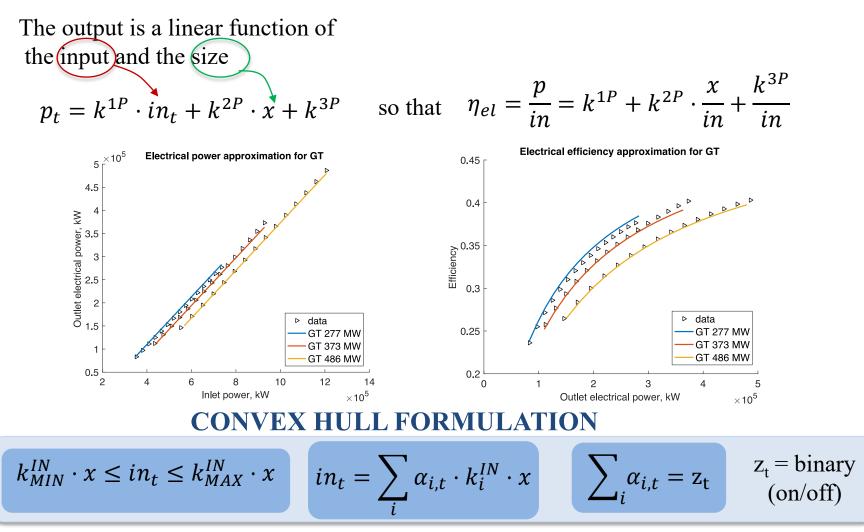
- Size effects accounted for on both performance and costs
- Possibility of considering many operating periods solved in sequence

Disadvantages:

- Slow convergence rate of evolutionary algorithms
- No optimality guarantee

Convergence properties of black-box optimization alg. scaling poorly with the number of variables. Approach suitable for problems with few units and few design variables <u>Design + operation MILP</u> (*Zatti et al, 2017*) (*Gabrielli et al. 2018*)

Units' selection, sizes and operation optimized in a single large scale MILP


Advantages:

- Linear problem (computationally efficient)
- Global optimality guarantee
- Uncertainty can be rigorously handled

Disadvantages:

- Size effects on investment costs must be linearized
- Size effects on efficiency must be approximated

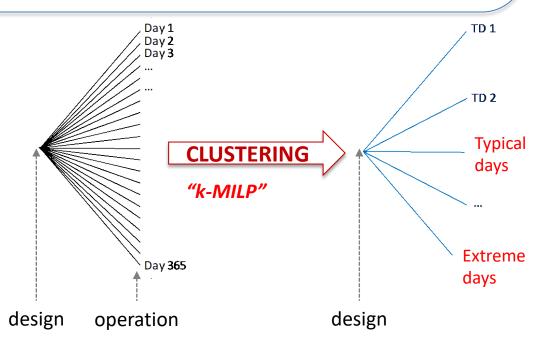
DESIGN+OPERATION MILP: LINEARIZATION OF THE SIZE EFFECTS AND PART LOAD PERFORMANCE ⁶¹

the same holds for the other outputs, e.g. thermal power: $q = k^{1Q} \cdot in + k^{2Q} \cdot x + k^{3Q}$

Zatti et al. 2018. TOWARDS THE OPTIMAL DESIGN AND OPERATION OF MULTI-ENERGY SYSTEMS: THE "EFFICITY" PROJECT. Environmental Engineering and Management Journal, vol. 17

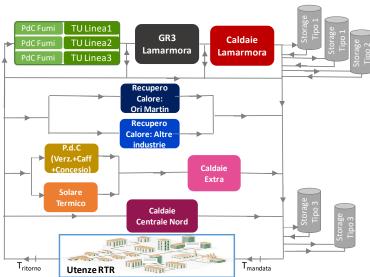
Time periods for the operation optimization

Urban DES have an intrinsic **daily and seasonal periodicity** (energy demands, energy prices, energy storage) \rightarrow design should be optimized on the basis of the daily operation in 1 year.


1) There is a **binary variable** z_t

- for each possible unit considered in the design
- for each time step (hour) considered in the operation

2) In the model there is a number of inter-temporal constraints (energy storage).

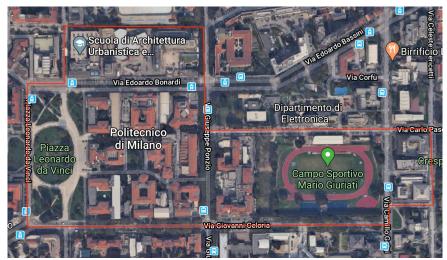

The problem quickly becomes computationally intractable \rightarrow the design problem is solved considering a set of *n* (<< 365) representative days.

These representative days are determined on the basis of the hourly data of the parameters.

M Zatti, M Gabba, M Freschini, M Rossi, A Gambarotta, M Morini, E. Martelli. 2019. k-MILP: A novel clustering approach to select typical and extreme days for multi-energy systems design optimization. Energy 181, 1051-1063

OPTIMAL DESIGN OF AGGREGATED ENERGY SYSTEMS

DH network of Brescia city

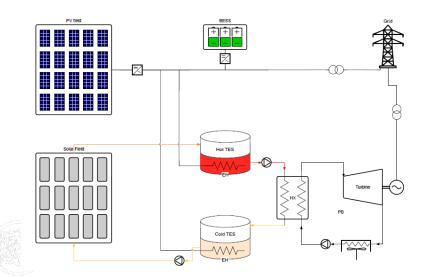

University of Parma Campus

Largest Italian Hospital

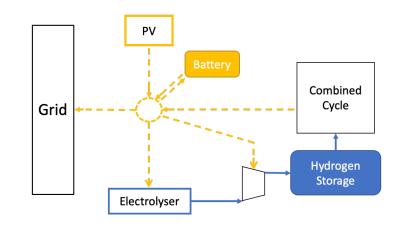
Campus of Politecnico di Milano

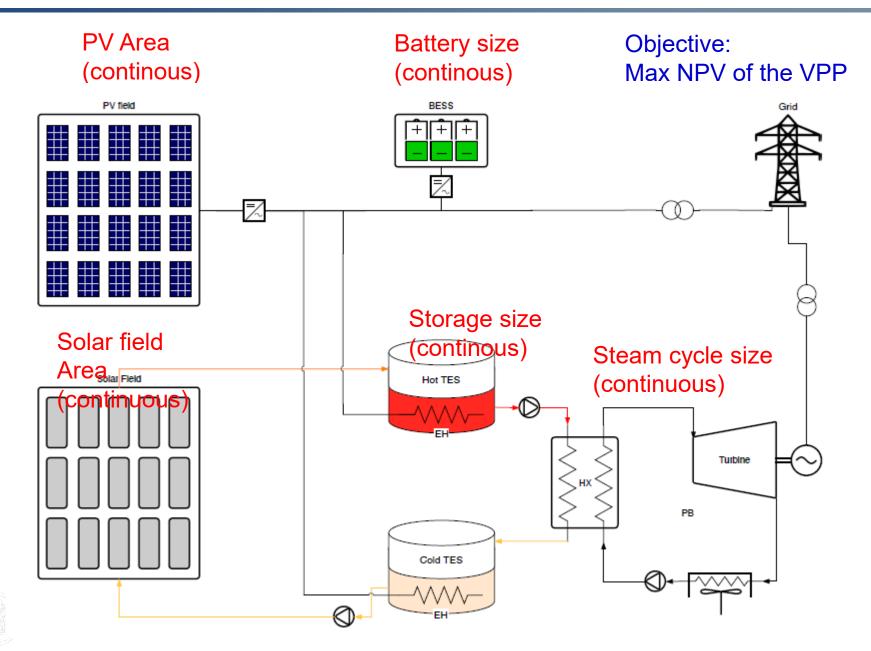
OPTIMAL DESIGN OF AGGREGATED ENERGY SYSTEMS

Vehicle to Grid microgrids

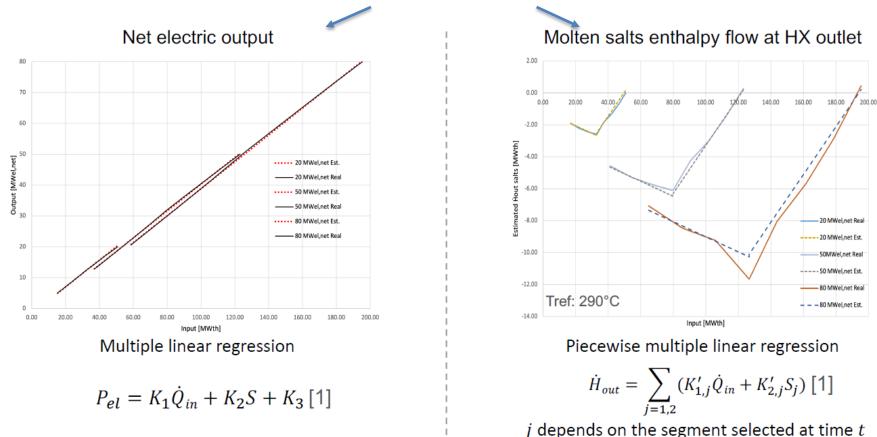


https://www.repubblica.it/motori/sezioni/attualita/2020/11/12/news/fca_mobility-274073935/ica


Microgrids for smart gas stations


VPP: CSP + PV + battery

<u>VPP: GT + H2 storage + H2</u> production system + PV + battery



OPTIMAL DESIGN OF HYBRID CSP-PV VPP

OPTIMAL DESIGN OF HYBRID CSP-PV VPP

Power block linearized model

The MILP energy-flow model is extended to account for the Molten Salt temperatures and non-isothermal mixing occurring in the storage tanks

Work to be submitted to the ICAE 2021 conference

OPTIMAL DESIGN OF HYBRID CSP-PV VPP

- 432 time steps: 6 typical periods of 72 hours (3 consecutive days), hourly resolution
- Linking constraints due to ramping, minimum up and down times, thermal storage and batteries
- 5 main continous complicating variables (continous design variables)

Computational time (using Gurobi): 30 minutes

12 typical periods \rightarrow computational time becomes 7 hours

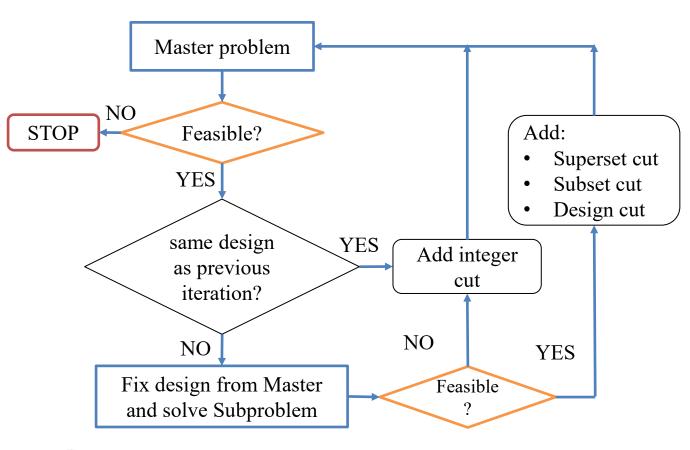
12 typical periods + hydrogen seasonal stoarage system \rightarrow (all typical periods are linked) \rightarrow intractable as a single MILP

Real case of a smart gas station

- Demand: electricity
- Total number of timesteps: 480 (8 representative hours with timestep length of 1 minute)
- Total number of available units in the catalogue: 15
- Available generator slots: 4
- Possibility to install battery (unit with continuous size)

Some remarks:

- Complicating constraints (time linking)
 - Across minutes in each hour: Units minimum up/down time, ramping limits, battery SOC evolution in time
- Many complicating variables (design variables)
- Many symmetries (design and operation) make B&B slow


Using Gurobi (latest version) on multi-core workstation, > 6% gap after 72 hours

Introducing <u>n-1 reliability (i.e., failure scenarios for each generator slot, multiplying by</u> a factor of 4 the time steps) would make the problem computationally intractable.

DECOMPOSITION

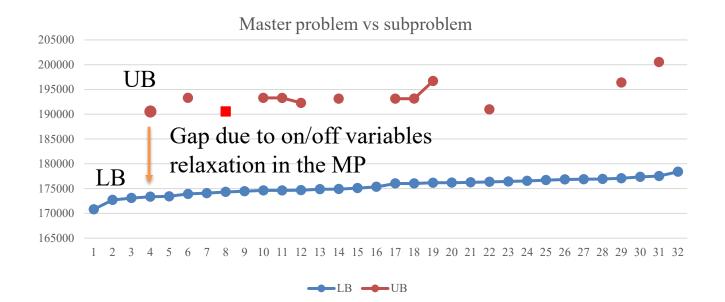
A modified version of the bi-level decomposition proposed by lyer and Grossmann (1998) was used to get to the solution.

Master problem: only design binary variables are kept, all other operational binaries are relaxed

Subproblem: design binaries are fixed to the velues found in the Master problems while operational binaries are NOT relaxed (MILP)

DECOMPOSITION - RESULTS

Problem characteristics:


- 426056 constraints
- 146941 continuous variables
- 145020 binary variables

Solution time:

• No decomposition: stopped after 72 hours (gap 6.2%, UB 195423)

70

• Decomposition found a better solution in 18 hours (UB 190503)

NOTE:

Although the gap is still quite large and the integer cuts are weak, the decomposition allows finding better solutions than solving the monolithic MINLP.

- 1) The deterministic opitmal operation of microgrids, VPPs and most MESs can be formuated as a MILP and solved in few sedonds. It is the state-of-the-art solution in industry.
- 2) The deterministic operation MILP can be extended to account for:
- Demand-side Thermal management of buindings
- Delivery/return temperature management of the DHN
- Parallel/series connections between thermal generators
- Non-isothermal mixing in water headers
- Long-term constraints as well as seasonal storages
- 3) Affine Adjustable Robust Optimization (AARO) models can be used for the operation of microgrids and MES operation with good performance if:
- Number of units and time steps are not excessive (< 4 units, < 100 time steps)
- Computational time is reduced using Partial-past recourse laws and aggregating uncertainty factors

For systems with CHP units and quick-start units the solution may be overconserative

→ need of computationally efficient approach to handle binary correction rules

CONCLUSIONS (2)

4) The design opitmization problem must include also the operational problems on a set of typical and extreme periods. It is equivalent to a two-stage stochastic program with binary variables in both stages.

5) Although the design MINLP problem can be linearized into a MILP, the computational time still remains an issue for most industrially relevant problems:

- Problems with rich catalogue of units of discrete sizes (e.g, > 5)
- Problems with continous size units (e.g., storages, steam cycles, etc)
- Problems with seasonal storage systems (e.g., H2 storage)
- Problems requiring hundres operational time steps (e.g., 12 typical days)

 \rightarrow need of an effective (and possibly rigorous) decomposition approach

Main supporting institutes and companies:

- SIRAM (Energy Service Company, Veolia group)
- SNAM (energy company)
- EPS Engie (microgrids)
- ENEA (research institute)
- Italian Ministry of Economy
- Ansaldo (gas turbine manufacturer)
- Edison (energy company)
- Regione Emilia Romagna and LEAP (research lab)
- University of Parma

Current and past PhD students and involved colleagues

Thank you for your attention!

emanuele.martelli@polimi.it

www.gecos.polimi.it

74