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OUTLINE

➢Motivation
✓AI: How does it work?

✓AI & Energy

✓Why so much energy is needed for AI?

➢AI: Training Problem
✓The structured approach for using AI: Training (Training, Validation, Testing) 

and Inference

✓Training problem: activation function in ANNs

✓SOSX approach for instant and accurate training of ANNs

✓Results on Benchmark Problems

➢Discussion & Conclusions
✓Energy conundrum of AI

Energy & AI         Metin Türkay  2



MOTIVATION
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➢What is the interplay between AI and Energy

✓Scenario based projections of 

• AI’s Adoption

• AI Strategy (Baseline, Fewer-Larger, More-Smaller)

• Computing Power

• Algorithmic Efficiency

✓Carbon emissions considering

• Business As Usual

• Emission Targets

➢Why does AI need so much energy?

✓Training and Inference stages

✓Deeper analysis of algorithms



HOW DOES AI (GenAI) WORK?
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Source: ChatGPT 5



AI & ENERGY

➢AI & Energy
✓ AI needs significant amounts of energy

✓ Demand for AI is increasing resulting in

✓ Higher energy consumption share
• 4.3% of electricity is used for AI in US (2024)

• 1% of global energy consumption is for AI (2024)

✓ How AI models are
• Trained

• Inferred/Served 

• Used

✓ Need to consider energy demand during
• Hardware

• Training Models

• Inference/Service Models

• Adaptation & Usage Profile

✓ Efficiency gains
• Hardware

• Training Models

• Inference/Queries/Requests

✓ AI & Energy is a complex issue
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https://www.mckinsey.com/featured-insights/sustainable-inclusive-growth/charts/ais-power-binge



AI ADOPTION
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Source: J. Sevilla, et al (2022)



METHODICAL APPROACH
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AI ADOPTION SCENARIOS

➢3 Scenarios for AI Adoption

✓Baseline: Continues the current trend of AI development without any 

significant change in the number of platforms used for AI training and 

inference

✓Fewer-Larger: A small number of platforms remain to serve different 

geographies and alliances across the globe – Artificial General Intelligence

✓More-Smaller: A very large number of platforms serve to different 

geographies and sectors across the globe – micro & specialized platforms
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AI ADOPTION SCENARIOS

➢Complexity of AI Models
✓The use of AI for tasks will become more complex requiring training more complex 

models

✓Developed world is expected to lead the new uses of AI for different tasks
• US already accounts for 9% of active AI users globally only with 4.22% of global population but 

responsible from 66.8% AI-related emissions (2024)

✓ It is important to distinguish the energy demand during
• Hardware manufacturing (GPU) and installation

• Data/Computing Center locations for Training AI models

• Data/Service Center locations for AI Inference hosting

✓Hardware Energy Efficiency Gains

✓AI model complexity increase vs algorithmic efficiency
✓ Training

✓ Inference

✓Energy sector efficiency gains

✓Carbon mitigation targets
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HARDWARE EFFICIENCY

➢Hardware Efficiency

✓Hardware efficiency captures improvements in the energy consumption of data center IT 

equipment over time

✓The two major components are central processing units (CPUs) and graphics processing units 

(GPUs), with GPUs playing a central role in AI workloads.

✓Hardware efficiency captures improvements in the energy consumption of data center IT 

equipment over time.

𝐸ℎ 𝑡 = 𝐸ℎ0𝑒𝑥𝑝
𝛼ℎ

𝛽ℎ
1 − 𝑒𝑥𝑝 −𝛽ℎ𝑡

𝑬𝒉𝟎 represents the baseline hardware efficiency at 𝑡 = 0

𝜶𝒉 denotes the initial rate of improvement in hardware efficiency

𝜷𝒉 is the deceleration factor, capturing the slowdown in efficiency gains over time.
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AI ALGORITHMS & THEIR EFFICIENCY

➢Algoritmic Efficiency

✓ As AI workloads grow, efficiency gains from algorithmic improvements become critical to 

mitigating overall energy consumption

✓Algorithmic efficiency reflects the energy savings achieved through advances in computation, 

such as reduced redundancy and optimization of processing steps.

𝐸𝑎 𝑡 = 𝐸𝑎0𝑒𝑥𝑝
𝛼𝑎

𝛽𝑎
1 − 𝑒𝑥𝑝 −𝛽𝑎𝑡

𝑬𝒂𝟎 represents the baseline algorithmic efficiency at 𝑡 = 0

𝜶𝒂 denotes the initial rate of improvement in algorithmic efficiency

𝜷𝒂 accounts for diminishing returns as optimization approaches fundamental limits
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Year Unsolved Problems

2009 1655

2010 1511

2011 1343

2012 1265

2013 1134

2015 939

2017 575

2018 385

2020 319

2022 202

2023 173

Gurobi Benchmark dataset



EFFECTIVE USE OF POWER

➢Power Usage Effectiveness

✓Power Usage Effectiveness (PUE) measures the ratio of total facility energy consumption to IT 

equipment energy consumption. 

✓A PUE of 1.0 represents perfect efficiency, while real-world data centers typically operate at 

values closer to 1.5, with the remainder of energy use attributed to cooling and infrastructure.

𝐸𝑝 𝑡 = 𝐸𝑝0𝑒𝑥𝑝
𝛼𝑝

𝛽𝑝
1 − 𝑒𝑥𝑝 −𝛽𝑝𝑡

𝑬𝒑𝟎 is the initial PUE at 𝑡 = 0

𝜶𝒑 is the rate of improvement in PUE, reflecting efficiency enhancements in cooling and facility operations

𝜷𝒑 accounts for diminishing returns as data centers approach optimal efficiency
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ENERGY EFFICIENCY

➢Total Energy Efficiency

✓All improvements in affect the Total Energy Efficiency

• Hardware Efficiency

• Algorithmic Efficiency

• Power Usage Effectiveness

𝐸 𝑡 =
𝐸ℎ(𝑡)

𝐸𝑎(𝑡)𝐸𝑝(𝑡)

𝐸(𝑡) values indicate higher efficiency in energy use per FLOP.
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AI ADAPTATON SCENARIOS
➢Demand for AI

✓AI Computation Demand has 2 components: Training and Inference (Usage):

𝑪 𝒕 = 𝑪𝒕 𝒕 + 𝑪𝒖 𝒕
𝐶 𝑡 is the total demand for AI
𝐶𝑡 𝑡 accounts for model complexity and frequency of model training
𝐶𝑢 𝑡  is driven by AI adoption and query intensity

𝑪𝒕 𝒕 = 𝑪𝒄 𝒕 + 𝑪𝒎 𝒕

𝐶𝑐 𝑡 : model complexity (FLOPs per model), evolves as 𝐶𝑐 𝑡 = 𝐶𝑐0 𝑡 + 𝜆𝑐1
𝜂𝑐1

𝐶𝑚 𝑡 : model demand (FLOPs per model), evolves as 𝐶𝑚 𝑡 = 𝐶𝑚0 𝑡 + 𝜆𝑚1
𝜂𝑚1

𝐶𝑢 𝑡 = ෍

𝑖=1

𝐼

𝑃𝑖0𝑒𝑟𝑖𝑡 𝐴𝑖 𝑡 𝑄0𝑒𝜒𝑡

𝑃𝑖0 is the initial population of user group 𝑖.

𝑟𝑖 is the population growth rate in group 𝑖.

𝐴𝑖 𝑡 , the adoption rate, follows a logistic function: 𝐴𝑖 𝑡 =
1

1+exp(−𝛾𝑖 𝑡−𝑡0𝑖 )

𝑄0 represents initial query complexity, and 𝜒 is the growth rate of query complexity.
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DATA CENTER LOCATIONS

➢ENERGY MIX (Energy Production Targets by Country for 2030 )
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GLOBAL DISTRIBUTION OF ENERGY DEMAND 
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➢ Group A (Most Developed): 

Includes the United States, Canada, 

Western European nations, Japan, 

Australia, and South Korea.

➢ Group B: Consists of emerging 

economies with strong technological 

bases, such as China, Eastern 

European nations, and select Latin 

American countries like Brazil.

➢ Group C: Includes middle-income 

countries with moderate AI adoption, 

such as Mexico, Egypt, Philippines, 

and Indonesia.

➢ Group D: Consists of lower-middle-

income nations in Southern Africa 

and South Asia.

➢ Group E (Least Developed): 

Comprises countries with minimal AI 

presence, including regions in Sub-

Saharan Africa, war-affected nations, 

and those with severe energy 

access issues.



GLOBAL DISTRIBUTION OF ENERGY DEMAND 
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RESULTS: AI ADOPTION
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Source: Türkay et al (2025)



AI: GOLD RUSH
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Pressure to deliver fast

➢ openAI, Google (Gemini), Microsoft (pilot), X (Grok) and Meta

➢ Apple and amazon are getting ready to join

➢ Look beyond concrete fortresses and 36-month timelines. Their 

new weapon in the $400 Billion Ai compute race
➢ Billion-dollar GPU clusters running under hurricane-proof canvas, 

not steel, in just 3 weeks

Materials

➢ Aerospace-grade aluminum frames
➢ 400 MW on-site power substations

➢ $2-3B worth of compute under each tent

➢ Zero backup generators, no fortress walls

➢ Next-gen liquid cooling pushing 95% efficiency

AI Training

➢ Meta is running some of the world's most powerful Ai:

➢ 20,000+ GPUs per site

➢ 24/7 orchestrated AI training

➢ Elite engineers running everything like an F1 pit crew
➢ 95% uptime



RESULTS: AI’s ENERGY DEMAND PROJECTIONS
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Source: Türkay et al (2025)



AI CENTERS & ENERGY SOURCE/EMISSIONS

➢Data Centers & Their Energy Source
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RESULTS: GLOBAL DISTRIBUTION OF ENERGY 
DEMAND 
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ENERGY NEEDED: TRAINING & INFERENCE
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Source: Türkay et al (2025)



SUMMARY OF RESULTS

➢AI’s impact on energy is significant

✓13-47% of global energy consumption by 20250!

➢AI scaling strategies significantly impact carbon output

✓More-Smaller Models (BAU) scenario producing the highest emissions at 

22.05 Gt CO2, followed by the Baseline (13.25 Gt CO2) and Fewer-Larger 

Models (6.59 Gt CO2).

➢Implementing Emissions-Targeted (ET) strategies leads to substantial 

reductions across all cases, with the most pronounced decrease in the More-

Smaller Models scenario, where emissions drop by 41.8% to 12.83 Gt CO2

➢The primary contributor to emissions remains the Training phase, 

underscoring the urgent need for low-carbon energy solutions, efficiency 

improvements in AI infrastructure and better training algorithms. 
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THE TRAINING PROBLEM
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✓𝒏-dimensional input vector 𝒙, via scaler product and mapping a 
nonlinear function are used to determine the output variable 𝒚

-

𝑓

Weighted 

Sum
Input

Vector 𝒙

Output 𝒚

Activation

Function

Weight

Vector 𝒘

෍

𝒙𝟎

𝒙𝟏

𝒙𝒏

𝑡

Example: 

𝒚 = 𝒔𝒊𝒈𝒏 ෍

𝒊=𝟎

𝒏

𝒘𝒊𝒙𝒊 − 𝒕

𝒘𝟎

𝒘𝟏

𝒘𝒏



ANNs
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➢A feed-forward, fully connected artificial neural network with a single layer is 

defined as:

ො𝑦 = 𝑓1 𝑤1𝑓2 𝑤2𝑥 + 𝑏2 + 𝑏1

𝑥 input matrix

ො𝑦 output matrix

𝑓1, 𝑓2 activation functions at output and hidden layers

𝑤1, 𝑤2 weight matrices

𝑏1, 𝑏2 bias matrices

➢ Typically, the training problem with 𝑁 training data points is defined as 

minimizing mean absolute error (MAE) which is defined as:

min
𝑤1,𝑤2,𝑏1,𝑏2

1

𝑁
෍

𝑖=1

𝑁

𝑓1 𝑤1𝑓2 𝑤2𝑥 + 𝑏2 + 𝑏1 − 𝑦𝑖



ACTIVATION FUNCTIONS
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➢ Nonlinear, moreover a nonconvex function

➢ State-of-the-art AI platforms (chatGPT, Grok, Gemini) uses:

✓ Gradient Descent Algorithm (Cauchy, A.-L. (1847). Méthode générale pour la résolution des systèmes 

d’équations simultanées. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 

25, 536–538.)
✓ Second Order / Quasi-Newton Method Fletcher, R., & Powell, M. J. D. (1963). A rapidly convergent 

descent method for minimization. Computer Journal, 6(2), 163–168.
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➢ Despite all of this effort:

✓ Global optimality cannot be guaranteed

• Stochastic behavior of the tweaked gradient descent and quasi-Newton algorithms

✓ Need to retrain the entire system with new data

• No warm start
✓ Every version needs

• More memory

• Faster GPUs/TPUs

• More GPUs/TPUs

• More Energy
• More Water for Cooling

Source: ChatGPT 5

HARDWARE NEEDED FOR TRAINING



CONVEX TRAINING
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𝑚𝑖𝑛𝑤1,𝑤2,𝑏1,𝑏2

1

𝑁
෍

𝑖=1

𝑁

𝑓1 𝑤1𝑓2 𝑤2𝑥𝑖 + 𝑏2 + 𝑏1 − 𝑦𝑖 𝑚𝑖𝑛𝑤1,𝑤2,𝑏1,𝑏2
𝜈′ =

1

𝑁
෍

𝑖=1

𝑁

𝑤1𝑓2 𝑤2𝑥𝑖 + 𝑏2 + 𝑏1 − 𝑦𝑖

𝜈′ ≤ 𝜈′

− 𝜈′ ≤ 𝜈′ 

𝑎0 ≤ 𝑤2, 𝑏1, 𝑏2 ≤ 𝑎𝑃

∆𝑘= 𝑎𝑘 − 𝑎𝑘−1

𝑔𝑘 = 𝜎′ 𝑎𝑘 − 𝜎′ 𝑎𝑘−1 ∀ 𝑘 ∈ 1, … , 𝑃

𝑎0 ≤ 𝑤2𝑥𝑖 + 𝑏2 ≤ 𝑎𝑃

𝑤2𝑥𝑖 + 𝑏2 = 𝑎0 + ෍

𝑘=1

𝑃

𝑦𝑘

𝜎′ 𝑤2𝑥𝑖 + 𝑏2 = 𝜎 𝑎0 + ෍

𝑘=1

𝑃
𝑔𝑘

∆𝑘
𝑦𝑘

non-smooth, nondifferentiable

D’Ambrosio, C., Lodi, A., & Martello, S. (2010). Piecewise linear approximation of functions of two variables in MILP models. Operations Research Letters, 38(1), 39–46. https://doi.org/10.1016/j.orl.2009.09.005

Keha, A. B., De Farias, I. R., & Nemhauser, G. L. (2004). Models for representing piecewise linear cost functions. Operations Research Letters, 32(1), 44–48. https://doi.org/10.1016/S0167-6377(03)00059-2

https://doi.org/10.1016/j.orl.2009.09.005


tanh: PIECEWISE LINEAR APPROXIMATION
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Possible Formulations:
Unary (Jeroslow 1984)
✓ convex combination / incremental / SOS2

✓ introduce binary variables that indicate which interval is 

active

✓ each breakpoint is assigned its own binary

✓ compact, tight LP relaxation

✓ needs many binaries if the function has many segments

Binary (Vielma & Nemhauser, 2011)
✓ known as logarithmic formulation

✓ encode the active segment using a binary variable

✓ introduce binary variables that indicate which interval is active

✓ each breakpoint is assigned its own binary

✓ fewer binaries compared to unary

✓ the LP relaxation is usually weaker than unary



SOS2 and SOSX
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if ෨𝑌 is the current solution (LP 

relaxation) with ෨𝑌𝑖 < ∆𝑖 and ෨𝑌𝑖+𝑘 > 0 

for some 𝑘 ∈ 1, … , 𝑡 − 𝑖 , the are two 

branches: 

SOS2 Explicit SOSX

Keha, A. B., De Farias, I. R., & Nemhauser, G. L. (2004). Models for representing piecewise linear cost functions. Operations Research Letters, 32(1), 44–48. https://doi.org/10.1016/S0167-6377(03)00059-2

Vielma, J. P. (2015). Mixed integer linear programming formulation techniques. In SIAM Review (Vol. 57, Issue 1, pp. 3–57). Society for Industrial and Applied Mathematics Publications. https://doi.org/10.1137/130915303

𝑤2𝑥𝑖 + 𝑏2 = ෍

𝑚=0

𝑃

𝑎𝑚𝜆𝑚

𝜎′(𝑤2𝑥𝑖 + 𝑏2) = ෍

𝑘=0

𝑃

𝜎(𝑎𝑚)𝜆𝑚

෍

𝑚=0

𝑃

𝜆𝑚 = 1

𝜆𝑚 ≥ 0, ∀ 𝑚 ∈ 0, … , 𝑃  𝑎𝑛𝑑 𝑆𝑂𝑆2

𝜆0 ≤ 𝑧0

𝜆𝑚 ≤ 𝑧𝑚−1 + 𝑧𝑚 , ∀𝑚 ∈ 1, … , 𝑃 − 1

𝜆𝑚 ≤ 𝑧𝑚−1

෍

𝑚=0

𝑃−1

𝑧𝑚 = 1

𝑧𝑚  ∈  0,1

∆𝑚𝑌𝑚+1 ≤ ∆𝑚+1𝑌𝑚 ∀𝑚 ∈ 1, … , 𝑃 − 1

𝑌1 ≤ ∆1

𝑌𝑃 ≥ 0 

𝐵𝑟𝑎𝑛𝑐ℎ 1: 𝑌𝑘 = ∆𝑘

𝐵𝑟𝑎𝑛𝑐ℎ 2: 𝑌𝑘+1 = ⋯ = 𝑌𝑃 = 0 

https://doi.org/10.1016/S0167-6377(03)00059-2
https://doi.org/10.1016/S0167-6377(03)00059-2
https://doi.org/10.1016/S0167-6377(03)00059-2
https://doi.org/10.1016/S0167-6377(03)00059-2
https://doi.org/10.1016/S0167-6377(03)00059-2


TRAINING WITH SOSX
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CASE STUDY
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53

8 10

2016

24 30

Number of 

neurons used: 

Number of piecewise 

linear segments used: 

3

5

7

Case study: 

❖ Distillation column with 27 

features

❖ Temperature, pressure,…

❖ Vapor pressure as output 

NLP, SOSX, MIP trained FFNs

MIP does not converge a solution 

MIP is stopped at SOSX CPU time

SOSX CPU times are recorded

Koksal, E.S., Turkay, M., Aydin, E. (2025). An Efficient Convex Training Algorithm for Feedforward Neural Networks by Utilizing Semi-Continuous Piecewise Linear Formulations. 



RUN SETTINGS
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➢SOSX does not use heuristics

➢Changing MIP focus disturbs test performance

➢ "NLP training," uses the Adam optimizer (Kingma & Ba, 2014) and 

original hyperbolic tangent activation function in TensorFlow's Keras 

(Chollet et al, 2015) framework with 100 epochs

➢ "MIP training” incorporates binary variables into the problem 

structure in a standard fashion and uses standard B&B algorithm

➢𝒏: number of neurons at the hidden layer, 𝒑: number of piecewise 

linear segments 

➢12000 seconds of CPU time limit



RESULTS: 3 neurons
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RESULTS: 5 neurons
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RESULTS: 8 neurons
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RESULTS: 10 neurons
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RESULTS: 16 neurons
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RESULTS: 20 neurons
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RESULTS: 24 neurons
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RESULTS: 30 neurons
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RESULTS: Training & Testing (p=3)
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RESULTS: Training & Testing (p=5)
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RESULTS: Training & Testing (p=7)
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RESULTS: MAE
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➢Main Observations:

    Training:

✓ SOSX achieves 0 error at the training stage 

→ they are solved to optimality

✓ MIP could not solve any of the training 

problems to optimality

✓ NLP was stuck with locally optimal solutions 

in all cases

    Testing:

✓ SOSX is superior to MIP in all cases

✓ SOSX is better than NLP in 7 out of 8 cases

✓ NLP is better only when 𝑛 = 3 



RESULTS: CPU Time on Benchmark Problems
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CONCLUSIONS
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➢Training for AI is a major resource (GPU time, energy and water) consumer

➢Training models and algorithms are not very effective in most state-of-the-art 

systems

➢Algorithmic efficiency needs to be addressed

➢Proposing a SOSX based algorithm for training ANNs
✓ SOSX approach for quasi-convex training neural networks using piecewise linear approximations 

of activation functions

✓ consistently achieves almost zero training error while avoiding overfitting, showcasing a striking 

balance between computational efficiency and model accuracy

✓ Regular NLP-based training, while relying on standard optimization frameworks and providing 

reasonable test performance, is generally outperformed by SOSX, particularly when higher 

piecewise approximations are employed to better capture activation function behavior

✓ Unlike MIP-based training, which exhibits exponential increase in CPU time as problem size 

increases, SOSX demonstrates polynomial increase
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