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Outline of Discussion CQPD

* The importance of a digital supply chain

= Observations about supply chains

= Observations about decision-making

*= Ongoing research addressing human decision-making

= Important methods for a digital supply chain
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A digital supply chain is more than a collection of solutions CQPD
Digitalizing a supply chain: introducing digital technology and

methods at various points in supply chain operations
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Digital supply chain: a fully integrated and orchestrated end-to-
end delivery system minimizing human intervention
accomplished by digital technology
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Expectations of a digital supply chain CYPD

* Agility to react speedily to sudden changes in demand and supply including disruptions in either  \/cenrer

e Adaptability over time as market structures and strategies evolve

* Aligned interests of all participants in the value chain so that they optimize the overall performance
when they maximize their interests

LOStSales Expected cumulative impact ($B)
OS5 2016 to 2025

industry

Consumer $5,439 $4,877
Automotive $3,141  $667
Logistics $2,393  $1,546
Electricity $1,741  $1,360
Oil & Gas $637 $940
Mining $105 $321
Chemistry $3 $302
Total $13,459 $10,013

Logistics
Forecast Error costs

30-50% .
: Predicted 15-30%
Impact

Inventories Admin Costs

35-75% 50-80%

N e
(-“Ll-l- llefn-';lt‘ Supply Chain 4.0 — the next-Generation Digital Supply Chain | McKinsey.; 2016. https://www.weforum.org/reports/digital-transformation-of-industries/
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List by annual revenue the top ten Petro-Chemical companies that use the word
"digital" on their website or in their annual report when discussing supply chain C PD

1. China Petroleum & Chemical Corp (Sinopec) - $424.95 billion

Context: Sinopec discusses its digital supply chain initiatives, focusing on integrating big data and Al to enhance supply chain efficiency and transparency
2. PetroChina Co Ltd - $405.33 billion

Context: PetroChina highlights its use of digital technologies to optimize supply chain management, including real-time tracking and predictive analytics

3. Saudi Arabian Oil Co (Saudi Aramco) - $400.38 billion
Context: Saudi Aramco emphasizes its digital supply chain strategy, leveraging loT and blockchain to improve supply chain visibility and security.

4. Exxon Mobil Corp - $413.68 billion
Context: ExxonMobil mentions its digital transformation efforts in supply chain management, focusing on automation and data analytics to streamline operations

5. Royal Dutch Shell plc - $386.20 billion

Context: Shell discusses its digital supply chain initiatives, including the use of Al and machine learning to enhance supply chain resilience and efficiency
6. BP plc - $297.10 billion

Context: BP highlights its digital supply chain projects, focusing on the use of advanced analytics and cloud computing to optimize logistics and inventory management
7. TotalEnergies SE - $184.63 billion

Context: TotalEnergies focuses on its digital supply chain transformation, leveraging loT and Al to improve supply chain agility and reduce costs

8. Chevron Corp - $162.47 billion
Context: Chevron mentions its digital supply chain initiatives, including the use of blockchain and data analytics to enhance supply chain transparency and efficiency

9. Lukoil Oil Co - $128.09 billion
Context: Lukoil discusses its digital supply chain efforts, focusing on automation and real-time data analytics to improve supply chain performance

10. BASF SE - $94.85 billion
Context: BASF highlights its digital supply chain strategy, leveraging Al and digital twins to optimize supply chain processes and enhance sustainability
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These companies are integrating digital technologies into their supply chain operations to improve efficiency, transparency, and resilience.

Carnegie

Mellon
University Answer provided by Microsoft Copilot 1/21/2025 5/18




Process Industries

Carnegie
Mellon

Vertical integration: globally
distributed manufacturing sites that
work as internal supply chains.

Value chains are intertwined and
iInterdependent

Complexity is not well understood by
decision makers

Raw material is supplied by a
combination of internal and external
sources.

Business-to-business transactions.

Long lead time orders of massive
volumes.

University

The Dow Chemical Company

numbers:
6,000 product families at 201 sites in 35

countries
6,000 shipments/day

45,000 customer locations

450 warehouses

150 contract terminals

650 service providers in 160 countries
4,000 suppliers

SupplyChainWorld, 2015.




Typical internal value chains can be very complex Cg\?)[)
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Wassick, J. (2021). Digital Supply Chain. EWO.

Carnegie

Mellon

University 12




Complex business processes underpin supply chain operations CﬁTDD
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Supply Chains are a network of networks CYPD

CENTER
Nodes: Customer

.. Finance Procurement Servi
decision-makers, ervice
functional departments, /,4 i \, ‘ 4 py | \\

business units
whole enterprises .
Distrib./Prod'.:
Voo Sites
Business Distribution
Units Networks ‘ . ‘ . . ‘. Attributes:
scope,
Ti rt.
OO0 OOOO o s span of control,
geographic distribution,

OOOO ololoe decision time frame.
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Widespread, daily disruptions

g

S, i

Supply /
= Bankruptcy = MA&D = Hurricane = River closure = Earthquake — Strike = Political unrest — I(D:ﬁgr%néi — UPE
-
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Many open questions CYPD

CENTER

= How to coordinate decision making across multiple orgs, regions, and
time scales?

= How to better align strategic, tactical and execution level decisions?

= How to create robust plans that are executable, and then execute as
planned?

= How to ensure consistency of assumptions and inputs?
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Some Observations of Supply Chain
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Complexity reigns

There are no solutions, only trade-offs
Supply chain is a team sport

Human decision-making is ubiquitous

Employee time may be the scarcest resource

CgPD




Decisions differ with respect to important dimensions CﬂPD

Operational Tactical Strategic
Decisions Decisions Decisions

Analytical Intuitive

Decision Decision
Making Making

Objectivity Subjectivity OE
-Data driven *Divergent interpretations —O
Reduceable to math Competing interests )

Uncertainty Ambiguity
*Quantifiable probabilities Situations lack precedent
Inferable outcomes Creativity drives actions
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Decision domains with dominant dimensions CQPD

Operational Tactical Strategic
Decisions Decisions Decisions

Analytical Intuitive

Decision Decision
Making Making

Process Control/Automation ESG Policies OI'VT_
Defined by inputs/outputs *Many stakeholders —O
Driven by math and logic *Balancing interests )

Inventory Management New Product Authorization
Demand uncertainty Interpreting trends
«Safety stock setting *Defining market niche
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Sources of Intelligent Decisions

CAPD

Analytical
Methods

Optimization
Simulation

Statistical Regression
Machine Learning

Artificial Intelligence

Carnegie

Business
Process

Simple
Policies

Dashboards

Workflows

Spreadsheets

Control
Towers

CENTER

Human
Decision

Making

Individual human

Standing Team
Ad Hoc Team

Business Rules
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Strengths of Analytical Methods and Humans CﬂPD

Analytical Human
Methods Decision
Making
Rigorous Common Sense
Consistent Intuition
Handle many variables Creativity
Handle Complexity Socially Aware
Speed Socially Engaged
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Consequential aspects of Machine and Human Intelligence CﬂPD

Analytical Human
Methods Decision
Making

Data hungry Reluctance to Change
Defined scope Biases
Reliance on assumptions Response to incentives
Reliance on human Affinity for simple policies
Intervention
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Qualities of successful applications of machine intelligence C%PD

= User feels their job is improved

= Fits into the user's workflow

= User retains autonomy

= Run time not expected to be 100%

= Can tolerate uncertainty in parameter values
= Useful when results are not “proven optimal”

= Recognize value throughout the organization
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Emerging methods for addressing the human element CHPD

CENTER

= Analytical methods that incorporate human intuition and judgement

= Design methods for model-based solutions that consider:

« Human interaction/intervention
« Operation within a larger workflow

* Role of human decision-making

» Extracting policies from human decisions

= Use of virtual assistants

~ .
(_;ﬂ,['[l&ﬂ"l& Dellermann D, Ebel P, Sollner M, Leimeister JM. Hybrid Intelligence. Bus Inf Syst Eng. 2019; 61(5):637—643
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A production planner is a great example of the human element CHPD
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Competing Objectives
Implicit Incentives

- Busmess GRow-m

onOt §© ct
oﬂ\ \ PRODU

-/_~ r

4 " Sre
OVerrimmng TECY
_mEeD!

> CUSTOMERS oo

M

Operational deviates from Strategic Costomer S~ Feasible rather than Optimal

7 \ E fhc5c7

Service

Qc‘ia bil TI'
Carnegie 1

Me llun

https://www.aisa.digital/2019/10/31/how-is-fintech-disrupting-the-finance-industry/ https://dewanltd.co.uk/business_marketing/index.htm|

.
https://www.dreamstime.com/stock-photo-refinery-chemical-plant-process-unit-equipment-image86298510 https://projecteve.com/delivering-excellent-customer-service-every-time-heres-how/ 20/ 18

University



CQ\PD

Learning Production Planners’ Unknown
Objectives via Inverse Optimization

Shivi Dixit!, Rishabh Gupta', Adam Kelloway?, John Wassick?, and Qi Zhang!'

' Department of Chemical Engineering and Materials Science, University of Minnesota
2 Integrated Supply Chain, Dow, Inc. | 3 Department of Chemical Engineering, Carnegie Mellon University

= UNIVERSITY OF MINNESOTA
Carnegie Mellon M
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Background and Motivation

Context: Production scheduling at Dow is commonly performed by .
human planners, who make operational decisions given the current "
demands and inventory levels.

Challenge: We often do not know exactly what factors the human
planners consider in their decision-making.

Opportunity: A better understanding of these factors
can help answer important questions, such as:

*  What decision rules do planners follow & how well do they follow them?
*  What inherent preferences do planners have!

* Do these preferences align with the business objectives!?

*  What distinguishes different planners in their decision-making?
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The Inverse Optimization (I0) Approach

CAPD

Main assumption: Planners make decisions in some optimal manner.

CENTER
Approach: Assuming the planner solves a mental forward optimization
problem (FOP), learn its unknown objective function from observed decisions.
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The forward problem is formulated as a mixed-integer linear program CHPD

Scheduling decisions

« Timing & length campaigns
* Number of cycles
* Cycle lengths

Scheduling constraints

* Inventory and mass balances
* Produce one product at a time
* Product sequence

Carnegie

CENTER

We hypothesize different decision factors as potential cost terms in
the objective function.

Keep inventory low — inventory holding costs

Not too low — penalty on inventory level between S U and S L
Not even lower — penalty on inventory level below S L

Not too high — penalty on inventory level between E_ L and E U
Not even higher — penalty on inventory level above E_ U
Minimize plant downtime — penalty on gaps in production

Be less sensitive to demand surges — penalty on cycle length
deviations
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Fit of detailed scheduling decisions

CAPD

We used 10 observations for training and 10 observations for testing.
Each observation contains the planned scheduling decisions for up to the next 90 days

We evaluate the prediction accuracy
for different horizon lengths
(one time interval = 10 hours).

Rationale: Planners know that
there is recourse in the decisions
for later time periods.

Results indicate that the planner
may focus more on the earlier
time periods.

Accuracy increases with number
of cost terms

Carnegie
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Objective function terms

Results from 10 are easily interpretable and provide insights into the planner’s decision strategy.
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Fit of detailed scheduling decisions CYPD

400 | I;i_‘_];:?‘?.‘zlu(‘;lr‘ terms in objective) 1 400 CENTER
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Google Maps provides an inspiring paradigm for a SC virtual assistant CHPD

Strategic decision: route selection Agility: alternative routes suggested in real time from current traffic.

CENTER
4 Adaptability: recommended routes derived from traffic history.
| H“":f"’““'{; Alignment: coordination with other drivers and road construction
T Tactical decision: rerouting for traffic

| ¢ ' \ 1
{
If
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T 3
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) ména Carmegiv Miticn
A Univaesay

https://www.google.com/maps/dir/Midland,+MI+48642/Carnegie+Mel
lon+University

https://trak.in/tags/business/2016/04/14/google-maps-navigation-traffic-alerts/

* User feels their job is improved
* Fits into the user's workflow
« User retains autonomy

https://www.geowebguru.com/2017/07/01/relevance-of-web-mapping-applications/

Carnegiec B Useful when results are not “proven optimal”
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Google Maps are a Cyber Physical System CYPD
GPS data gathered from

CENTER
smart phones and drivers
roviding crowd source : : .
P J This data is used in a
information - : .
digital twin to provide
the current state of the Obtimizati dels find
road network ptimization models fin
the fastest route; Al
recognizes traffic jams to
recommend rerouting

Chicago 1500

1200

https://www.charlottestories.com/charlottes-first-toll-road-will- San 250
generate-half-much-income-initially-projected/ F rancisco800 e
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York
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Los Angeles

New Orleans

European Journal of Operational Research 219(3):611-621 Miami

https://academyera.com/single-source-shortest-path
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Supply chains can be viewed as a cyber-physical system

= Integrate devices, computation, people

\ Computation

* Interoperable to exchange information _{-T
s |
Jam

\

= Modular for flexibility and responsiveness \_ Control

Data set Prediction

Cloud storage Data analysis
= Autonomous to learn and adapt
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ﬁ\ Communication

Sensing Real-time optimization
= Decentralized to be resilient Recognize &understand f  Decision makd
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Mellon

l___][] i\-’(‘: I'Hi[_\,-' Napoleone A, Macchi M, Pozzetti A. A review on the characteristics of cyber-physical systems for the future smart factories. J Manuf Syst. 2020;54:305-335
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Supply chains can be viewed as a cyber-physical system CYPD

Carnegie Mellon + Engineering

Cyberphysical systems (CPS) are engineered
systems that link sensing, computation, and

control to the physical world.

If orchestrated correctly, the economic and

societal potential of CPS will transform broad Cloud storage Data analysis

domains such as transportation, critical DLt Prediction

Sensing Real-time optimization

infrastructure monitoring, healthcare, defense

Recognize &understand |
./ f' 1 f’ e

systems, manufacturing, smart buildings, and

citywide energy optimization.

https://engineering.cmu.edu/research/cyberphysical-systems.html
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Multi-agent networks are an excellent paradigm for enterprise solutions

CHPD

“A collection of multiple decision-making
agents which interact in a shared
environment to achieve common or
conflicting goals”

= Advantages of distributed decision-making
« Helps to provide resilience

« Large problems become tractable in pieces

« More agile than hierarchical methods

« Human or artificial agents are accommodated
O
« They can reflect organizational roles cmom =
Eff

« Agent connections are flexible and dynamic to I y

create solutions as needs arise Se rvicat

Relic bnlifn’

« Commercial offerings deployed as agents
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g <R } 28593. doi:10.1109/ACCESS.2018.2831228
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Knowledge graphs are a great foundation for a digital supply chain  CHAPD

CENTER

= Naturally capture the nature of supply chain

o networks
. 17% ! P N\ n = Model the relationship between objects
VETAD 5% | § 7 il - = Objects and their relationships have attributes
NS e b = Powerful graph analytics are available
s {

= Can be easily extended as new information
becomes available
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Integrated Optimization and Simulation of
Extended Supply Chain Business Processes

Hector D. Perez
Advised by Ignacio E. Grossmann
Ph. D. Proposal: December 11th, 2020
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Business transactions have many features of chemical batch processing CHPD
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Integrated framework has been built using Julia Language

CAPD

Business Process Module

Task Graph

e.g. Create Delivery

Resource Capacities
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Resource Type

LightGraphs
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Two benchmarks to compare the models against CYPD

CENTER
= First-in-first-out queueing network (un-optimized system)

Orders to
$3 51 54 56 Task 1:
Agent
= Greedy heuristic
* Prioritize by order revenue
* Select agent that can finish the transaction the soonest
Y

* Availability
i i New Orders —» —y Ordersto
* Mean processing time Next Stage

51 53 54 36 Task 1:
Queue Agent
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Optimization-simulation improves stochastic system performance CYPD

CENTER
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